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Pair-hypernetted-chain closure for three-body potentials: Results for argon
with the Axilrod-Teller triple-dipole potential
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The hypernetted-chain closure is modified to include three-body potentials. The latter is reduced to a
state-dependent effective pair potential. Explicit expressions for the Helmholtz free energy and for the
chemical potential are derived for the modified closure. The approximation is shown to be relatively
self-consistent and in qualitative agreement with perturbation results. An argonlike fluid is discussed us-

ing the Lennard-Jones pair potential and the Axilrod-Teller triple-dipole potential. In agreement with
earlier work, it is found that the effective three-body contribution is positive, increasing the pressure and
the internal energy by about 10% in the liquid state.

PACS number(s): 61.20.Gy, 61.20.Ne, 61.25.Bi, 64.70.Fx

I. INTRODUCTION

According to statistical mechanics, the macroscopic
properties of matter can be calculated from the micro-
scopic interaction potentials between molecules. Two
obstacles hinder the realization of this goal: the inter-
molecular potential may be difficult to measure or calcu-
late, and the usual approximation schemes of statistical
mechanics may be inappropriate or intractable for realis-
tic potentials. The latter is currently the proximate
impediment to a satisfactory description of simple fluids.

An example of the progress that has been made is pro-
vided by argon, for which the intermolecular potential is
reasonably well characterized [1].At long range the func-
tional form and the magnitude of the potential can be cal-
culated exactly. This is the dispersion energy, which
arises from correlated fluctuations of the electron clouds
of the atoms, and, in addition to the mell-known r pair
term, it includes the Axilrod-Teller triple-dipole three-
body contribution [2]. The short-range repulsion, often
modeled by an r ' term, is essentially the Pauli ex-
clusion of the overlapping electron clouds, and can only
be approximately calculated. Here, too, three-body
effects have been described [3]. Although the small sepa-
ration regime is problematic for theoretical calculations,
the potential here and in the region of its minimum may
be experimentally measured [1].

Nowadays, it must be regarded as routine to calculate
the macroscopic properties of classical, equilibrium, bulk,
simple fluids that interact with given pairwise additive
potentials. However, three-body contributions pose great
challenges, not so much to the formalism of statistical
mechanics, but to its practical application. With one ex-
ception [4], no simulation or integral-equation results for
real fluids have so far been reported. It is now some time
since Barker and co-workers [5,6] performed a perturba-
tion calculation with reference to pairwise additive argon
and concluded that the effects of the Axilrod- Teller
triple-dipole potential were non-negligible. It seems time-
ly to explore practical theoretical approaches for simple
fluids that interact with three-body potentials, since this

is necessary before the goal discussed in the first para-
graph can be achieved.

The approach to three-body potentials taken in this pa-
per is based upon the well-known hypernetted-chain
(HNC) closure to the Ornstein-Zernike integral equation.
Like the HNC, the new closure neglects the bridge func-
tion (thereby yielding only the third virial coefficient ex-
actly}, while retaining some contributions from all orders
in density, which hopefully assures its reliability at liquid-
like densities. The three-body potential enters as a state-
dependent pair potential that is determined as part of the
iterative solution of the Ornstein-Zernike equation. This
reduction of the three-body potential, and also the deter-
mination of the virial pressure and of the internal energy,
involves a three-dimensional quadrature, but the scheme
still remains hardly more complex than a normal pair-
HNC computation. The great advantage of the method,
which may be regarded as the simplest nontrivial approx-
imation for fluids with three-body potentials, is that it is
so tractable; even the curve fitting of relatively complicat-
ed effective two- and three-body potentials to experimen-
tal data should be feasible.

The second part of this paper contains specific results
for an argonlike fluid. The calculations are intended to il-
lustrate the changes caused by the inclusion of the
asymptotic three-body potential. To this end the
Lennard-Jones pair potential has been used, with the
magnitude of the long-range part equaling the proper ar-
gon pair-dispersion potential. The three-body potential
employed is the triple-dipole potential of Axilrod and
Teller [2], with the magnitude again coming from a first-
principles calculation. The conclusions drawn here are
consonant with those of Barker and co-workers [5,6],
namely, that the three-body potential can contribute
several percent to the bulk properties of the fluid.

II. THEORY

A. Closure approximation

Modern theories of the liquid state that are based upon
particle distribution functions start from the Ornstein-
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Xg2(r3f )gz(r, z )dr, , (2)

where p= 1/ksT, ks being Boltzmann's constant and T
the absolute temperature. For the fluids considered here,
the three-body potential u 3 (r „rz, r3 ) depends only upon
the triangle (e.g. , any two sides and the included angle)
formed by the three atoms.

The new closure approximation for three-body poten-
tials is

Pw(r, q) =Pu2(r)2)+Pu(r)2) —[h (r)2) —c (r )q)), (3)

where the bridge function and certain non-Ornstein-
Zernike-series diagrams have been neglected. This ap-
proximation may be stated in other words, namely, that it
retains all diagrams, but only those diagrams that can be
computed by storing only two-body functions and by do-

ing single-particle integrals. The total-correlation func-
tion is given oy

h (r, z ) = —1+exp[ Pw(r„) ] . — (4)

These four equations, which relate four unknown func-
tions, are readily solved by iteration using the techniques
standardized from the usual HNC closure [the quadra-
ture in Eq. (2) is discussed below]. The three-body poten-
tial has been reduced to a state-dependent effective pair
potential. The neglected functions are of second order in

Zernike equation. This relates the total, h (r), and the
direct, c (r), pair-correlation functions [7]

h (r&z)=c(r&z)+p f h(r&3)c(r3z)dr3

where p is the number density. This paper focus on uni-

form one-component fluids composed of spherical atoms;
the generalization to other situations appears straightfor-
ward. The Ornstein-Zernike equation has the effect of
connecting Yvon-Mayer cluster diagrams in series at no-
dal points.

