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Population transfer at periodically repeated level crossings
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We have explored a genuinely time-dependent problem consisting of periodic crossings of energy lev-

els. The model can be realized in several physical systems, but we refer it explicitly to a two-level ion

that swings in a harmonic trap and concurrently interacts with a traveling light wave. We have solved

the Schrodinger equation for this model by numerical integration as well as by the use of matrix contin-

ued fractions for the steady state. We investigate both the time and the frequency behavior of the model.
We have also compared the exact behavior with an intuitive model based on a Landau-Zener description
of each crossing followed by a simple relaxation behavior. In addition, the coherent interaction with the
field is found to lead to a resonancelike behavior of the population transfer, which we can attribute to
the accumulated phase of the Bloch vector. The various time scales of the problem are identified and

their physical significance is elucidated.

PACS number(s): 32.80.Bx, 33.80.Ps

I. INTRODUCTION

In quantum physics, there are very few systems that
can be followed in time while they undergo their quantal
evolution. Recent techniques, however, allow one to iso-
late individual atoms in traps and track their behavior in
real time. This may afford an opportunity to test the
time evolution of quantum-mechanical systems in a re-
gime not earlier available to experimentalists.

In this paper we discuss the simple model of an atomic
two-level system periodically tuned into and out of reso-
nance with a monochromatic field supplied by a laser.
One possible realization is a harmonically trapped atom
(or ion), see Fig. 1(a), which is Doppler shifted through
its resonance by the periodic motion. In Fig. 1(b) we
show the oscillating atomic energy difference regularly
coinciding with the laser frequency. At the periodically
occurring level crossings, we find a mixing of the states,
which in the adiabatic limit effects a complete transfer of
population between the levels. The nonadiabatic correc-
tions can be estimated from the treatment of Landau [1]
and Zener [2] as was suggested in Ref. [3]. If the lifetime
of the upper level is short compared with the oscillational
period in the trap, the excited state will decay before the
next crossing appears, and observing the outgoing pho-
tons, we will see a series of regularly spaced bursts of en-
ergy as indicated in Fig. 1(c). In Ref. [4] it was suggested
that this could be used as a single-atom clock. The sug-
gestion was motivated by the fact that periodic phenome-
na are commonplace in quantum systems but the reading
of a microscopic clock may in itself pose a physical prob-
lem.

It is easy to envisage other physical systems where
periodic modulation of the energy levels occurs. When
atoms travel in periodic structures, e.g., in channeling,
their levels will be affected by the background lattice.
Also artificial optical structures, fibers [5,6], and superlat-
tices may offer periodic modulations leading to repeated
level crossings. In laser-cooling experiments, the stand-
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FIG. 1. The physical situation considered in this paper is
presented. (a) A harmonically oscillating two-level system un-

der the inAuence of a laser field nearly resonant with the level

spacing. The Doppler shift modulates this spacing so that it
coincides with the laser frequency periodically (b). At each
crossing the two-level system becomes excited, and for a short
enough lifetime the excitation energy is seen to leave the atom
spontaneously (c).

ing wave structures give rise to periodic light shifts that
play an essential role [7—9]. In some atomic investiga-
tions [10] the external fields are modulated periodically to
facilitate the experiments.

We have found it interesting to investigate the details
of the physical situation described above. We try to see
what the observable phenomena are like, to what extent
their behavior can be understood in terms of simple mod-
els, and which parameter ranges introduce noticeable
modifications to the simplest behaviors. In addition, the
system offers some opportunities to test computational
models that are based on intuitive concepts against de-
tailed calculations. Some of the features found may be
verifiable or even significant in atomic physics. In partic-
ular we find a novel physical system where the Landau-
Zener behavior can be subjected to an experimental test.
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II. THE THEORETICAL TREATMENT B. The steady-state description

A. Setting up the model

We assume a traveling laser wave of frequency co and
wave vector k to impinge on a simple two-level atom with
the energy-level difference fi(co+2bco}. In the rotating-
wave approximation the detuning for a periodically
Doppler shifted atomic particle is

