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Continuous-time description of jump clustering for fractal random processes:
An alternative approach to stochastic renormalization
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A continuous-time approach for stochastic renormalization of fractal random processes is suggested.
The jump clustering is described in terms of two waiting time densities: the probability density g, (~) for
the time interval ~ within which the clustering takes place and the density g„(~) for the relaxation time
attached to the probability that a clustering event occurs. The condition of scale invariance requires
that g, (~) and g, (~) are exponential functions of time. The statistical properties of the number n of
jumps from a cluster are determined by a single parameter H=~, /~„where ~„and ~, are the mean
times attached to the distributions g„(~) and g, (~). For 0 & H 1 all moments of n are infinite. In this
case the renorrnalization leads to a Levy flight whose characteristic exponent is equal to 2H. The oc-
currence of lacunary series is not a necessary condition for the nonanalytic behavior of renormalized
structure functions. The fractal behavior of the renormalized random walk is due only to the fractal be-
havior of the number n of jumps from a cluster.

PACS number(s): 05.40.+j, 02.50.+s

Ten years ago Shlesinger and Hughes introduced a
general stochastic renormalization method for fractal
random processes [I]. Their approach is based on an
analogy with the real-space renormalization-group trans-
formations of free energy and with the way in which the
points of a Cantor set are selected. For instance, starting
from a D-dimensional random walk on a hypercubic lat-
tice for which the jump probability has the following
form:

D
p(r)=(2D) ' g [5(r—ut)+5(r+ut)],

we get the following renormalized expression for the
same quantity:

p(r) =(2D ) '(N —I )

oo

X g g N Iq+"[5(r utb )+5(r+—utb~)] . (2)
1=1 q =0

Here r is the position vector, uI, l =1,2, . . . are the lat-
tice constants and b ) 1, 1V) 1 are two scaling parame-
ters.

The Shlesinger-Hughes renormalization approach has
been successfully applied to a broad class of problems
from condensed-rnatter physics, hydrodynamics, biophy-
sics, nonlinear optics, or even economics or scientometry
(see [2—5] and references therein). Although very useful,
the general physical significance of the renormalization
transformations like Eq. (2) is not very clear. It is obvi-
ous that Eq. (2) is based on the assumption that a kind of
clustering takes place. However, no explicit mechanism
for the way in which the clustering occurs has been sug-
gested.

The purpose of this paper is to present a stochastic re-
normalization method for which a more detailed descrip-
tion of the jump clustering dynamics is possible. Unlike

the case of the Shlesinger-Hughes method, the starting
point of our approach is not the analogy with other re-
normalization procedures, but the way in which the time
evolution of jump clustering can be described.

We shall consider a symmetric Markovian random
walk in a d-dimensional continuous space and denote by
p(r)dr the probability that the displacement of a jump is

between r and r+ dr. The elementary &umps are grouped
into clusters of variable size. A renormalized jump is in

fact a succession of elementary jumps forming a cluster.
Denoting by g(n) the probability that a cluster consists of
n jumps, it follows that the renormalized jump probabili-

ty density p(r) is given by

p(r)= g g(n)[p(r)]"
n=1

where [p(r)g ]"is the n-fold convolution product ofp(r).
Our approach is based on the following assumptions.
(a) The jump clustering is a collection of independent

events. We outline that the way in which the jumps are
clustering should not be confounded with the random
walk itself which is Markovian.

(b) The temporal development of the jump clustering is

described in terms of two different times: the time in

which the clustering as a whole occurs and the time re-

quired for a clustering event. We shall assume that the
clustering process is rate-determining; that is, the random
walk itself is very fast. Therefore, we can consider that
all jumps from a cluster take place essentially at the same
time.

(c) The time evolution of the clustering process is scale
invariant, i.e., the distribution functions of the two times

introduced above have the same form for any initial time.