The hypernetted-chain closure approximates the pair
potential of mean force, w(r, z). This connects diagrams
in parallel, since it is the exponential of w (r,2 ) that yields
the radial distribution function g2(r&2)=h (r&2)+1. For
the case of a fluid interacting only with two-body poten-
tials, the pair potential of mean force consists of the pair
potential uz(r»), the Ornstein-Zernike series function
h ( r, z )

—c ( r, z ), and the bridge function. If in addition to
the two-body potential there is a three-body potential, ex-
tra diagrams contribute to the potential of mean force,
including implicit contributions to the series function and
to the bridge function, and explicit series diagrams not of
the Ornstein-Zernike type. The approximation to be
made is to neglect all bridge diagrams, and to retain only
those of the latter series diagrams that involve an integral
over a single root point at a time. The neglected dia-
grams are at least of order p . The series diagrams that
are retained, in addition to the Ornstein-Zernike ones,
may be exactly resummed and are represented by two
root points and a single field point, all directly connected
by the three-body Mayer ffunction -and by two radial
distribution functions. The result is

Pu(r, z) = —
p f [

—1+exp[ —Pu3(r», r32)]]

density, and so the radial distribution function is given
exactly to linear order in density by this approximation;
this would not be the case if the three-body potential
were simply neglected. In the absence of three-body po-
tentials, the closure reduces to the standard HNC for
fluids interacting with pair potentials.

The HNC approximation for fluids with pairwise addi-
tive potentials deteriorates at higher densities, and there
have been a number of improvements, including the ex-
plicit calculation of the bridge function [8—11]. Of par-
ticular interest in the present context is the reference
hypernetted-chain (RHNC) method, where the (known)
bridge function of some simpler fluid (e.g. , hard sphere) is
used [12,13]. Since the RHNC treats the underlying pair
fluid more accurately, it could be a worthwhile modi-
fication of the scheme given above for fluids with three-
body potentials, particularly since it would not increase
the computational complexity of the approach.

Silvera and Goldman [14] (see also Ref. [15])have also
reduced the three-body potential to an effective pair po-
tential, but their expression is different from Eq. (2). For
the Axilrod-Teller triple-dipole potential, they choose a
plausible but ad hoc C9r pair potential, with the
density-independent coefficient fixed to give the correct
cohesive energy of the crystal at a single state point. Be-
cause the near-neighbor distance scales with the inverse
cube root of the density, their effective pair potential will

give a contribution to the lattice energy which goes as the
third power of density, which is correct. Similarly, the
effective pair potential derived here, Eq. (2), which is
linear in density to leading order at low densities, gives a
contribution to the internal energy of dilute gases that is
cubic in density, which is also correct. One cannot say
how it would contribute to the cohesive energy of the
solid because of the unknown density dependence of the
particle distribution functions which occur in Eq. (2), and
also because the closure approximation, Eq. (3), is not
expected to be valid at solid densities. Below it is argued
that the effective pair potential, Eq. (2), decays like r at
large separations, which is probably exact for a dilute
gas. That this disagrees with the r form of Silvera and
Goldman [14] may not be significant because they apply
their approximation to solids where the near-neighbor
contribution dominates the cohesive energy. If their po-
tential were changed to an A6r potential, with the
coefficient A6 being linear in density, one would still ob-

tain a lattice energy that depended upon the third power
of density.

B. Thermodynamic quantities

It will prove convenient to specify the various three-
particle functions in terms of the triangle formed by the
molecules, f,(r, , rz, r, )=f3(s, t,x). Here t=~r, —r2~/2 is

half the length of one of the sides, s = ~r~
—(r, +r2)/2~ is

the distance from the midpoint of this side to the remain-

ing vertex, and x =s-t/st is the cosine of the angle be-
tween these two vectors. From symmetry, f3(s, t, x)
=f3(s, t, —x).

The excess internal energy per atom is easily shown to
be
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U'"/N= dr]2g2(r]2)u2(r]2)+ dr]2dr]3g3(r]2, r]3)u3(1]3 ]3)
2] 3'I

26 2 2

=2mp f g2(r)u2(r)r dr+ f ds s f dt t f dx g3($ t x)u3($ t x)
0 3 0 0 0

and the virial pressure is

pP =Pk T — dr]2g3(r]2)r]2 V u2(r]2) — dr]2dr]3g3(r]3, r]3)r]3 V, u3(r]3, r]3)
v B 213 12 2 12 12 r12 3!3 12

au, (r), 26 2p3 . , „, , au (s, t, x)
=pk T —f g2(r)r r dr — f ds s f dt t f dx g3(s, t, x)t

3 o Br 9 o o o
' '

Bt (6)

Here only the particle at r1 is partially coupled; at A, =O it
is absent, and at A, =1 it is an ordinary atom of the fluid.
On the other hand, the coupling constant for the excess
Helmholtz free energy per atom couples all particles
simultaneously,

pA'"/N=~ f dk fdr, 2g2 '(r]2)pu3(r]2)

+ d)(. dr„dr]3g3 (r]3 r]3)p 1 (&)

3! o

xpu 3(r]3,r» (8)

Equations (7) and (8) are straightforward generalizations
of the well-known expressions for fluids that interact with
only pair potentials.

