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We study the relationship between classical and quantum structures for a map on the sphere whose
behavior can be chaotic in the classical limit. On the classical side we implement an efficient method
to locate periodic points on symmetry lines. On the quantum side we show how matrix elements of
the propagator in the coherent-state representation are connected to classical structures. Diagonal
and off-diagonal matrix elements are related to periodic points, symmetry lines, and other invariant
structures in phase space, both in the time and in the energy domains. The scarring phenomena
related to the short periodic orbits and their homoclinic neighborhoods are discussed.

PACS number(s): 05.45.+b, 03.40.1&f, 03.65.—w

I. INTRODUCTION

The subtle complexity of the semiclassical limit of
quantum-mechanical systems whose classical behavior is
chaotic has still to be assessed in its full magnitude. Al-

though the problem was recognized very early in the de-
velopment of quantum mechanics [I], the basic difficulty
remains essentially unsolved: for chaotic, systems there is
no description of eigenfunctions nor a way to calculate
eigenvalues in terms of classical structures that survives
the semiclassical limit.

At this stage of our understanding it is then extremely
useful to study simple models where these questions can
be faced with a minimum of complication and develop
methods where the classical and quantum structures ap-
pear in a unified setting. Essential characteristics of these
models, providing a minimal arena for chaotic motion,
are a compact phase space (for mixing) and unstable mo-

tions in large regions (for hyperbolicity). Area preserva-
tion is the signature of nondissipative dynamics.

The purpose of this paper is to explore the correspon-
dence between the classical structures of a simple map on
the sphere and their quantum counterparts. The model

[2—4], describing the dynamics of a large spin subject to
a magnetic field and an impulsive quadrupole interac-
tion, has been extensively studied: in particular, the time
evolution of observables [2], the statistics of the quasi-
energy-levels [3], and more recently some aspects of the
structure of the wave functions [5] have been analyzed.

Using the coherent-state representation we show how
periodic points, symmetry lines, and homoclinic and het-
eroclinic structures arise in the quantum context. A sim-
ilar study was done recently for the baker's transforma-
tion on the torus [6] and our results here complement and
extend that work. In spite of having a relatively compli-
cated classical dynamics, the present model is closer to re-

alistic systems than the baker's transformation in that it
has a dynamics of mixed type becoming strongly chaotic
as a parameter is increased. The advantage is that it is
possible to explore the classical-quantum correspondence
in a model with nonuniform hyperbolicity and with no
discontinuities in the map. The price to pay is, how-
ever, a much more complicated classical dynamics. Our
principal result is to show how various matrix elements
of the propagator in the coherent-state representation re-
flect the classical structures and how this correspondence
is affected by chaotic motion. The methods that we use
can be easily adapted to the study of other maps that
act on a compact phase space with simple topology and
that have time-reversal and parity symmetries.

The paper is organized as follows. In Sec. II we present
the model with its symmetries and illustrate an eKcient
method to numerically locate periodic points on the sym-
metry lines. We also briefly review the representation of
the model in terms of coherent states.

In Sec. III we analyze the correspondence between clas-
sical and quantum structures, studying the time evolu-
tion of quantum packets and evaluating the matrix ele-
ments of the n-step propagator which provide the quan-
tum analogs of either periodic points or symmetry lines.
We also study the stationary properties of the quantum
propagator in the energy domain, illustrating the rele-
vant scarring mechanisms. Section IV closes the paper
with some concluding remarks.

II. QUANTUM AND CLASSICAL MODEL

A. The model

The quantum model [2, 3] describes an angular-

momentum vector hJ = h(J~, J&, J,), [J;,J1] = ie;z t.Jt-.
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whose dynamics is governed by the Hamiltonian

H(t) = (hp/T) J, + (hk/2J) J ) b(t —nT) .

In the following we will synthetically rewrite the map (6)
using the symbolic notation

~'= Mou,

J' = UJU', (2)

In the Heisenberg picture the time evolution after the
discrete times nT (n integer) is obtained by iterating the
equation

or, alternately, using the matrix form

~' = M(~)u) . (10)

The nonlinearity of the action of M is reQected on the
fact that the matrix M depends on u. One has

where U—:U(k, p) is the Floquet operator

U(k, p) = exp[—i(k/2J)J ]exp( —ipJ, ) .

One obtains the quantum iterated map

M(~) = ( 0
cos kY

5 —sin kY

—1 0
0 sin kY
0 coskY)

J,' = J~ cos p —Js sin p,

J„'= -(J~ cos p —Js sin p+ iJ,)e'"I +& + H.c. ,2
(4)

J,' = —.(Js cosp+ J~ sin p+ iJ, )e'"~ +~ + H.c. ,2i

which represents a precession of the angular momentum
around the z axis followed by a twist around the z axis.
In this fashion the model can be considered as a mapping
of the angular-momentum sphere upon itself.