In the steady state, the time evolution of the Bloch vec-
tor must display the periodicity of the external field, and
hence we introduce an ansatz where each of its com-
ponents r, (j = 1,2, 3) is expanded in a Fourier series

r, = g R, (n)exp(inst) . (2.5)

bE/R=2bco+ kU (t)

=2bco+kUO cosQt . (2.1)

Substituting this ansatz into the Bloch equations (2.4) we
find a set of three coupled recurrence relations for the
Fourier amplitudes of the harmonics R~(n), namely

Using the Pauli matrices o; (i =1,2, 3) we can write the
Hamiltonian in the form

(in 0+y }Ri(n) = 2—bcoRi(n)

—A [R2(n+1)+R2(n —1)], (2.6)
Hlfi=(b, co+ A cosQt)oi+ Vcr, , (2.2)

(in0+y )R2(n) =2bcoR, (n)

where A'V is the (dipole) coupling between the energy lev-
els and A is the oscillational amplitude as determined
from Eq. (2.1). We define the optical Bloch vector r, us-
ing the 2 X 2 density matrix p as

+ A [R, (n +1)+R i(n —1)]
—2VR &(n),

(in Q+yo)R2(n) =2 VR2(n) —A~5„0 .

(2.7)

(2.8)

~1 P12+P21

2 (Pi2 P2i) &

P3 P22 P11

(2.3)

With the Hamiltonian (2.2) we find the equations of
motion

Using a fairly standard procedure [12] these can be
rewritten in terms of matrices and solved in terms of ma-
trix continued fractions. The procedure can be simplified
by solving for R

&
from (2.8) and introducing this into Eq.

(2.7). Defining the vector

R, (n)

Ri(n} (2.9)

d
r, = —2(b,co+ A cosQt)r2 yr, , —

we can write Eqs. (2.6)—(2.8) in the matrix form

R„=B5„0+C„(R„+i+R„,), (2.10)

(2.4)

d—
~3 =2 V~2 —

y0~3
—

~p

d
r2 =2(b—to+ A cosQt)r i 2Vr& yr2, —— where B is a vector and C

„

is a 2X2 matrix. Their ex-
pressions are given in the Appendix, where we also give
the details of the solution used in this section. To solve
(2. 10) we define the transfer matrices T „bysetting

R„=T„B. (2.11)
Here y and yo are the transverse and longitudinal relaxa-
tion rates, respectively, and k is an externally imposed
pumping rate. This may be taken to be + yo if the atoms
are introduced in the upper or lower state, respectively.
We note that changing A, achieves only a simple scaling
of the Bloch vector components. Here we have assumed
that both levels are emptied to lower unobserved levels; if
level 1 is the ground state or a rnetastable state, the dom-
inating decay rnechanisrn may be spontaneous emission
between the levels. In that case y0~2y. As long as the
decay rates are of the same order, our physical con-
clusions will not be affected. Hence we have used yo=y
in our numerical calculations.

Starting with given initial conditions, we can integrate
the set of equations (2.4) to obtain its time evolution. For
this purpose we have employed either the fifth-order
Runge-Kutta [11]or one of its variations. The results are
used in the following sections to check the validity of our
other treatments and to estimate the accuracy of the ap-
proximations.

For these we can obtain matrix continued fractions that
can be evaluated in a straightforward way numerically;
see the Appendix for details.

We note that at resonance bco=0, Eqs. (2.6)—(2.8) im-

ply that R2 and R 3 have only even components and R,
only odd ones. It is then possible to evaluate the Bloch
vector in terms of an ordinary continued fraction instead
of a matrix one, which speeds up the computational pro-
cedure considerably.