These four expression, Eqs. (5)—(8), are formally exact.
They each explicitly contain two- and three-body terms,
which depend on the pair and triplet distribution func-
tions. Note that even if the triplet term were neglected
(in many situations the pair term gives the dominant con-
tribution), the three-body potential would still have an
effect via the radial distribution function. In practice one
must approximate the particle distribution functions. An
approximation for the radial distribution function was
given above, and it remains to specify the three-particle

Here g3(r„r2, r3) is the three-particle distribution func-
tion, which will be approximated below.

The excess chemical potential can be written in terms
of a coupling constant integral,

1&p'"=p d~ f«]2g2"'(r]3)pu3(r]2)
0

p 1
2

+ d~ dr]3dr]3g3 (r]2 r]3)pu3(r]2 r]3)(&)

2! o

(7)

C. Chemical potential

The pair contribution to the chemical potential, Eq.
(7), is most easily evaluated by utilizing the differential of
the closure relation, Eq. (4),

gg(A. ) (r )
Pu3(r]3)g3 '(r]2)=

+g3 '(r]3) [h'"'(r]2) —c' '(r]2)]

Bpu (r]2)
'(r]3) (10)

Note that here and in Eq. (7) a linear coupling for the
pair potential has been chosen, u (2") (r) =A,uz(r), and simi-
larly for the three-body potential. Apart from the
effective pair potential term, this is the usual HNC ex-
pression for which it is possible to perform the coupling-
constant integral [17—19],

distribution function.
In this work the Kirkwood superposition approxima-

tion [16]will be used,

g3( ]3, » =g2(»)g2(»)g3(») p[ —pu3( ]2, »)] .
(9)

There are several reasons for choosing this simplest ap-
proximation, not least of which is the goal of a tractable
practical theory for fluids with three-body potentials.
Moreover, with this approximation the virial pressure
remains exact to third order in density. Finally, it turns
out that one can actually perform the coupling-constant
integrals for the chemical potential and for the free ener-

gy when the superposition approximation is used in con-
junction with the closure approximation given in Sec.
II A. This is a desirable attribute that suggests a certain
consistency in the two approximations.

1

PVHNc p f d Afdr, 2. (~)(
(3.) ~ (&) (1.)+g3 (r]2)

&
[h (r]3)—c (r]2)]

=p f dr, 2[
—c(r]3)+h (r]2) /2 —h (r]2)c(r]2)/2] .

The last term, which represents loops of c bonds, was integrated by noting that only the particle at r, is partially cou-
pled.
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Now one has, from Eq. (2),

cpu'"'(r, )

c}A,

PAQ3 (131 r32) (g) pz l!3(r3/ f3/) g2 31 )=p f dr3pu3(r3(, r32)e
'

gz (r3()gz(r3z) —
p dr3(e ' —1) gz(r32)

aA,

(12)

and also, from Eq. (9),

(&) (A, ) (~) PAu3(r31 r32)
g3 ( 31, 32) g2 (r(2)g2 (r(3)g2(r23)e

The excess chemical potential, Eq. (7), now reads

(13)

pP pPHNC p f 'd~ f«lzdr» pu3(r31 r32)e g2 (r(2)g2 (r(3)g2(r32)

(~)(—pzu3(r3~, r32) (2 )
~g 2 ( 13 )—(e ' "' "—1)gz (r,z)

&&
gz(r32) (14)

Integrating the second term in the parentheses by parts, one can easily show that

I—:f dA—,Pu3,(r3(, rzz)e gz (r,z)gz (r»)gz(r3z)
1 P ~3(~3] r32) (g) (A, )

0

(A, ) (
3 31' 32) (2) g2 13 )

( 1)gz (r(2) gz(r32)

3 31' 32= —(e —1)g2(r(2)gz(r(3 )g2(r32) I . — (15)

It follows that

2

pp'"=ppHNc+ fdr, zdr»(e ' ""—1)gz(r(z )gz(r» )gz(r3z )

=2np f [h (r) —h (r)c(r) 2c(r) —p—u(r)gz(r)]r dr .

D. Free energy

The evaluation of the coupling-constant integral for the excess Helmholtz free energy, Eq. (8), is very similar to that
for the chemical potential. One treats the HNC contribution to the pair part using Eq. (10) as before, except that now
all the c bonds in the loop term depend upon the coupling constant (because all particles in the Auid are simultaneously
coupled). This term may be evaluated in Fourier space using Parsevaal s theorem and the Ornstein-Zernike equation,

( ac")(r„)f dkfdr(zh, ' )(r(2)

Hence the HNC contribution is [17,18]

P f dg fdl
c' '(k) Bc'"'(k)

16m' 1 —pc' '(k)

3 fdkIc(k)+p 'in[1 —pc(k)]] .
16~

(17)

PA Hwc/N= +fdr(2[h (r(z) /2 c(r)z)]+ —fdk[c(k)+p 'in[1 pc(k)]] . — (18)

One now has
—(A, ) (A, )Bpu (r,z)

( A. ) ( A, )
Pk 3(r3l, r32 ag 2 ( P3] ) (~)=p drgu3(r3(, r32)e ' "' "gz '(r3) )gz (r3z) —2p dr3(e ' "' "—1) gz"'(r32),

(19)

and also,

The excess Helmholtz free energy per particle now reads

(20)
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pA'*/N —pAHNC/N=p f dA, fdr, 2dr, 30
3 31' 32 (A, ) (g) (g)u, (r„,r„)e

ag' '(r
+(e ~ 3 31' 32 1) (1I)( )

g2 13 (2)
g2 (21)