For the remainder of this paper we specialize the map
to the case p = s /2 [2]:

B. Symmetries

[M, S]—:M o S —S o M = 0, (12)

The discrete symmetries of this map have been dis-
cussed by Haake, Kus, and Scharf [2] in order to lo-

cate periodic points. Here we generalize their discussion,
implementing an efficient method that allows for a one-
dimensional search of periodic points along the iterates
of symmetry lines. The method is similar to the one used
in connection with the standard map by Ichikawa et al.

[8—10].
We consider maps that possess two kinds of invariance:

a syrrunetry S of the "parity" type, satisfying the equa-
tion

and a symmetry T of the "time-reversal" type, with the
property

ToM —M oT =0,

The classical Poincare map corresponding to the quan-
tum map (5) is obtained introducing the rescaled vector
2 = (X,Y, Z) = J/J and performing the limit J ~ oo.
One obtains

X'= -Y,
Y' = X cos kY+ Z sin kY,
Z' = ZcoskY —XsinkY,

and X, Y, Z are now c-number variables lying on the unit
sphere u7~ = 1 (in the following we will denote the point
on the unit sphere by ~, dropping the vector notation).
The angular-momentum sphere has a natural symplectic
structure defined on it, inherited from the orbit structure
of the SU(2) group [7]. Here we simply notice that the
map (6) is area preserving, the area element being the
usual one on the sphere dS = sin 8 d8 dP. In terms of the
canonical coordinates on the sphere (I, P)

M denoting the map inverse of M, namely M oM =
MoM ~ =1.

In the case of an iterated map M„=M" = M o M o
o M (n times, n C Z), infinite sequences of symme-

tries (S„}and time-reversal syrrunetries (T„}[all satis-
fying Eqs. (12) and (13), respectively] can be generated
as follows:

S„=M"S,
T„=M"T .

The iterated .".'ymmetries S„commute

[S,S ] = [S,S '] = 0.

(14)
(»)

(16)

M" = S„+pS„', (17)

Every power M" of the map can be decomposed (in in-
finitely many ways) into the product of two symmetries
or two time-reversal symmetries

I—:Z = cos 61,

P = arctan Y/X,
the Jacobian of the map (6) is

0(I', P')
B(I,P)

(7)

(8)

M" = T„+pT„=T„~„T„. (18)

The product of two time-reversal operations (in general,
not belonging to the same family) is a parity, whereas the
product of a parity with a time reversal is a time reversal:
in this way new parities or time-reversal operations can
be generated, as, for example,
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T=ST, (19)

( -1 ol (0 1 0)
T= —1 0 0, T=

I 1 0 0
& o 0 I)

'

&0 o I)
(20)

and for T g (T„)a new infinite family of time-reversal
symmetries (T„)can be obtained using the defining re-
lation (15).

The above analysis has been carried out in the classical
context but it is clear that it can be simply generalized
to the quantum domain. Here the symmetries are rep-
resented by unitary operators (antiunitary for the time-
reversal ones) acting on the 2J + 1 representation space,
whereas Eqs. (12)—(19) are rewritten by substituting M
with the Floquet operator U of Eq. (3), the product map
becoming now the operator product.

Specifically our model has two independent time-
reversal symmetries, which are also involutions (T2
T2 = 1), and have the following matrix form:

the time-reversal symmetries is described by antiunitary
operators, and, as a consequence, any matrix realiza-
tion of the complete symmetry group should be thought
of as a group corepresentation [11]. This framework is

fully exploited in Ref. [12] for a slightly different kicked-
top model, accounting for level-repulsion mechanisms in
terms of unitary and antiunitary symmetries.

In concluding this section we point out that new sym-
metries and time-reversal transformation can be found
for the iterated maps MJ' which are not symmetries for
the one-step map M. This is, for example, the case of
the x rotation around the y axis S',

( —1 0 0 )
0 1 0

( 0 0 —I)
which is a symmetry for M2, but not for M. One should
notice that the new time-reversal symmetries of M ob-
tained from S', namely T' = S'T and T' = S'T, are no
longer involutions.

T= KR,
T= RK,

g2

(22)

(23)

(24)

where R is the rotation of 7r/2 around the z axis

The matrices (20) represent the time-reversal symmetries
at the classical level of Eq. (10). They are related to each
other through Eq. (19) by the parity

( —1 0 0
lS= 0 —1 Ol

(0 0 lj
representing a x rotation around the z axis. As a con-
sequence of the symmetry S the phase space is divided
into two equivalent parts which exhibit the same dynam-
ical evolution (both in the classical and in the quantum
cases). Therefore, in the following we will divide the
phase space into the two hemispheres 0 & P & ir and
n. & P & 2x and represent all the dynamics of the model
on the first hemisphere only.