In Fig. 2 we show a result of the evaluation of the
time-dependent Bloch vector. We start the integration
from the externally imposed initial value r3=1, i.e., an
inverted population. The solid line shows the transient
approach to the periodic steady-state behavior. The os-
cillating dotted line shows the Fourier transform solution
obtained from the continued fractions. In this case only
four harmonics have been included, but we see that after
a transient period of the order of a few relaxation time
constants y ', the solutions agree well. The time-
averaged inversion is given by R3(0), which is shown as a
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FIG. 2. The time evolution of the population difference r3(t)
when the two oscillating levels are detuned from the laser. The
result from the numerical integration is shown by the solid
curve, that from the continued fraction as the dashed curve (in
this case using four harmonics only). The horizontal dashed
line is the time-averaged population obtained from the contin-
ued fractions. The system starts from Qt = —5, and it rapidly
approaches the steady-state behavior described by the
continued-fraction result. The highly nonsymmetric steady-
state behavior is caused by the detuning b oo =0.5Q, which is
50% of the driving amplitude A =Q. The coupling is V=Q,
and the decay rate is y=Q. The two remaining parameters
needed are y =yo and A,~ =Q; these will remain the same in all
following figures. Only this figure shows the relaxation towards
the steady state.

horizontal line in Fig. 2.
For other values of the parameters, the time evolution

contains many more features. Figure 3 shows a case
where the sudden excitation at the crossing is followed by
an exponential decay overlapped by a rapid oscillation
due to the precession of the Bloch vector; cf. the expected
behavior in Fig. 1(c). In Fig. 3 the solid line is the result
of exact numerical integration and the dotted line is the
Fourier synthesis based on 30 harmonics. Including
more than 34 harmonics leads to such a sma11 difference
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FIG. 3. The steady-state evolution of r3(t) (solid curve) for
parameters chosen to show a higher level of excitation and more
oscillations. The continued fraction solution, with 30 harmon-
ics, is shown as the dotted curve. If more than 34 harmonics are
included, the two solutions coincide. The horizontal line is the
continued-fraction time average. The parameters are A =16Q
and V=3Q. The relaxation has been reduced to y=0. 3Q.
There is no detuning; hcu=0.

FIG. 4. The spectrum of the steady-state time evolution of
Fig. 3. The absolute value of each harmonic is plotted. Note
that the value for n =0 is the time average, which is actually
negative. The spectrum is mainly confined to the range

~
n

~

~ 40.

that it cannot be seen in the figure. The dotted horizontal
line is the average inversion. We will discuss the preces-
sional oscillations in Sec. III C.

To see the influence of the higher harmonics, we plot
the absolute value of the components R~(n) in Fig. 4. It
can be seen that the spectrum is contained within +40
harmonics. In this case, the odd harmonics are missing,
because we look at Leo=0.

It turns out that the basic features of Figs. 2 and 3 can
be understood from simple physical considerations.
These will be introduced in the next section.

III. RESULTS AND INTERPRETATION

A. Simple adiabatic description

The Bloch equations (2.4) can be written in vector form
(with yo=y for simplicity)

dt
r=mXr —yr —

A, e (3.1)

where r is the three-vector with the components (2.3) and
m is the pseudofield vector

m=2Vei+2(bco+ A cosQt )ez . (3.2)

The unit vectors e, (i =1,2, 3} span the spin space where
the Bloch vector resides.

Neglecting pumping and relaxation in Eq. (3.1},we find
that the Bloch vector precesses around the direction of
the pseudofield m with the angular frequency ~rn~. This
holds true even when the field changes direction slowly,
which is called adiabatic following in magnetic reso-
nance. When we approach a crossing, the field vector
moves rapidly because of the vanishing value of its third-
component. As a result a difference arises between the
directions of the Bloch vector and the field vector. After
the crossing it determines the precession that can be seen
as an oscillation of the third-component of the Bloch vec-
tor. Redistribution of the population on the two levels
occurs during the crossing. From the excited state, the
Bloch vector relaxes by a spiraling motion as both the
precessional motion and the level of excitation damp out.
In time, an equilibrium position is reached before the
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next crossing excites the system again.
The exchange of population between two crossing lev-

els is just the situation described by Landau [1]and Zener
[2]. In order to apply their methods, we assume that the
crossing time is so short that we may neglect pumping
and decay while the crossing takes effect. The Hamiltoni-
an (2.2) can be linearized for an interval small enough
near the crossing, giving the standard form

r3(5t ) = —r3( 5—t )(1—2e ), (3.11)

d r3= —yr, +k
dAt

(3.12}

after the crossing. Having passed this, the Bloch vector
will precess under the inhuence of pumping and damping.
In our model we only treat the average inversion by re-
taining from the full Bloch equations (with yo= y)

A.b, r—V8—fi
With (3.11) as the initial condition we find the solution

(3.3)

The time variable ht is the deviation from the crossing
times determined by

r (ht)= — (1—e r' ' ")+r (5t)e
y

(3.13}

b,co+ A cosset =0 . (3.4)

At these crossings we can determine the parameter I,
from

A, =+0+A —b,cu (3.5)

(3.6)

the sign depends on the direction of traversing the cross-
ing.