Again integrating the second term in the parentheses by parts, one has

r= f 'dX 3 31' 32 (A, ) (A, ) (A, )g2 (»)g2 (»)g2 ( 32)

(2, ) g

I ~ 3 31' 321
1

(2, ) g2 13 (2)}g2 (r12)
gg g2 (r32 }

PQ3(r31 l32)=(e 1)g2(r12}g2(r13)g2( 32)—2I . (22)

The 6nal result for the free energy is

2

pA / pAHNc/ + d 12d 13( )g2(r12}g2(r13}g2(r32)3

=2np f [—,'h(r) c(r)——'—,Pu(r}g2(r}]r dr+ f Ic(k)+p 'in[1 pc(k)—]]k dk . (23)

E. Thermodynamic pathways

One reason that the closed expression for the free ener-

gy is convenient is that it provides an alternative route to
some of the thermodynamic quantities. This is often a
useful guide to the accuracy of an approximation. One
example is the compressibility factor, z =P/pke T,—which
can be obtained from the virial, Eq. (6},or from the densi-
ty derivative of the free energy

—1 BA

pk T BV

gex
=1+p

Bp
(24)

&ex
pp', "=a'"+p

Bp
(25)

It is worth mentioning that there is some numerical evi-
dence that this pathway, using the approximation (23) for
the excess free energy, is precisely equivalent to the ap-
proximation (16) for the chemical potential when the clo-
sure (3) is used.

Another quantity of interest is the dimensionless iso-
thermal compressibility

where a'"(p, T):PA '"/N. —
Similarly the excess chemical potential can be obtained

from

I

or from the density derivative of the pressure

az.
KT —

Zv +P
dP T

(28)

III. RESULTS FOR AN ARGONLIKE FLUID

A. Potential and numerics

The theory of the preceding section will now be used to
calculate the equation of state and other properties of an
argonlike fluid. The pair potential used is the Lennard-
Jones potential

In order to utilize these alternate pathways one re-
quires the density derivative of the Helmholtz free energy
and of the virial pressure. This can be done numerically
using difference methods, but it is much better to proceed
analytically. It is straightforward to differentiate Eqs. (6)
and (23) with respect to density, and one sees that the re-
sults depend upon the density derivative of the total- and
of the direct-correlation functions, and also of the
effective pair potential. A closed set of equations for
these may be obtained by differentiating the Ornstein-
Zernike equation (1) and the closure equations (2)—(4).
These new equations can be solved in conjunction with
the solution of the undifferentiated equations with little
additional effort. The differentials of the pressure and of
the free energy may be evaluated at the same time as the
quadratures for the undifferentiated quantities.

~T —ks~ T Bp
BP

(26)
C12 C

u2(r)=, +
12 6 (29)

~r= I+4m.p f h (r)r dr,
0

(27)

which diverges along the spinodal line and at the critical
point. It may be evaluated from the integral of the total-
correlation function

with C6= —6.48X10 Jm being the argon induced-
dipole dispersion coefficient [1]. The short-range repul-
sion is determined by C&2=2.44X10 ' Jm', which
corresponds to the usual Lennard-Jones potential o.=
0.335 nm. These parameters give a pair potential with a
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well depth of c/k~—:—C6/4cr kz =83 K, which is some-
what less than the measured 120—140 K [1].

The Axilrod-Teller triple-dipole potential is [2]

with v =7.32 X 10 ' J m [5,20]. This value corre-
sponds to a dimensionless polarizability of a= —4v/
3C60. =0.04. This potential is positive for most
configurations of the three atoms, except for nearly linear
ones. In the geometry of Sec. II one has

2 2 2
r12r13 23+3(r12 13)( 21 23)( 31 32)

u3(r, ,r„r3)=v Q $~+5t $ —2t —
E $ x —3$ xu3(s, t, x)—

8t3 [(t +S ) 4t S2X2]5/2

(30} Also,

(31)

8 u3( st, x)
[(t2+ 2)2 4t2 2 2]

—7/2

8~4

X(6t 13t s— 25t s— 7t s —+3ssx 2 7t s —x +27t s x +57t s x gt s x —32t s x —s ) (32)

The fluid that interacts only with the pair potential (29)
will be referred to as the Lennard-Jones fluid, and the ar-
gonlike fluid that in addition includes the triplet potential
(30) will be referred to as the Axilrod-Teller fluid.

The resolution of Eqs. (1)—(4) hardly differed from the
usual fast-Fourier-transform method that is standard for
the Ornstein-Zernike equation and HNC closure. The
number of grid points used was 2', and the mesh in real
space was Ar =0.01~, giving a cutoff of 400.. The two-
dimensional integrals for u(r), Eq. (2), and the three-
dimensional integral for the virial pressure and for the
internal energy, were evaluated using Gaussian quadra-
tures with 75 nodes in the angular direction, 250 nodes in
each radial direction, and a radial cutoff of So.. Increas-
ing these to 100, 300, and 9', respectively, had a negligi-
ble efFect along the T =100 K isotherm. These multidi-
mensional integrals were evaluated simultaneously, once
every 20—100 iterations of both the Ornstein-Zernike
equation and closure; the effective pair potential is rela-
tively insensitive to small changes in g2(r). About 5 —10
such cycles were sufficient for six-figure convergence of
the various thermodynamic properties. The density
derivatives required for the alternative thermodynamic
pathways were evaluated as described in Sec. II D.