The operators representing the symmetries T, T, and
S are

C. Periodic points

@(P)= (u~p ou = u) . (29)

With the above notation 4(M") denotes the set of cyclic
points of order ~n~ for the map M, whereas @(S„)and

4(T„)represent the sets of fixed points for the symme-
tries S„andthe time-reversal transformation T„,respec-
tively. In the case of the map (6) the nonvacuum sets

4(S„)contain isolated points [S„givenby Eqs. (21) and

(14)], whereas 4(T„)and 4(T„)are lines on the sphere

[T„,T„given by Eqs. (20) and (15)].
Using Eqs. (1'2)—(18) one can simply check the follow-

ing inclusions between sets:

The period-n orbits of the map that can be found sys-
tematically are those lying on the symmetry lines. In this
subsection we briefiy illustrate the method that we have

adopted to locate such cyclic points numerically.
For an iterated map M on a two-dimensional phase

space, the sets of fixed points for the symmetries form
lines or isolated points, depending on the rank of the
fixed-point equation. We denote by 4(P) the set of fixed
points of the map P, namely

R= exp —i —J,
2

'
and Ix is the charge conjugation K2 = 1

(25) @(T„)n @(T„+p)C 4(M") u 4(M~ o T ), (30)

@(S„)n @(S„+„)c @(Mi') u 4(M'"+" o S') . (3l)

(@I~~U~~I@') = (@I~I@')" (26)

acting on the angular-momentum operators as follows:

KJK=J
KJqK = —Jy,
I~ J, I& = J, .

(27)

The above correspondence is extended to all the iter-
ated symmetries through operator multiplication. The
symmetry S allows us to factorize the matrix represen-
tation of the operator U into two blocks, thus reducing
the size of the matrix by a factor of 2 in the diagonal-
ization procedure. Notice that the quantum version of

M o @(S„)= (~~~ = M o S„oM ' o u}
= (u~u = S„ou)—= @(S„), (33)

From Eq. (30) one can see that in the case of an involu-

tive time reversal T the intersections between the time-
reversal synunetry lines 4(T„)and @(T„+z)are cyclic
points of order ~p~. On the contrary, intersecting sym-

metry lines of diAerent families of time reversal, one no
longer obtains cyclic points only,

4(T„)n @(T +„)C @(Mp o S) u @(M'"+r o S') . (32)

The sets 4(S„)are invariant under the action of the
map M
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M o 4(P) denoting the mapped set of 4(P)

M~ o 4(T„)= 4(T„+gp), (36)

as follows from Eqs. (13), (15), and (34). Equat' (36)
allows one to obtain all the symmetry lines of the same
time-reversal family by mapping only two l' I
case, the two families of time-reversal lines (4(T„)}and

lines havin the f ll
'

g ollowing simple parametric equations
ur symme ry

(—I &t &1):

~(T )
X —Y = +g(1 —t')/2
z=t, (37)

[X=t
4(Ti) = & Y = +g(1 —ts) sin (kt/2)

, Z = ~g(l —tz) cos(kt/2),

(39)

M o 4(P)—:(~~~ = M o ~', ~' = P o a'}

=(~~~=MoPoM 'oa}.
Notice that in general one has

M o 4(P) g 4(M o P) = (u) ~(u = M o P o u) }. (35)

The symmetry lines 4(T„)are mapped into each other

(4o)

In Fig. 1 the symmetry lines 4(T„)and @ T f
o an = 2, 3 are plotted. Comparing the symmetry

lines for the two diferent values of k, one can see that

s a consequence, new intersections arise, representing
the onset of new cyclic points.

On the basis of the above framework, we have eval-
uate t e cyclic points by means of a numerical one-
dimensional search on the symmetry lines, which can now

e simply parametrized through Eqs. (36)—(40). Only the

ocate the cyclic point of order ~p~. We should make clear
however that the method by no means exhausts th

)

search of periodic points of a given period, as, in general,
there are also periodic points which do not lie on symme-

coding is complete —for example, the baker's map —one
nds many binary sequences which have no definite sym-

iterated maps, as we pointed out in Eq. (28), but clearly
t e complexity will become equivalent to that of locating
directly the periodic points.

TheL ay punov exponents of the cyclic point have been
evaluated resorting to the eigenvalues of the matrix

L„(u))= D(M" ' o~)D(M~ os)) D(u)), (41)

where

rl[M o ((u)];
BX~

0 —1 0
cos kY k(—X sin kY + Z cos kY) sin kY

(—sin kY k( —X cos kY —Z sin kY') cos kY )
(42)

p ) 0 being the order of the cyclic point. In Figs. 4—6
cyc ic points evaluated with the abov th d
sen e . n Tables I—V the cyclic points of order n & 6 and