The Hamiltonian (3.3) can be treated by the Landau-
Zener calculation, which shows that the mixing of the
levels takes place over a time scale determined by

After the time (T&&3
—25r ) the next crossing is encoun-

tered, and in the steady state, we require

r3(T)q2 5t)=r—3( 5t) . — (3.14)

Using Eqs. (3.11) and (3.13) and letting 5t 0 we find
the result

Apr3(+0)= —1+
y

exp(y T„,)
exp(1 T&y3 ) 1

1+
2[1—exp( —m.A ) ]

(3.15)

We can substitute the result (3.15) into Eq. (3.13) and find
the population at times 0 & ht & T, &2

The solution of the problem is given in terms of the adia-
baticity parameter

(3 7)

r3(b, t) = —1+
y

exp(y T, &3 yb, t)—
1+

exp(y T„,) —1

2[1—exp( —m.A ) ]

(3.16)

Starting from the inversion r3( —oo)= —1, one obtains
from the Landau-Zener treatment the final result

Using (3.15) and (3.16) we can derive an expression for
the population transfer at the crossing

kl3 13(+0)—r3(T, )2 }

r3(+ ~ ) =1—2 exp( nA) . —. (3.8)

When the process takes place infinitesimally slowly,
0, the population is totally inverted during the adia-

batic passage.
Armed with these tools we can make a simple analytic

model of the periodic sequence of the time evolution. We
neglect the coherent precession about the pseudofield
vector (see Sec. III C) and describe the evolution simply
in terms of the third component of the Bloch vector (the
population inversion).

For simplicity we consider the case 5~=0, and denote
the time between the level crossings as

1 1

exp(yT, &2)
—1 2[1—exp( —nA)]

(3.17)

This simple equation shows how the population transfer
depends on the two parameters yT, &2 and ~A that
characterize the decay and the adiabatic transfer, respec-
tively. It can be used in the limit of fast decay y ~ in
accordance with the conditions (3.10).

From Eq. (3.16) we can derive the average inversion
over the time T1&2 to be

7TT n (3.9) ill

r =
3

y

exp(yT„,) —1—1+
V ~1/2

&1+ &'YO (3.10)

Our intuitive picture is based on the situation where we
assume exp( y T, &2 ) —1

X 1+
2[1—exp( —mA)]

(3.18)

These conditions are discussed in Secs. III B and IV.
Just before a crossing, at the time ht = —6t the inver-

sion is r3( 5t) (for any 5t & t, ), which—according to the
result (3.8) becomes

r — 1—
y

2
[1—exp( —n.A ) ]

T1 y2

(3.19}

In the limit of strong damping (i.e., for yT, &2»1) we
find
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B. Comparison with numerical results 0.0

The time dependence (3.16) combined with the
Landau-Zener jump (3.17) at the crossings makes it possi-
ble to plot the time evolution of the population inversion
as described by the simple model of the previous section.
In this section we are going to compare this evolution
with the one obtained from the exact numerical results
described in Sec. II.

In Figs. 5—7 we fix the adiabaticity parameter at the
crossing to the value A=0.22, which gives about 50%
population transfer according to the Landau-Zener
theory. The decay rates are taken to be equal, y=yo,
and the detuning is zero, hco=0.