B. Equation of state

The equation of state of the Axilrod-Teller fluid, as
given by the approximations (3) and (9), and the virial
pressure (6), using the two- and three-body potentials (29)
and (30), is shown in Fig. l. At high temperatures, the
nearly linear isotherrns are indicative of an ideal gas. At
lower temperatures, the isotherms exhibit greater curva-
ture but remain monotonically increasing. There is an
isotherm between 107 and 105 K that is flat around about
po =0.2—0.3, and therefore it may be identified with the
critical isotherm [21]. Below the critical temperature, the
isotherms are disjoint; the end points of each branch de-
mark regimes in which the equations do not possess a
solution. Since the isothermal compressibility is found to
diverge near the end points, it is appropriate to identify
the locus of end points with the spinodal line, the limit of
metastability of the fluid [21].

For subcritical temperatures, the fluid is gaseous on the

100

80

C4 60

40

20

0 0.2 0.3 0.4
Pa'

FIG. 1. Theoretical equation of state of the Axilrod-Teller
fluid, for isotherms T=300, 200, 150, 130, 120, 110, 107, 105,
and 100 K (from top to bottom), and also 90 and 80 K (gaseous
only). Note that 1 bar =10' Nm and 0.=0.335 nm.

0.1

I

low-density branch, and liquid on the high. In general
the coexistence line lies outside the spinodal line, and the
fluid in the region between the two is metastable. The
coexistence line is defined by the equality of the pressures
and of the chemical potentials of the two phases. For the
isotherm T =100 K, the virial pressure at the end of the
gaseous branch was higher than that at the end of the
liquid branch, thus enabling the necessary matching.
This, together with flattening of the viral-pressure iso-
therms as the spinodal (predicted from the divergence of
the integral of the total-correlation function) is ap-
proached, indicates a broad consistency between the two
routes. However, it was found that the chemical poten-
tial, given by the Eq. (16) or by Eq. (25), at the end of the
gaseous branch was less than at the liquid-branch end
point. This inability to equate chemical potentials within
the computationally accessible region is a manifestation
of inconsistency in the approximation scheme. Indeed, it
was found that the pressure curve given by the derivative
of the free energy, Eq. (24), did not flatten at the spinodal,
and this is also an inconsistency, but a consistent one.
Both these observations indicate that if the unstable re-

gion of the fluid could be predicted from the free-energy
route, it would be smaller than the present prediction
from the virial route. Finally it is worth mentioning that
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the virial pressure was negative for the liquid branch of
the isotherms T =90 and 80 K; the pressure from the free
energy was positive but larger than that on the gaseous
branch.

The equation of state of the Lennard-Jones fluid [pa-
rameters as in Eq. (29); no three-body potential] was also
calculated (not shown). In this case the closure approxi-
mation is just the HNC, and the results are equivalent to
those obtained in the pioneering work of Klein and
Green [21]. Broadly speaking, the isotherms are similar
to those calculated for the argonlike fluid, which includes
the Axilrod-Teller triple-dipole potential. The main
difference is that the region inaccessible to computation
[i.e., the unstable fluid as determined from the divergence
of the compressibility, Eq. (27)] is larger for the
Lennard-Jones Quid. Also, the subcritical virial iso-
therms on the liquid branch do not flatten as the spinodal
is approached, and the pressure at their end points is sub-
stantially higher than that at the end of the gaseous
branch. In other words, the approximation for the Quid
with three-body interactions shows more consistency be-
tween the virial and the compressibility routes on the
liquid side of the spinodal than does the HNC approxi-
mation for the Lennard-Jones fluid. The reason for this
is not understood, and it is probably fortuitous.

The HNC critical temperature of 115-120K is greater
than the exact critical temperature of the Lennard-Jones
fluid, T, =105 K [7]. These may be compared to the
theoretical result for the Axilrod-Teller fluid discussed
above, T, =150-107 K, and to the experimental result
for argon, T, =150.8 K. One can see that the critical
temperature is quite sensitive to the intermolecular po-
tential, and to the approximation scheme. Indeed, by ad-
justing the parameters of the Lennard-Jones potential,
one can obtain good agreement with experiment, even
though the pair potential is incorrect at long range, and
three-body effects have not been included. The primary
reason that the theoretical result for the Axilrod-Teller
fluid (T, =106 K) lies so far below the measured result
for argon (T, =150.8 K) is that the well depth of the
Lennard-Jones potential used (e jkz =83 K) is less than
the measured 120—140 K. The Lennard-Jones potential
is too simple to represent the real pair potential over the
whole range [1]. The reason that the Axilrod-Teller fluid
has a critica1 temperature below that of the Lennard-
Jones fluid, for the same parameters of the latter poten-
tial and for the roughly equivalent HNC-type closure ap-
proximation, is that the reduced three-body potential is
positive (see below) and competes with the attractive tail
of the Lennard-Jones potential.
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FIG. 2. Compressibility factor given by the virial route [Eq.
(6), solid curve], and the free-energy route [Eq. (24), dotted
curve]. The dashed curve is the HNC virial result for the
Lennard-Jones Quid (no three-body potential).

being about 8%%uo larger at po =1.0. At a higher tempera-
ture T= 120 K the consistency is about 6% at the same
density. The effect of the Axilrod-Teller triple-dipole po-
tential is to increase the pressure compared to the
Lennard-Jones fluid. The effect is not large, being about
7% for the virial route and about 15% for the free-energy
route at T =100 K. Note that the consistency between
these two routes for the HNC description of the
Lennard-Jones Quid is such that the two would be indis-
tinguishable on this plot.