~ ~

Lyapunov exponent A and the sign 0 of the eigenvalue

D. Representation of the quantum model
in the phase space

The surface of the sphere is the phase space for this
mo e: all the classical structures left invariant by the
action of the ma p periodic points, tori, homoclinic and
heterochnic tangles, etc.) are objects in this space. Like-
wise the symmetries and, of course, the motion occur on

e sphere. Therefore, it is essential to be able to rep-
resent quantum operators and t t '

h
Such a representation is provided by the coherent states
of SU(2) [7] or Bloch states [13].Here we briefly summa-

.=-- '«- ~ I I.P
I 0 025 0.5 0.75

FIG. 1. Classical motion on the phase-space and symme-

ry lines for k = 2, 3. Only the 0 & P & s. he
represen e using the canonical coordinates of Eq. (7). The
mo ion on the other hemisphere x ( ( 2x ise x ~ x is an identical
rep ica o the motion on the previous one, due to the symme-
try (21). The symmetry lines 4(T„)and 4(T ) are plotted
on the classical motion for n = —4 to 4.
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TABLE I. Cyclic points of order n ( 6 for k = 2. where

Label

0.000000
0.000000

0.000000
0.365885
0.365885
0.250000

Order 1
—1.000000

1.000000

Order 3
—0.712010
—0.331557
—0.331557
—0.117974

o.oooooo
o.oooooo

0.664525
elliptic
elliptic

0.664524

(2J'i ( I + I ) t' I —I
) (49)

TABLE II. Cyclic points of order n & 6 for k = 3.

are the binomial probabilities. In particular, Pq(1, n) =
b„pand PJ( 1, n—) = 62' „p.

For large J the binomial distribution becomes asymp-
totically Gaussian: in this case Eq. (48) shows that the
coherent state is a wave packet with angular-momentum

0.500000
0.250000

0.000000
0.162747
0.293001
0.293002
0.671014
0.590282
0.590282
0.000000

0.865885
0.500000

Order 4
0.000000
0.457348

Order 5
—0.950836
—0.774200
—0.670048
—0.670048
—0.073387

0.199975
0.199975
0.515649

Order 6
0.331558
0.712011

elliptic
1.870792

0.126810
0.126809

elliptic
elliptic

0.741373
elliptic

elliptic
0.741373

elliptic
1.329052

Label

+ 1

0.000000
0.750000
0.750000
0.000000

0.250000

0.000000
0.380624
0.380624
0.250000

Order 1
—1.000000

0.455719
0.455719
1.000000

Order 2
—0.455719

Order 3
—0.741739
—0.065785
—0.065783

0.316787

0.962424
elliptic
elliptic

0.962424

elliptic

2.002056
0.991094
0.991092
2.002056

l0, P)g = e ' ~
l
1+ cot(,8)

x exp e '~cot-J+ J, O . (43)

The angles 8 and P have the ranges 0 & 0 & s and
0 & P & 2x, respectively. The state

l J, O) is the minimum
weight state, defined by the property

J-IJ 0) = 0. (44)

The representation of the angular-momentum algebra is

given by the following equations:

(45)

(46)

(47)

The index n labels the state of the representation in the
range 0 & n & 2J.

Using the canonical variables (I, P) and expanding the
exponential in Eq. (43), one obtains

2J
lI, P)g = ) QPg(I, n)e'"

l J, n), (48)

rize some of their relevant properties: for a review one
can see Ref. [14].

We define the coherent state as
1

2
3
4
5
6
7
8
9
10
11
12

1

2
3
4
5
6
7
8
9
10
ll
12
13
14

0.500000
0.249999

1.000000
0.117996
0.682958
0.325946
0.325946
0.589264
0.589265
0.699379
0.699379
0.000000
0.801832
0.801832

0.308494
0.154283
0.353056
0.189593
0.856273
0.880624
0.143728
0.143728
0.810407
0.899153
0.499994
0.845718
0.845717
0.691506

Order 4
0.000000
0.615950

Order 5
—0.961906
—0.656129
—0.423488
—0.162380
—0.162373

0.036256
0.036258
0.233769
0.233770
0.649534
0.870827
0.870827

Order 6
—0.946753
—0.917607
—0.613621
—0.203697
—0.187665

0.065785
0.187665
0.187665
0.203694
0.367352
0.741743
0.917605
0.917606
0.946753

elliptic
3.359144

2.763133
2.763131
3.234221
2.305126
2.305126
2.854635
2.854634
1.473418
1.473418
3.234223

elliptic
elliptic

2.706071
2.637740
2.637753
2.706069
0.501092
1.982189
0.501092
0.501092
2.706099
0.501092
4.004123
2.637717
2.637728
2.706070
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projection distributed around the mean value n = J(I+
I). It follows that the continuous variable I is the classi-
cal analog of the discrete quantum number (n/J) —I in
the limit when J ~ oo.

The SU(2) coherent states are the closest analog to
phase-space points that can be constructed in the quan-
tum mechanics on the sphere. They are the equivalents
of Gaussian wave packets in ordinary phase space. We
therefore expect that classical objects will be more easily
recognized in this representation.