In Fig. 5 the parameter characterizing the decay is

y T, &2=my!0=m. l2, and the parameter characterizing
the crossing is Qt, =

—,', . In this situation the level-

crossing excitation is rather sudden but the decay is not
complete between the crossings. The figure shows the ap-
proximate theory (dashed line) and the exact numerical
result (solid line). The most striking difference is the os-
cillations deriving from the precession of the Bloch vec-
tor around the field vector; this feature is missing from
our approximate theory. The figure also shows the aver-
age level of excitation (3.18) (the dashed horizontal line)
and the corresponding exact value R3(0) (the dotted hor-
izontal line) from the continued fraction evaluation (see
the Appendix); the discrepancy found between these two
values is discussed in Sec. IIIC. VVe can see that the
time-evolution curve is well represented by the approxi-
mate result when this is shifted to make the averages
agree (the dotted curve). In particular the jump at the
level crossing seems to be well provided by the Landau-
Zener theory.

In Fig. 6 the parameters are as in Fig. 5, but the decay
rate y is increased by one order of magnitude. Then the

0-

~feat
0g

-0.2
3 4 5

FIG. 6. The same as Fig. 5, but with the damping increased
to y =50. The average inversion from the continued fractions
and from the simple theory now almost agree. Thus the simple
sawtooth needs no shifting to give good agreement.

precessional oscillations are rapidly damped out, and the
decay process has time to run its course between the
crossings. However, the decay time now approaches the
level-crossing time scale yt, =

—,', and the excitation is no
longer sudden but smeared out. The approximate theory
does, however, describe the time evolution rather well; in
particular the averaged level populations coincide in this
case.

In Fig. 7 we have increased the decay rate by another
factor of 10; the level-crossing time scale and the decay
rate are similar, yt, =2.5, and the simple theory loses
sense.

The intuitive picture given in Fig. 1(c) can be realized
in the adiabatic limit when Qt, is small. Choosing the
parameters such that A=1.0, we find the result in Fig. 8.
Because here y T»2 =my IQ =5~, the decay is well
completed between the level crossings, and in addition,
yt, =

—,', which implies that the decay of the levels does
not interfere with the crossing points. In this case the ap-
proximate solution can hardly be distinguished from the
numerical results.

An instructive way to test the accuracy of the approxi-
mation developed in Sec. III A is to look at the Fourier

-2 I I I
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I

5 6 7
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,(t)
-00196-
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FIG. 5. The solid curve shows the integrated result for the
population inversion for the parameters A=0. 22, Qt, =0.05,
and y=0. 5Q (hue=0). A and t, are defined in Eqs. (3.7) and
{3.6), respectively. The dashed sawtooth-shaped curve is the
prediction from Eq. (3.13). The horizontal dashed line is its
average (3.18). The higher dotted line is the actual value of the
mean inversion from the continued-fraction method. The
upper, dotted sawtooth represents the result of shifting the pre-
diction (3.13) so that its average coincides with the correct one;
thus shifted, the simple theory shows quite a good fit to the nu-
merical results when the rapid oscillations are smeared out.

-0.0200
0 1

I

2 3
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FIG. 7. Similar to Figs. 5 and 6 but with the damping in-

creased to @=500. The strong dissipation leads to a low-
average level of excitation. The time dependence needs only a
few harmonics, and it makes no sense to apply the theory of Sec.
III A. Only the numerical result (solid curve) and the computed
mean (dashed line) are shown.
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plot the second harmonic (n =2) as a function of the pop-
ulation transfer expected from the Landau-Zener treat-
ment with the crossing time scale t, as the parameter.
The simple result (3.21) gives the straight line marked (s).
We see that for yt, =1.0 (a) and yt, =0.5 (b) there is no
agreement; for yt, =0.05 (c) we find good agreement. A
small value of rt, indicates that the crossing is fast com-
pared with the relaxation, and then we expect the
Landau-Zener treatment to hold.