The excess internal energy per atom is shown in Fig. 3
for isotherms above and below the critical one. On the
liquid branch of the subcritical isotherm, the positive na-
ture of the Axilrod-Teller potential is apparent. Here the
internal energy is less negative than for the pure
Lennard-Jones fluid. The effect is somewhat larger than
for the compressibility factor, being about 15%%uo at
po =1.0. On the supercritical isotherm, T =120 K, one
draws the same conclusions, while noting that the
difference between the two fluids is ameliorated some-
what by the higher temperature. The internal energy
reaches a minimum around po. =0.8, and then increases
as the interactions between the more closely packed
atoms are dominated by the positive part of the pair po-
tential.

Figure 4 exhibits the isothermal compressibility for the
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C. Thermodynamic quantities

The compressibility factor calculated for the Axilrod-
Teller fluid and for the Lennard-Jones fluid for the sub-
critical isotherm T=100 K is shown in Fig. 2. After an
initial decrease beneath the ideal-gas value, the pressure
increases rapidly in the liquid phase, particularly at the
higher densities around cr . The self-consistency of the
approximate method, Eqs. (3) and (9), as judged from the
virial and the free-energy routes, is quite good, the latter

0
0 0.2 0.4 0.6 0.8 1

pO'

FIG. 3. Excess internal energy per atom for the Axilrod-
Teller fluid (solid curves), compared to the fluid interacting only
with the Lennard-Jones two-body potential (dashed curves),
along two isotherms.
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FIG. 4. Dimensionless isothermal compressibility from the
integral of the total-correlation function [Eq. (27), solid curve],
and from the derivative of the virial pressure [Eq. (28), dotted
curve]. The short-dashed and the long-dashed curves are, re-
spectively, the corresponding results for the Lennard-Jones fluid
(no three-body potential) ~

isotherm T= 100 K. The divergence as the spinodal is ap-
proached is evident, and it allows for a fairly sharp de-
lineation of the stability limit. In the gaseous phase, there
is relatively good agreement between the correlation
route, Eq. (27), and the virial route, Eq. (28), and also be-
tween the Axilrod-Teller fluid and the Lennard-Jones
Quid. The liquid branch of the Axilrod-Teller fluid is
consistently described by the approximations given here
for three-body potentials. On the other hand, the HNC
results for the Lennard-Jones liquid provide an illustra-
tion of the inconsistency of the two routes that comple-
ments the discussion already given in connection with the
equation of state. According to the integral of the total-
correlation function, the Lennard-Jones fluid is much
more compressible than the Axilrod-Teller fluid, and the
unstable region of the fluid is much wider. On the super-
critical isotherm T =120 K (not shown), the isothermal
compressibility peaks at a density around 0.25o. , but
does not diverge; again the Lennard-Jones fluid described
by the correlation route is rather more compressible here
than is the Axilrod-Teller fluid.

These results for the thermodynamic quantities may be
summarized as follows. The approximation scheme for
fluids with three-body potentials appears more self-
consistent than the HNC approximation for fluids with

pair potentials as far as the isothermal compressibility is
concerned (correlation-function route and virial route),
but is less self-consistent for the pressure (virial route and
free-energy route). The effect of the Axilrod-Teller
triple-dipole potential is to increase the pressure, the
internal energy, and the resistance to compression, com-
pared to the pure Lennard-Jones fiuid. This is not unex-
pected, since the triple-dipole potential is positive for
most configurations of the three atoms, and has been
found before [5,22]. On a subcritical isotherm T =100
K, the change can be around 10/o at the high density of
cr, but is no so significant at higher temperatures and
at smaller densities.

D. Pair-correlation functions

The radial distribution function is shown in Fig. 5 for
gaseous and liquid densities of the subcritical isotherm

1.5—

1

0 5 i i I i II I I I I I I I I I I I I I I ~ I I I I

0.5 1 1.5 2 2.5 3
r/ir

FIG. 5. Radial distribution functions at a subcritical temper-
ature for densities 0.10. ' and 0.50. ' (pronounced secondary
maximum). The solid and dotted curves are for the Axilrod-
Teller fluid, and the two dashed curves are for the pure
Lennard-Jones fluid.

T =100 K. That g(r)=0, r 50.7o indicates a vanishing
probability of finding two atoms this close due to the
short-range repulsion between them. Beyond the core,
one is quite likely to find two atoms in contact, as is man-
ifest by the peak in g(r) at r = l. la. They are drawn in

by the attractive tail of the potential and held thereby the
thermal pressure of the fluid. The pair distribution func-
tion in the gas phase decays more or less monotonically
to unity, a value that indicates that the atoms are un-

correlated. The contrasting secondary maximum and
other structure, which are characteristic of the liquid
phase, are due to solvent packing at the higher density
and propagate some distance beyond the originating
atom. One expects the pair distribution function to de-
cay to its asymptote at the same rate as the pair potential
(r ), with a magnitude proportional to the isothermal
compressibility [11]. As one approaches the spinodal and
critical point, g (r) becomes more long ranged, and over
substantial separation behaves as an exponential. The de-

cay length diverges near the spinodal, leading to a diver-

gent integral of the total-correlation function for the iso-
thermal compressibility, Eq. (27).