The coherent states can be used to display the phase-
space properties of operators by means of the correspon-
dence

w(1, y) =,(I, yl~li, y), ,

TABLE III. Cyclic points of order n ( 4 for k = 6.

Label

which is called the Q representation in the literature [14].
When applied to pure-state density operators this de6ni-
tion yields the Husimi distribution of a state lg)g,

(I, y) = l,(I, pl@), l

It is important at this point to stress that the coher-
ent states provide a full representation of all quantum-
mechanical aspects of a given problem, alternative to the
position or momentum representation. Moreover, as we
will show in the following, they also display the corre-
spondence to classical motion in a most pregnant way.

As a detail of practical interest in numerical computa-
tions, we mention that the summation in Eq. (48), and
in general all transformations to the coherent-state repre-
sentation can be greatly speeded up by using fast-Fourier-
transform techniques in the numerical evaluation of the
P dependence.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

0.000000
0.750000
0.750000
0.000000

0.250000
0.750000
0.750000
0.250000
0.250001

0.500000
0.000000
0.658418
0.658421
0.395737
0.395738
0.892368
0.892367

0.394471
0.500000
0.386613
0.386611
0.813900
0.813905
0.865393
0.354148
0.354148
0.500000
0.038090
0.038091
0.134604
0.313900
0.313917
0.249994
0.500000
0.605532

Order 1
—1.000000
—0.316787
—0.316787

1.000000
Order 2
—0.672079
—0.672078
—0.672078

0.316786
0.672079

Order 3
—0.898673
—0.898672
—0.439255
—0.439250

0.436339
0.436339
0.871382
0.871385

Order 4
—0.921332
—0.851965
—0.745923
—0.745920
—0.542990
—0.542972
—0.444529
—0.257112
—0.257112

0.000000
0.329600
0.329614
0.444511
0.542995
0.543024
0.841789
0.851965
0.921331

1.762747
1.171221
1.171221
1.762747

2.652564
2.652560
2.652560
2.342440
2.652559

4.904953
4.904950
4.018484
4.018487
4.173672
4.173669
4.747360
4.747369

5.879734
6.363503
5.363348
5.363341
5.072454
5.072466
5.879709
1.844670
1.844670
elliptic

3.577975
3.578148
5.879728
5.072450
5.072410
6.594255
6.363498
5.879726

+
+
+

Label

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

1.000000
0.432997
0.432994
0.784552
0.834725
0.834726
0.677081
0.630695
0.665671
0.665685
0.595919
0.999999
1.000000
0.771601
0.819023
0.819026
0.284748
0.174363
0.174363
0.217201
0.217213
0.370865
0.429536
0.429534
0.424387
0.424386
0.370882
0.129114
0.999999
0.156874
0.156879
0.000000
0.202198
0.500000
0.000001
0.547821
0.547818
0.607127

—0.910679
—0.828976
—0.828974
—0.707979
—0.584268
—0.584265
—0.513833
—0.444429
—0.435696
—0.435672
—0.430815
—0.387763
—0.387751
—0.254929
—0.036561
—0.036509
—0.021173
—0.007236
—0.007222

0 ' 215251
0.215345
0.263597
0.402823
0.402823
0.410039
0.410040
0.444310
0.444316
0.463040
0.598519
0.598536
0.626083
0.717812
0.748693
0.748701
0.837816
0.837818
0.883392

7.369180
7.940179
7.940259
7.290845
6.948938
6.948938
6.311345
7.666040
6.723130
6.723135
7.412461
5.502050
5.501984
6.311324
5.447877
5.447864
5.165390
4.991317
4.991303
6.568134
6.568202
5.784517
5.042503
5.042505
5.277918
5.277913
7.681563
7.681595
5.784466
7.014289
7.014260
5.165436
7.369215
5.305103
5.305146
8.012835
8.012758
7.290848

TABLE IV. Cyclic points of order 5 for k = 6.
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Label

1

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

p/x

0.065231
0.434772
0.262741
0.050390
0.050391
0.052199
0.052199
0.689786
0.810212
0.679813
0.679814
0.895740
0.499999
0.939075
0.059352
0.723371
0.885338
0.677317
0.322684
0.114661
0.293289
0.235697
0.276630
0.940648
0.060925
0.499998
0.499984
0.086970
0.158418
0.130037
0.179809
0.310220
0.947801
0.947801
0.949610
0.949612
0.270748
0.565233
0.499998
0.500000

—0.8984
—0.8984
—0.71441
—0.70024
—0.70022
—0.61313
—0.61312
—0.53462
—0.534600
—0.523068
—0.523065
—0.436326
—0.419761
—0.386873
—0.330561
—0.237868
—0.133627
—0.012839

0.012842
0.133610
0.172322
0.221074
0.237872
0.330568
0.386870
0.419765
0.419785
0.423025
0.439242
0.444375
0.523064
0.534638
0.613133
0.613135
0.700257
0.700296
0.856408
0.898472
0.898674
0.950135