0

C) 3
-4

0.3 0.4
I

0.5 0.6

C. Coherence e8'ects between crossings

In our previous theoretical treatment we have assumed
that the relaxation rates are large enough to restore the
Bloch vector to near equilibrium in the time between the
crossings. Then no coherence efFects between the cross-
ings need be included in the treatment. We are now go-
ing to consider the case when the system relaxes more
slowly than the recurrence of the crossings, i.e.,

FIG. 12. The average inversion (from the continued-fraction
method) as a function of the crossing width Qt, . The curve
with sharper dips has y=0. 10, and the other curve has
y=0.2Q. Other parameters are A=0.22 and hco=0. The
dashed lines give the result calculated in Sec. III A; they are not
dependent on Qt, in that theory. The lower dashed line is for
y=0. 10. The arrows mark the positions of the resonances as
obtained by solving Eq. (3.27); from right to left n increases
from 1 to 10.

r ~1/2 —1 ~ (3.22)

=2—Ql+cos Qt/Q t
A

C

C

(3.23)

Using this result, we can calculate the phase accumulated

In this case the Bloch vector remembers the previous lev-
el crossing when it encounters a new one, which means
that the density matrix retains some off-diagonal ele-
ments between the crossings. The precessional motion of
the Bloch vector resides in these coherences, and they
cause the wiggles in the numerically obtained curves in
Figs. 3 and 5. When the condition (3.22) holds, the oscil-
lations persist to the next crossing and affect the level
transfer.

To understand the role of the coherences, we have to
add the precessional motion to the simple model in Sec.
IIIA. The initial value for the Bloch vector entering a
crossing is not only determined by the pumping and de-
cay, but it will also depend on the oscillational phase of
the vector entering the crossing region. When the decay
is slow enough, this will be a major factor in determining
the actual transfer that takes place. As a function of the
parameters of the problem, we thus expect to see widely
varying behavior. This is, indeed, seen in Fig. 12 where
we plot the mean population R3(0) as a function of the
crossing time scale r, = V/A, . For fast crossings we see a
series of sharp dips in the average transfer, which indi-
cate the role of the oscillating phase. Incidentally, we
note that these large dips are responsible for the shift of
the average levels between the simple model and the nu-
merical results that are seen in Fig. 5.

To substantiate our explanation of the dips seen in Fig.
12, we assume full adiabatic following during the time be-
tween crossings. The Bloch vector then precesses around
the instantaneous pseudofield vector, which has the mag-
nitude [see Eq. (3.2)]

~m~=2+V +A cos Qt

between the crossings from the integral

C(A, r, )=f ~m(r)~dr
1/2

(/1+ (Qr, )'
=4A

2
C(a),

(Qr, )'
(3.24)

where the argument

+ 1+(Qt, )

(3.25)

occurs in the Legendre elliptic function of the second
kind

g(~)= f &I—v sin xdx . (3.26)

It seems reasonable to assert that in all those cases
where we arrive at a crossing with the same accumulated
phase, the resulting population transfer would be the
same. Thus if we choose to concentrate on combinations
of A and t, such that

4(A, t, )=2mn (n =1,2, 3,4, . . . ), (3.27)

we expect these to lead to the same average transfer of
population and hence the same average R 3(0). In Fig. 13
we display this average as a surface over the A, Qt, plane.
The ridges and valleys occur because certain phase angles
would make periodic evolution impossible unless the sys-
tem adjusts self-consistently. The lines in Fig. 13 show
the solutions of Eq. (3.27) projected onto the surface. We
see that they nearly coincide with the bottoms of the val-
leys in the calculated function. If we cut the surface at a
constant A, we find an oscillating behavior like that
shown in Fig. 12. (To make the lines visible in Fig. 13 we
have chosen the parameter r such that variations in the
surface are not too large. ) The positions of the reso-
nances estimated from Eqs. (3.24) and (3.27) are indicated
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FIG. 13. This surface plots shows the average inversion
R3(0) as a function of the parameters A and Qt, . The other pa-
rameters are y=Q and hco=0. A low enough value of y has
been used to ensure some interference between the crossings,
which is seen here as ripples in the surface. The solutions of Eq.
(3.27) have been projected onto the surface; these are the lines
following the valleys.