By making use of the hypotheses (a) and (b) we.can ex-

press g(n) as an average over time
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g(n) = f r), (r)&(r)" '[1—A(r)]dr, (4)
0

where r), (r) is the probability density of the clustering
time and A,(r) is the probability that a clustering event
takes place in the time interval (O, r). A,(r) can be ex-
pressed as

A,(r)= f rI„(r}dr,
0

where ri„(r) is the probability density of the time required
for the occurrence of a clustering event. A, (r) depends
strongly on the shape of rl„(r). In fact ri„(r) can be con-
sidered as the density function of the relaxation time of k
towards its asymptotical value A.( ~ ) = l.

The form of the functions r!,(r) and rt„(r) may be
determined by making use of the condition of scale in-
variance. Usually, the initial time corresponding to
rl, „(r}is r=O. Assuming that the initial time is r' & 0 it
is necessary that the densities ri, „(r r') h—ave the same
form as ri, „(r). But ri, „(r r') can—be expressed by di-

viding r!,„(r)by the probabilities

y„(r ) =1 f '~—, „(r")dr"=f g, „(r")dr"
0

that in the time interval 0,~' no events took place. We
have

„(7} 1 „exp( r/r „)

where r, „=f 0"re, „(r)dr are average times.
Now g(n) can be easily evaluated from Eq. (4).

straightforward calculation gives

p n }=H(n —I)!/[(H+ 1) (H+ n )], (8)

where H is the ratio between the relaxation time ~„and
the clustering time ~,

H=r„/r, . (8')

The factorial moments corresponding to the probability
g(n ) given by Eq. (8) are equal to

rI, „(r —r') =ri, „(r) f rI, ,(r")dr" .

Equation (6) is in fact a set of two functional equations
for g, and g„. They can be solved by integrating over ~
from ~ to ~. This yields

y, „(r—r')y, ,(r') =y, „(r),
i.e., y, „(r) are exponential functions of r. Coming back
from y, „(r) to ri, „(r) and making use of the normaliza-
tion conditions 1 ri, „(r)dr= 1, we get

m —1

(n(n —1) (n —m+1)) =[(m —1)!]mH g ( —1)"[k!(m—k —1)!(H m ——k)] ' for m &H,
k=0

=00 for m +H .

(9a)

(9b)

us the behavior of the number n of jumps from a cluster is determined by the ratio between the two mean times. If
(m+ 1)r, & r„&mr, only the first m moments are finite. In particular, for r, & r„&0; i.e., for 1 H & 0 all moments are
infinite. The physical significance of this fact is clear. From Eq. (4) it turns out that the factorial moments of n can be
expressed as

(n(n —1) (n —m+ I)) =m! f g, (r)A(r) '[1—A( )]r™d .r
0

(10)

We see that as A, ~1 the cumulants are infinite. When
r, & r„rl,(r) falls off faster as A(r) increas, es towards its
asymptotic value 1 and the very large clusters have only a
small contribution to the moments; in this case only the
superior moments are infinite. On the contrary, when
r, &r„, A, (r) increases faster as ri, (r) decreases and the
contribution of very large clusters is significant; in this
case all moments of n are infinite and we expect that g(n)
has the properties of a statistical fractal. Indeed, by
evaluating the asymptotic behavior of g(n) we come to

g(n)-=HI'(1+H }/n'+ as n ~ao,

where I (1+H)=f x exp( —x)dx is the usual Euler's
0I function.

The next step is to discuss the renormalized random
walk. We introduce the structure functions

Combining Eqs. (3), (8), and (12), after lengthy manipula-

tions we get the following expression for P(k):

p(k)=H f y [p(p(k))+y] 'dy,

where

(13)

p(p(k) )= [1—p(k)) /p(k) . (14)

=(k) 1
1 —p(k)
p(k)

+At(p(k) ), (15)
si (nn.H )

By replacing (p+y) '
by its inverse Mellin transform

and performing the integration over y we can express
P(k} as a complex integral; by taking account of the cor-
responding poles and evaluating the complex integral we
obtain

p(k)= fe'"'p(r)dr,

P(k)= f e'"'p(r)dr .
(12)

where Af, (p) is an analytic function in p

At(p)= g ( —1)"+'H(n H) 'p" . —
n=1
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We assume that all moments of the nonrenormalized
jump probability density exist and are finite. Thus, the
initial structure function of a symmetric random walk
can be represented as

p(k) =1—(.,') Ikl2nD+o(lkl'), (17)

where (ro ) is the mean square displacement correspond-
ing to a nonrenormalized step. From Eqs. (14) and (17) it
follows that

&(k)=(r,') Ik 'y2D+o(lk ') .