9.087629
9.087682

6 7.757861
5.572272
5.571920
5.869082
5.868824
7.757763
7.7578Q1
7.456036
7.456038
8.347362
7.447874
6.870165
6.132602
8.211235
6.132596
6.960819
6.960521
6.132009
6.869868
7.455940
8.211120
6.132355
6.869919
7.447797
7.447941
8.678589
8.036966
9.434880
7.456025
7.757761
5.868972
5.869113
5.572232
5 ' 573028
8.822502
9.087563
9.809863
7.447840

TABLE V. Cyclic oyclic points of order 6 for k = 6
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of the fact that the coherent state (43) is analytic in the
variable z = e'& cot(8/2) (when normalization is disre-

garded). In fact, it is just a polynomial of degree 2J,
which can be factorized over its zeros. Thus any pure
quantum-mechanical state can be fully characterized by
2J points in phase space whose motion fully determines
the quantum evolution [17]. In our case the quantity

l~(I, PlU lIp, Pp)zl for fixed initial variables is analytic
in the final ones and its zeros can be used as an alterna-
tive to the Husimi distribution for the phase-space dis-

play of the propagator.
In Fig. 3 we show the transition region around n' 5

for the same situation as in Fig. 2, but now showing the
position of the zeros. The drastic change in organization
is clearly seen at n' 5. The zeros are neatly lined up
in between the folds of the unstable manifold at n = 3
and 4. At n = 6 the distribution does not seem to have

any discernible pattern.

B. Periodic points

Periodic points are the simpler invariant structures left
in the classical motion when tori have been destroyed.
Therefore, they provide the strongest candidates for a
link between classical and quantum invariant structures
in the chaotic regime. In fact, the only known representa-
tion of the density of states in terms of classical objects is
the Gutzwiller s periodic-orbit sum [18, 19], which, how-

ever, has serious convergence and interpretation prob-
lems in the chaotic regime [20].

Periodic points appear in quantum mechanics when
we compute the coherent-state mean value of the n-step
propagator

(54)

The argument for this is quite simple and relies on a
semiclassical image of the propagation: the center of the
wave packet will approximately follow a classical trajec-
tory and therefore P„will be large when lI, P)J is cen-
tered on an n-periodic point.

Heller [21] has studied extensively the autocorrelation
(54) as a function of time, and derived important results
on the scarring of the eigenfunctions originating from a
specific periodic orbit. Here we study it for a fixed n and
as a function of the point in the phase-space. Heller's
analysis gives an approximate value for the autocorrela-
t;ion function at hyperbolic periodic points

in terms of the Lyapunov exponent; A, Therefore, we ex-
pect the phase-space plot of l'P„l to show peaks at the
isolated periodic points of period n with heights decreas-
ing very rapidly with An

This expectation is strikingly brought out in Fig. 4,
where we show the plots of l'P„l~ for n = 1, . . . , 6, I' = 3,

I I i I

n= 3

*4** * *

. 3i.l +**+~.
n= 5 n= 6

I I ~ I I I

"Ch'„'-:;,.

I I I I I I ~ ~

L3
0-'- 0- 'Q

~ & v i & v i ~ w r i r I 0 I
I

I ~ s
J

~ ~ v i ~

0 - - E]

I ~ I ~ ~ I I I I I

0 0

0.25 0.5 0.75

o
0

io
I, I i""fll .s,, — ~—-", a. f 3

O.Z5 0.5 0.75 1

0 0
O CI:

FIG. 3. Evolution of the wave packet (as in Fig. 2) near
the transition region n n' The contour. s of 'W„in Eq. (52)
are drawn: the small stars give the position of the zeros.

FIG. 4. Quantum autocorrelation function lP~ l

Eq. (54) and corresponding cyclic points for n = 1—6, k = 3,
and 2J+ 1 = 256. The boxes give the hyperbolic periodic
points while the stars give the elliptic ones.
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and 2J + 1 = 256. In the figures we have also plotted
the periodic points from Table II. A great deal of clas-
sical information can be revealed by a detailed analysis
of Fig. 4. The first thing we notice is that the even pow-
ers have the extra syaunetry that exchanges the north
and south poles [$' of Eq. (28)], whereas the odd pow-
ers do not. The elliptic point first appearing for n = 1
at I = 0.456, P = 37r/4 reappears at all powers of the
map and generates around it an island structure of al-

ternating elliptic and hyperbolic points characteristic of
broken Kolmogorov-Arnold-Moser (KAM) tori. This is

clearly shown at n = 5. Already at n = 6 the stable
points have disappeared and have been replaced by all
hyperbolic points (some with reflection), whose organi-
zation resembles that of the destroyed tori, being now in
a strongly chaotic region.