Figure 5 shows that the Axilrod-Teller triple-dipole po-
tential has a fairly small effect on the radial distribution
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FIG. 6. Contributions to the potential of mean force, Eq. (2).
The solid curve is the total u(r), the dotted curve is the
Lennard-Jones pair potential u2(r), the short-dashed curve is

the reduced triplet potential u(r), and the long-dashed curve is

the negative of the series function, c (r) —h (r).
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ponential in Eq. (2) and scaling arguments. It is a bit
tricky to work out the precise magnitude of this decay.
In general the magnitude of u(r) increases as the density
is increased, and decreases as the temperature is in-
creased. These findings are consistent with the changes
in the equation of state and the thermodynamic quanti-
ties of the Lennard-Jones fluid observed above.

0.1 E. Comparison with a yerturbation ayyroximation

1 1.5 2 2.5 3
r/o

FIG. 7. The reduced three-body potential, Eq. (2). The solid,
dotted, and short-dashed curves are for densities of 0. 1o.

0.5o ', and 0.7o ', respectively, at T=100 K. The long-
dashed and the dot-dashed curves are for densities of 0. 1o
and 0.5' ', respectively, at T = 120 K.

function. In both the liquid and the gas phase it acts to
lower the first peak compared to the Lennard-Jones fluid.
The change is greater at the lower density, a result not
easy to reconcile with the earlier findings that the three-
body potential is more important at higher densities. For
the supercritical isotherm T=120 K (not shown), the
suppression of the first. peak is qualitatively similar but
smaller. At this temperature the heights of the contact
maxima of the two densities (0. 1cr and 0.5o ) coin-
cide, although the higher density still shows an oscillato-
ry structure not evident at the lower density.

Figure 6 shows the various contributions to the pair
potential of mean force, Eq. (3). At small separations the
steeply repulsive part of the Lennard-Jones potential is
dominant, causing the radial distribution function to van-
ish in the core region. The oscillatory structure in g (r) is
due to the series function h(r) c(r). —The reduced
three-body potential u(r), Eq. (2), is monotonic and posi-
tive, giving a repulsive force between two atoms. It is
rather small with respect to k~ T, but does cause a notice-
able decrease in the depth of the well of the potential of
mean force compared to that due to the Lennard-Jones
pair potential alone. It is this which suppresses the pri-
mary maxima in Fig. 5. Thermodynamic quantities such
as the internal energy and the virial pressure are rather
sensitive to the radial distribution function in this region,
a region in which u (r), though small, is non-negligible.

The reduced three-body potential u (r) is shown in Fig.
7 for various temperatures and densities. The potential is-
monotonic and positive in all cases. The Axilrod-Teller
triple-dipole potential, Eq. (30), is known to be negative
for nearly linear configurations of the three atoms (obtuse
triangles}, but it is positive for the remaining config-
urations, which are the majority. Hence it is quite
reasonable that the integration indicated in Eq. (2) should
yield a positive e6'ective pair potential. Further, since
there is no direct 12 bond, and because of the averaging
implicit in the integration, the monotonic decay is not
unexpected even for high densities and subcritical tern-
peratures. Although the Axilrod-Teller three-body po-
tential, Eq. (30},is more short ranged than the Lennard-
Jones pair potential, Eq. (29}, one anticipates that u(r)-r, r~ ~. This follows from linearization of the ex-

Some idea of the accuracy of the approximation
scheme given here for fluids that interact with three-body
potentials is provided by the self-consistency of the vari-
ous pathways. One can gain further insight into the relia-
bility of the procedure by comparing with the perturba-
tion results of Barker, Fisher, and Watts [5]. These au-
thors have used the so-called Bobetic-Barker pair poten-
tial [23], a 13-parameter potential fitted to the properties
of argon. The perturbation approximation consists of an
expansion to linear order in v, the coefficient to the
Axilrod-Teller triple-dipole potential, Eq. (30). The virial
pressure and the internal energy were evaluated as en-
semble averages of two- and three-body quantities in the
reference Quid, which interacted only with the two-body
potential.

In addition to the approximate treatment of the three-
body potential, the closure, Eq. (3), also approximates the
interactions in the underlying pair fluid. Because this is
at the HNC level, it is less reliable at higher densities,
quite apart from the approximations in the treatment of
the three-body potential. The RHNC method remedies
this to some extent by including the bridge function of
some reference fiuid in the closure, Eq. (3). The most
straightforward choice is the hard-sphere bridge func-
tion, at the same density as the full fluid, and with a
hard-core diameter equal to the zero of the pair potential.
Although there exist methods to optimize these parame-
ters [12,13], this simplest prescription was used for the
results labeled "RHNC" in Table I, utilizing the HNCP
[10]hard-sphere bridge function.

The internal energies given in Table I are in broad
agreement, the relative discrepancies being less than 10%
for the three approximations. Compared to the pair
fluid, the addition of the Axilrod-Teller triple-dipole po-
tential acts to increase the energy, as was concluded ear-
lier in Sec. II C. A large part of the absolute discrepancy
for the full fluid is already apparent for the pair fluid.
This indicates the error in the HNC at the pair level, an
error which is nearly all cases is ameliorated by the
RHNC, taking the pair results of Barker, Fisher, and
Watts [5] as a benchmark. The change, upon the in-
clusion of the three-body potential, is predicted by the
three approximations to within 10 cal/mol, which sug-
gests that the method of handling three-body potentials
by the closure given here is fundamentally reliable for the
internal energy.

The pressures predicted by the three approximations in
Table I are in much worse agreement than were the inter-
nal energies. From the results for the pair fluid, one can
reasonably conclude that the HNC is failing at this level,
a measure of the sensitivity of the virial pressure to the
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TABLE I. Pressure and excess internal energy for an argonlike fluid using the Bobetic-Barker [23]
pair potential and the Axilrod-Teller triple-dipole potential (first line of each state point) and for the
pair potential only (second line), as given by the linear-perturbation approximation [5], and by the
present closures.