For 1&H &0 the nonanalytic term of Eq. (15) has a

I

dominant contribution to p(k). By using Eq. (18) we ob-
tain

(r2 )H
P(k)=-1 —lkl' '

. , Ikl 0.
2D sin(mH )

(19)

Considering now a succession of N renormalized steps
and coming back to r variable we can compute the proba-
bility PN(r)dr that a walker is at a position between r
and r+dr after N renormalized steps provided that the
initial position was r=0. In the limit N~ (x) we get the
following asymptotic expression:

( 2)H
P„(r)=(2~i)-D f . '"'

1 —Ikl'H +
2D sin(mH )

(2mi —) Df exp( ik r —blkl —)dk as N~~,
where

N(r', )"
b=

2D sin(mH )

(20)

(21)

Therefore for large N p (r) is described by a Levy flight with parameters 2H and b given by Eqs. (8 ) and (21).
To outline the differences between our approach and the Shlesinger-Hughes method we shall compute the renormal-

ized jump probability density in the particular case of the lattice random walk described by Eq. (1). By applying the
above theory we get

p(r)= g tH[(n —1)!]n/[(2D)"(H+I) (H+n)]]
n=1

n& nD D

g [5(r—u~(2mI n )1)i—[m&!(n —
I m&)!]] . (22)

nl, . . . , nD m) =0

n =n
I

mD =0 1=1

The usual explanation of the nonanalytic behavior within
the case of the Shlesinger-Hughes approach is related to
the lacunarity in the series expansion of the renormalized
jump probability [6]. For example, in Eq. (2) as b & 1 the
intermediate points r=mu~ where mA+b~ have no con-
tributions to p(r). The expansions similar to Eq. (2) are
simply related to certain lacunary Taylor series which
can generate the nonanalytic behavior ofp(k).

However, this explanation is not valid within the
framework of our approach. By examining Eq. (22) we
see that we have no lacunarity; for a given n all inter-
mediate points —n, —(n —1), . . . , 0, 1, . . . , n —l, n

have contributions to p(k). The physical significance of
our approach is clear: the nonanalytic behavior is simply
due to the fact that the number of jumps from a cluster
has the properties of a statistical fractal.

Another difference between the two approaches is re-
lated to the expansion (19) ofp(k) for small wave vectors.
The Shlesinger-Hughes approach leads to an expansion
similar to Eq. (19) with the difference that H has a
different significance and the coefficient of Ikl is a
periodic function of lnl kl. In our opinion this periodicity

is due to the fact that the Shlesinger-Hughes transforma-
tion has a discrete nature, whereas in our case the renor-
malization transformation is defined in terms of a con-
tinuous variable, the time of clustering. Although more
simple, our equations still preserve the basic features of
the renormalization process.

We have considered here only the space scaling. How-
ever, the method could be extended to other random vari-
ables as well. The time scaling seems to be more difficult
while in this case we should consider the time interval re-
quired for the occurrence of different jumps.

The main idea of this paper is that the renormalization
could be described in terms of clusters of jumps of vari-
able size n obeying a certain probability density g(n).
The evaluation of g(n) is not necessarily related to a
continuum-time description. Unfortunately, in the case
of a discrete representation the computation of g(n) is
more complicated. However, we can distinguish at least
two different types of discrete models for which the func-
tion g(n) can be evaluated analytically: (a) the clustering
of jumps may be described by a hierarchical process; (b)
the clustering can be considered as a branching process.
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Although more complicated, the discrete approach has
the advantage that it can be applied directly both to
space and time scaling. This method is planned to be
presented elsewhere.
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