The elliptic point that first appears for n = 2 at I =
—0.456, P = s/4 (whose companion is at I = —0.456,
P = 5s/4) is only seen for even powers of the map, but
generates structures visible for n = 3, 4, 5. The chain
of hyperbolic points clearly seen at n = 3 is likewise a
remnant of a chain of islands around this elliptic point.
At period 4 there appears the only point (on the equator
I = 0) that remains elliptic regardless of the value of the
parameter k. The relative intensities of the peaks also
correspond approximately with Eq. (55).

When longer times are considered, the different peaks
corresponding to each periodic point start to coalesce and
form other structures that are quite different in the reg-
ular and chaotic regions. In Fig. 5 we show the n = 11
iteration for k = 2 and 2J + 1 = 128, corresponding to
a nearly integrable case. The classical periodic points lie
in very close correspondence to the broken rational tori
and show the characteristic alternation of elliptic and
hyperbolic point, s. The quantum dist;ribution does not
distinguish anymore the individual periodic points, but
shows a collective contribution from the torus with the
right frequency. Once this transition has taken place,
there are no more surprises in the large-n iterations of
the map; only more and more periodic points contribute,
but the result is better understood as a torus contribu-
tion leading to the known EBK formula [22, 23].

The situation is very different in the chaotic regime.
Here the correspondence between periodic points and the

propagator is lost after a time n', and is replaced by a
complex interference pattern arising from the exponen-
tially increasing number of trajectories that explore the
neighborhood of a periodic point. No simple represen-
tation of these patterns is known and even its adequacy
could be doubted in view of the fact that structures ex-
tremely small compared to a quantum cell are being in-
voked. However, some extremely encouraging numeri-
cal results have been recently obtained by Tomsovic and
Heller for the stadium billiard [24] and by O' Connor,
Tomsovic, and Heller for the baker's transformation [25]
concerning the long-time accuracy of such a description.
An example of this complex behavior is given in Fig. 6,
where we show P„for a fully chaotic regime at k = 6.
Whereas some quantum peaks can be ascribed to peri-
odic points the main structure is not simply related to
the classical one.

C. Symmetry lines

The quantum images of the symmetry lines discussed
in Sec. II B can be obtained from the quantities

V„(I,y) =~(I, y~TV" ~I, y)~,
V„(I,y) =,(I, y~z'ir" ~I, y), ,

(56)

(57)

where T and T are given in Eqs. (22) and (23). The argu-
ment is analogous to that for periodic points: as long as
the propagation is semiclassical, 7„and 'T„will be large
when the wave packet is launched on a symmetry line, be-
cause after a time n it will have a large overlap with its
time-reversed part, ner. Thus T„andZ„provide the quan-
tum images of the syrrunetry lines 4(T„)and 4(T„),re-
spectively. In Fig. 7 we show the precise correspondence
between T„and 4(T„)for k = 3 and 2J + 1 = 128. For
long times the correspondence is lost in the same way and
for the same reason as in the propagation of wave packets
in Sec. III A. The successive foldings in the iterations of
the four basic symmetry lines (37)—(40) eventually inter-
fere and the lines are broken up. This process starts at
n = 4 in Fig. 7 and is fully developed in Fig. 8. Notice
the similarity with Fig. 3 in the breakup process. The
time n' for this case is n* = 5.

The quantities W„,P„and T„,7„areall particular

., J
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FIG. 5. The same as in Fig. 4 for n = 11, k = 2, and
2J+ 1 = 128.

FIG. 6. The same as in Fig;. 4 for n = 5, k = 6, and
2 J+ 1 = 1024.
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2J

g(I, Q!GJc (s) ~
I, P) g = ) gIr (e —A, )'8;(I, P)

i=O
(61)

) e""fIr (n)'p„(I,p), (62)

where 'H;(I, P) is the Husimi distribution (51) of the
eigenstates. The above equation provides a link between
the quantities P„studied in Sec. III B and the smoothed
properties of the Husimi distributions of eigenstates. By
changing I& we can then go continuously from the average
properties ruled by the very short times to the properties
of a single eigenstate, determined in principle by infinite
times.

The following scenario is expected as Ii is increased.
For very small I& the sum in (61) involves all the eigen-
states and therefore simply by completeness an almost
uniform featureless distribution is expected for all val-
ues of c. This is essentially a Weyl term and is trivial
as it applies to this map. As K increases the distribu-
tion acquires more and more oscillations, corresponding
to the peaks in 'P„(I,P). As long as the peaks remain
isolated the only possibility for interference in the sum
(62) is among repetitions of a given trajectory. Heller

[21] has provided a very detailed study of the resulting
oscillations and decay for a fixed phase-space point on
a periodic orbit as a function of z. The corresponding
response function is dominated by two time scales: the
period n providing oscillations and the Lyapunov expo-
nent giving a width to the peaks. When the condition
An 2' is fulfilled the oscillations become overdamped
and therefore unobservable.