FIG. 14. We show two examples of two-dependent behavior
with parameters referring to two points in Fig. 12. The solid
curves give the result of numerical integration; the lower curve
for Qt, =0.115 15 and the upper curve for Qt, =0.11820. Oth-
er parameters are A=0.22, y =0.10, and 6 co=0. The two sets
of parameters fall near two extrema on the y=0. 10 curve in

Fig. 12. The horizontal dashed line is the estimate of the simple
theory from Eq. (3.18) for the parameters of this figure (this ap-
proximation does not have any dependence on Qt, ). The two
dotted horizontal lines show the exact averages as calculated
from the continued-fraction expression. The two dotted-
sawtooth curves are derived from Eq. (3.13) of the simple theory
by shifting the result so that their averages coincide with their
exact values.

by arrows in Fig. 12. The discrepancy between the posi-
tions estimated in this way and those that are calculated
can be explained by the phase shift impressed during the
passing of the crossing.

The functional dependence defined by Eq. (3.24) can be
simplified in various limits. If the crossing lasts only a
fraction of the period Qt, « 1, we have 8(1)= 1 and find

dependence deriving from the simple approximation of
Sec. III C as well as the averaged populations. In each
case, the approximation has been shifted to make the
averages agree, as was explained in connection with Fig.
5. Except for the rounding o8' at the level-crossing
points, the approximate results represent a coarse-
grained description of the time evolution.

A=n (Qt }-fr
C

(3.28)
IV. CONCLUSION

In the opposite limit, Qt, ))1, C(a ) =- (m l2), and we find

A=nQt, . (3.29}

The results (3.28) and (3.29) determine the behavior of the
lines in Fig. 13 at small and large values of Qt, .

Because the phase 4 describes the number of rotations
of the Bloch vector, it can be used to predict the number
of oscillations in the inversion over the half-cycle between
the crossings; in Figs. 5 and 6 we predict about 56 oscilla-
tions. In general, if such an estimate indicates that only a
few oscillations occur, the damped exponential behavior
of our simple model is not expected to be seen even for
small values of Qt, .

In Fig. 14 we show the situation where 11 cycles are
expected. The lower curve is for a value of Qt, such that
we are in a dip of the resonant transfer (cf. Fig. 12). The
average inversion is depressed by the phase interference
between the crossings. The upper curve is for a slightly
higher value of Qt„which results in a large mean value
of the inversion. Now we can discern only 10 oscillations
between the crossings, and their amplitudes are much
smaller than those occurring near the valleys in the aver-
age transfer. This is a general feature of the interference
phenomenon. Both parts of the figure show also the time

We have introduced a model two-level system with a
periodically modulated energy difFerence on the diago-
nals. In particular we have looked at the situation where
there are repeated level crossings with adiabatic mixing
of the levels. The steady state has been investigated by
exact numerical integration as well as by the use of a
Fourier expansion leading to a treatment in terms of
matrix-continued fractions. We have also utilized simple
analytical models based on the Landau-Zener treatment
of the crossings, population relaxation, and adiabatic fol-
lowing of the Bloch vector. The exact results have been
interpreted with reference to these models, and their va-
lidity and shortcomings have been elucidated.

The problem contains several time scales of fundamen-
tal physical significance. There is the basic period im-
posed by the oscillational frequency Q. This we have
often represented by the equivalent parameter
T,&2=nlQ, which gives the time between consecutive
level crossings. Its relation to the decay rate yo tells us
whether the evolution retains any memory from one
crossing to the next. In the Landau-Zener treatment, the
mixing of the levels can be considered to occur mainly
within a time t, defined in (3.6). From these three time
scales we can form three-dimensionless parameters
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characterizing the physics, but they are naturally not in-

dependent. Only two are actually needed in addition to
the adiabaticity parameter A, which enters independent-
ly.

The intuitive understanding of the physical situation is
simplified in the following limits. (a) The crossing time is
short compared with the period

terms of simple intuitively transparent physical concepts.
It is also possible that some of these effects could be in-
vestigated in real physical systems.

APPENDIX

Using the vector notation (2.9) we can write the equa-
tions (2.6)—(2.8) in the form

Qr, =mr, /T„2&1 .

(b) The decay has little eff'ect during the crossing time

ypt, &1 .