T
(K)

P
(cm /mol)

Energy (cal/mol)
Perturb. HNC RHNC Perturb.

Pressure (bar)
HNC RHNC

168.86

140.0

140.0

100.0

100.0

65.67

41.79

30.65

29.66

27.04

—586

—917
—954

—1222
—1283
—1329
—1397
—1436
—1523

—570
—593
—878
—914

—1123
—1183
—1231
—1295
—1296
—1375

—564
—582
—880
—911

—1170
—1229
—1268
—1330
—1362
—1440

90

29
—34
618
408
305

58
673
305

103
101
145
130

1163
1079
691
600

1584
1445

78
74
11

—13
681
585
270
165
922
769

closure approximation. Although the RHNC certainly
improves the agreement with the pair results of Barker,
Fisher, and Watts [5], one can have only limited
confidence in the closures at high densities on subcritical
isotherms. The inclusions of the three-body potential in-
creases the pressure with respect to that of the pair fluid,
again in agreement with earlier conclusions. The abso-
lute value of the change can be quite substantial, and may
cause concern about the convergence of the perturbation
expansion, which retains only the leading term. Never-
theless, the fact that the RHNC hes closer to the pertur-
bation results than the HNC suggests that the pressure in
the liquid state is given at least qualitatively correctly by
the approximations. Note that the HNC pressures from
the virial and the free-energy routes were found to be
quite self-consistent for both fluids; obviously one should
not take this literally to be the accuracy of the approxi-
mation. At the low-density, high-temperature point,
there is agreement between all three approximations for
the pressure.

A summary of the comparison of the closure with the
perturbation approximation is as follows. Both theories
are in agreement at high temperatures and low densities.
For the liquid state, the internal energies agree, but there
are substantial discrepancies for the predictions of the
pressure. The major source of disagreement is probably
due to the HNC treatment of the underlying pair Quid,
which one concludes from the sensitivity of the results to
the inclusion of the hard-sphere bridge functions. The
changes in the properties of the fluid due specifically to
the three-body potential are predicted relatively con-
sistently by the approximations.

It is worth mentioning that the author is currently per-
forming Monte Carlo simulations of the Axilrod-Teller
fluid. Preliminary results are in good agreement with the
molecular-dynamics simulations of Haile [4], and indicate
that the perturbation approximation is very accurate. It
appears that the HNC is most reliable at lower densities,
and the RHNC improves the closure markedly for the
liquid state, as was concluded above.

ZV. COCCI.USZuN

This paper has been concerned with a tractable theory
for fluids that interact with three-body potentials, and

with the effects of such a potential on an argonlike Quid.
The contribution of the three-body potential to the pair
potential of mean force was reduced to a state-dependent
effective pair potential. This yielded a closure to the
Ornstein-Zernike equation similar to the standard
hypernet ted-chain approximation. An additional
approximation —the Kirkwood superposition for the
triplet distribution function —was required in order to
evaluate the thermodynamic quantities such as the virial
pressure and the internal energy. It was found that the
superposition approximation complemented the approxi-
mate closure in such a way that the coupling-constant in-
tegrals could be performed to yield explicit expressions
for the chemical potential and for the Helmholtz free en-
ergy.

The accuracy of the scheme was partially analyzed by
the self-consistency of the different thermodynamic path-
ways, and by comparison with a perturbation approxima-
tion. The closure appears reliable at higher temperatures
and in the gas phase. Some caution should be used on the
liquid branch of subcritical isotherms, where it appears
that there are errors due to the HNC treatment of the un-

derlying pair fluid. The RHNC method offers the possi-
bility of improvement without increasing the computa-
tional complexity of the approach. The superposition ap-
proximation for the triplet distribution function may also
cause errors in the evaluation of thermodynamic quanti-
ties. Recent schemes for calculating this function accu-
rately [11,24,25] might conceivably be invoked for this
part of the problem. Indeed, the binodal chain method
[11]could be modified for three-body potentials, and the
calculation of the bridge function and the triplet distribu-
tion function would be of comparable complexity to com-
putations already performed for Lennard-Jones fluids
[26]. These are fairly demanding, but would provide
some greatly desired benchmark results. For the immedi-
ate future, the present closure is likely to remain the most
tractable approximation for fluids with three-body poten-
tials.

The results for the argonlike fluid illustrated the effects
of the three-body potential, rather than providing a quan-
titative description of experimental data. The simplest
two- and three-body potentials (Lennard-Jones and
Axilrod-Teller) were used, with parameters fixed by the
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asymptotic part of the argon intermolecular potential.
The effective pair potential given by the reduction of the
Axilrod-Teller triple-dipole potential was found to be
positive for all temperatures and densities. Consequently
the pressure, the internal energy, and the inverse com-
pressibility were all larger than for the pure Lennard-
Jones fluid. The increase was of the order of 10%%uo for the
liquid state, but was smaller at higher temperatures and
at lower densities. This is in qualitative agreement with
the findings of Barker and co-workers [5,6]. The location
of the critical point and the spinodal line was found to be
quite sensitive to the three-body potential.

In conclusion it is clear that a complete quantitative
statistical mechanical description of the macroscopic
properties of simple liquids requires at least the two- and
three-body contributions to the intermolecular potential.
The closure approximation given here represents a step
towards that goal.
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