A cursory examination of Tables I—V shows that most
of the periodic points listed there should produce visi-
ble structures (except the periods 5 and 6 for k = 6).
We postpone for the time being the analysis of the re-

sponse functions of periodic points to continue the dis-
cussion on the structure of J(I, Q~GIc(e)~I, P)~. As I~ is

increased beyond the time n' discussed in Sec. III A, in-

terference effects occur not only between a periodic point
and its repetitions, but also between nearby periodic tra-
jectories. Thus the phase-space organization and relative
phases of the trajectories become crucial for the result-
ing structure and it is at this point that widely different
behavior is to be expected for regular or chaotic regions.
In the regular region long periodic trajectories are orga-
nized on the invariant tori and produce a collective en-
hancement near the EBK torus [22, 23]. At this stage of
the "unsmoothing" process we then expect to see broad
tori in the regular region, which become more sharply
defined as the unsmoothing proceeds. In the chaotic re-
gion the oscillations related to the short and less unstable
periodic orbits become more complicated as these start
proliferating exponentially, and the nature of their col-
lective contribution and whether it is related to classical
structures is largely unknown.

In Fig. 9 we show J(I Q~G~(e)!!I,P)~ for k. = 3 and
for some values of z and the smoothing time K, compar-
ing it to a classical phase-space diagram. In the first
fraine we show the classical phase-space organization.
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onding to the eigenvalues of
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—1 fixed point are drawn.

The most notable structures are the stable islands around
the period-l, -2, and -4 elliptic points and a large area of
chaotic motion. We have also drawn the manifolds of the
unstable fixed points at I = —1. The three frames for
Ic = 12 show the partially smoothed Glc-(e) at different
quasienergies chosen to select structures in different re-
gions. Very visible are the tori in the elliptic islands and
the background intensity (not quite featureless) in the
chaotic region. The last three frames show the effect of
the smoothing at a fixed quasienergy s/2x = 0.7189 . At
I~ = 6 most of the structures still remaining at K = 12
have disappeared leaving only some traces of the elliptic
regions. At the opposite extreme for It = 1000 a single
eigenstate is selected, precisely located on the unstable
fixed point and on its stable and unstable manifolds. This
is then an example of a strongly "scarred" state, of the
same type as observed in the stadium eigenfunctions [27]
and in the baker's transformation [6], residing mainly on
an unstable trajectory and its hyperbolic neighborhood.
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strong imprints of not only the periodic trajectory but
also of its manifolds and their homoclinic intersections.
There is at present no way of calculating which state will
show a specific scar, except for the broad quasienergy re-
gion where it can be expected to be calculated semiclassi-
cally [21]. It is quite clear that beside the periodic point
the eigenfunctions show also a definite structure around
it that traces the homoclinic intersections and recurs at
diRerent points with different intensities. In the study of
the baker's transformation [6] it was observed that ho-
moclinic points and stable and unstable manifolds were
apparent in many of the eigenfunctions. Here we find
the manifestation of the same phenomenon occurring in
the context of this model in a much more complicated
setting.
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FIG. 10. Response Gic(s) for the period-3 point at I =
—0.7417, P = 2s for k = 3, K = 12, and 2J + 1 = 1024;
phase-space diagram with the stable and unstable manifolds
of the cycle; and phase-space structure of four scarred states
with the largest overlap.

In Fig. 10 we analyze the scarring in more detail. We
show in the first frame the response GA. (s) for the period-
3 point at I = —0.7417, P = 2z, showing that it scars-
i.e. , it has a large overlap —with three groups of eigen-
states. The width LE of the structures is related to the
Lyapunov exponent [21] by

IV. CONCLUSIONS

We have shown how various matrix elements of the
propagator in the coherent-state representation are re-
lated to classical properties and how this relationship is
consistently lost in the chaotic regime for times n' of the
order ln(2J + I)/A. Periodic points are displayed by di-

agonal matrix elements while off-diagonal ones show in
general the stable and unstable manifolds. The analytic-
ity of the propagator in each of the initial or final phase-
space variables can be exploited to display the zeros of the
propagator, in analogy with the recent work of Refs. [16,
17]. Again, it is found that the organization of the zeros
changes drastically at the critical time. Symmetry lines
and their iterates are obtained in special oR'-diagonal el-
ements between time-reversed states. In the energy do-
main the smoothed spectral intensity operator provides
the correspondence with invariant structures, but only in
an energy-averaged sense. When one tries to uncover the
properties of single eigenstates the difficulties inherent in
the long-time semiclassical dynamics reappear.

The response function of coherent states on periodic
points shows the groups of levels scarred by the peri-
odic point, and the most; scarred states show, besides the
periodic point, , the homoclinic structure that was also
observed for the baker's transformation in Ref. [6]. This
then appears as a rather general feature in the structure
of chaotic eigenfunctions that remains to be explained.

LE = —=01
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