(c}The decay nearly has time to run its full course during
one period

2VAP 1

Q „R„=A(R„+i+R„i)+ . () 5„o,
in 0+yp

where the matrix Q
„

is given by

$/2
inQ+y+ .

in 0+yp

(Al)

(A2)

QT1/2 y077/Q + 1

These conditions are compatible, and we thus find the
simplest behavior when

(in—Q+ y ) —2b, co

Multiplying (Al) from the left with Q„'we obtain Eq.
(2.10}with

Qr, & yot, & I & yo/0 & I IQr, . (4.1)

A physically interesting case is obtained when we reverse
condition (c) in order to introduce interference between
the crossings, such as we considered in Sec. III C. Condi-
tions (a) and (b) still hold. We then have

2VX 1
P

Q
—i
p

2VA,

4bco +y +4V y/yo
(A3)

yo/0&1&1/Qr„yor, &Qr, &1. (4.2) and

The principal phenomenon under investigation thus
occurs when both conditions (a) and (b) are satisfied. The
violation of (b) only obscures the population transfer at
the crossings. The violation of condition (a) is more seri-
ous; then each crossing region with its strong mixing of
the 1evels extends to the next crossing, and no simple in-
terpretation of the behavior can be expected to hold. The
need to impose condition (c) depends on whether or not
we wish to avoid interference between consecutive level
crossings. The conditions above have been defined in
terms of the population decay rate yp. In the calculations
we have assumed only one relaxation rate yp=y. In
most cases of interest the coherence decay rate y will
differ from the population decay rate yp by at most a fac-
tor of 2. Our physical conclusions are not affected by
this.

In conclusion, we find that our model system displays
several interesting physical phenomena that can be com-
puted exactly from the Hamiltonian and interpreted in

C„=AQ „'. (A4)

With the transfer matrices T „defined in Eq. (2.11) we
find the recurrence relations

5„oTo '+C „(T„+i+T
„

i)T „'=1. (AS)

We can solve these equations in terms of continued frac-
tions by introducing

F k Tk+1Tk

Solving (A5) for n ~0 we write

F „+,=(1—C „F„+)'C
„

and for n ~0

n+& ~- —n —n I —nF = i 1 —C F 'i'C

(A6)

(A7)

(A8)

These relations can be iterated to produced continued
fractions; thus for n =1 we find from (A7)

F+=—p

1 —C(
1
—C2

1 —C3
1 —C

1
4

—4C
—3C

~2C
—1C

(A9)

All factors here are matrices and hence their order must
be retained. The matrix F o can be obtained from (AS) in
a similar form; the matrices C„have only to be replaced
by C „.Introducing these expressions into (A5) with

n =0, we obtain the solution

To=[1—Co(Fo++F }j ' . (A10)

Knowing T p we can obtain T+, from F p, and then the
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matrices T
„

for larger values of n can, in principle, be
obtained from the recurrence relation (A5). This pro-
cedure is, however, numerically unstable, because the
desired convergent solution for the Fourier coefficients is
drowned by the admixture of a divergent solution. (See
the discussion in Ref. [13].) Thus we have evaluated the
transfer matrices from the expressions

rithm by Abramowitz and Stegun [13]for scalar fractions
to our matrix case, we find that the matrix (A9) can be
obtained in the form

F„+=A„B„', (A12)

where [ A „]and [8„]are two independent solutions of
the matrix equations

T „=F„+ )F „+2F „—3 . . F 2+F )+ T 0 (A 1 1) X„=]X
„

]+X„zC~ —t )C ~+ i . (A13)

for n & 0; for n & 0, we use the matrices F
„

in a similar
fashion. The matrices F„*are obtained by evaluating
continued fractions of the type (A9). This approach to
evaluate the matrices has been found to be stable in all
cases treated. Knowing the matrices T „wecan obtain
the Fourier components R„from Eq. (2.11).

The continued fraction (A9) can be evaluated by trun-
cation and multiplication up. However, this method is
inefficient and time consuming because many operations
are needed to ensure convergence, and previous results
are not used in later computations. Adopting the algo-

The two solutions are determined by the initial condi-
tions

A )=1, 30=0,
B &=0 BD=C

&

(A14)

(A15)

With these, the consecutive approximations to (A12) can
be obtained in succession until desired accuracy is
reached. To calculate F„'we use a similar scheme but
replace C „byC

„

throughout the calculation.
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