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Thermodynamic g functions for Ising models with long-range interactions
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The use of cycle expansions for spin systems with long-range interactions is explored numerically. It
is found that the thermodynamic g function is an eff'ective tool, both in practice and in principle, for the
study of Ising models with power-law interactions. To deal with phase transitions the cycle expansion is

factorized, and accurate phase-transition points for several power-law models are obtained, together
with other thermodynamic quantities.
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I. INTRODUCTION

Thermodynamic g functions offer an alternative means
for evaluating partition functions in statistical mechanics.
They deal directly with the infinite system and make pre-
cise the intuitive notion of "relevant" configurations. The
application of the g function to evaluate the partition
function is not dependent on any special properties of sta-
tistical mechanics and can therefore be used wherever
partition functions occur formally. This includes the
computation of thermodynamic invariants in dynamical
systems [1,2] and the evaluation of eigenenergies in quan-
tum mechanics [3]. Here we investigate the behavior of g
functions in the presence of a phase transition. Because
phase transitions are better understood in the case of sta-
tistical mechanics, the formalism is developed in that
language.

A thermodynamical g function can be thought of as a
forrnal infinite product over the states of a system in the
grand canonical ensemble. It was introduced by Ruelle
[4] as a generalization of the generating function of Artin
and Mazur [5] for counting periodic orbits in dynamical
systems. Thus it originated as an alternative to the parti-
tion function, but not as a practical method for determin-
ing thermodynamic quantities. The difficulties with the
infinite product were enumerated by Voros [6] in the con-
text of quantum mechanics. The basic problem has to do
with the irregular nature of the convergence of the ther-
modynamic g function, which mimics that of the
Riemann g function, an infinite product involving the
prime numbers [7]. The convergence problem was solved
in the context of dynamical systems by Cvitanovic and
co-workers [2,8,9] by interpreting the various terms of
the inverse of the g function. The inverse g function at
first seems an unlikely object to study, as it becomes a
diverging infinite product at the point of interest to ther-
modynamics. The realization of Cvitanovic was that the
infinite product of Ruelle can be analytically continued
and the power series obtained is the sum of expo-
nentially decreasing terms, and therefore
computationally useful. The analytic continuation—
called the cycle expansion —involves sums of weight as-
sociated with periodic orbits and can be interpreted in
light of Bowen's shadowing theorem [10], where certain

configurations are well approximated by "shadow"
pseudoconfigurations.

Here we develop the g function formalism for spin sys-
tems and apply it to an Ising system with Coulomb in-
teractions. The g function for a system at temperature
I/P and fugacity z is obtained from the exponential of a
variant of the grand canonical partition function

g(z, P)=exp g Z„(P)
n&l n

The formalism proves to have conceptual and computa-
tional advantages over alternative descriptions of models
with long-range interactions.

The conceptual advantage of g functions is that they
deal directly with an infinite system, making them better
suited than transfer matrices for the study of systems
with long-range interactions. They also offer a computa-
tional advantage over transfer matrices. To compute a
thermodynamic quantity from a transfer matrix, its larg-
est eigenvalue must be computed, with the size of the ma-
trix being proportional to a power of the range of the in-
teraction. In modern computers the amount of real
memory limits the size of the matrices that can be han-
dled. With the g function formalism the memory
bottleneck is completely eliminated.

Direct solutions of spin systems with long-range in-
teractions have been obtained by a variety of methods
[11,12], but there is no unified treatment for all models.
A11 solutions require at one point or another a resort to
numerical schemes, and the g function formalism pro-
vides an unified approach to all long-range models and
leads to an efficient numerical scheme.

The motivation for studying a one-dimensional Ising
model with power-law interactions is threefold: it is a
physically interesting model, as it is the basis for the solu-
tion of the Kondo problem, it is related to the behavior of
orbits in Harniltonian systems that are in the stochastic
region but close to the periodic islands; and it is an exam-
ple of a model with a phase transition. Polynomial in-
teractions are also the most difficu1t to handle numerical-
ly.

In Sec. II we develop the basic formalism of g func-
tions for spin systems. The emphasis wi11 be on one-
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dimensional long-range models, but the formalism is

directly applicable to other spin systems in more than one
dimension (see Mainieri [13]). In Sec. III the formalism is

applied to the one-dimensional Ising Inodel with
Coulomb interaction. The free energy, the phase-
transition temperature, and the heat capacity are ob-
tained using the cycle expansion. The g-function
methods are compared to transfer matrices away from
the phase-transition point in Sec. IIIA and it is shown
that even away from the transition point it is difficult to
extract reliable numbers from the largest eigenvalue of
the transfer matrix when the interaction is power law. In
Sec. IIIH some of the results for other potentials are
shown as further illustration of the method.

Z (P)= g e
0 6C„

(2)

with a fixed configuration for the rest of the lattice. The
thermodynamics can be derived from the free energy f
per site in the limit of large sublattices

13f(P)= —lim lnZ„(P) .1

Because in the limit n —+Do the quantity n 'inn is zero
we can subtract this function from the logarithm of the
partition function (3) and write the limit for the free ener-

gy as

Pf (f3)= —lim ln
1 Z„(P)

(4)

We will now consider the generating function for the
quantities Z„(P)/n. Except for the factor 1/n, this gen-
erating function is the grand partition function. We
define

II. BASIC FORMALISM

We will derive the g function for a lattice system where
each lattice site can have a finite number of states, as in
the Ising model where the states are + and —or as in a
lattice gas where the states are 0 and 1 (see also Ruelle [1]
and Cvitanovic [2]). In taking the thermodynamic limit
we will consider the subsets A„of the lattice consisting of
the n sites from 0 to n —1, although different choices are
possible. The Hamiltonian evaluated at a configuration cr

that is restricted to the subset of sites A„ is denoted by
H„(cr) and is usually the sum of pairwise interactions.
The configuration o. is defined for the full infinite lattice,
and not just A„.

The partition function Z„(P) for the system restricted
to the sublattice A„at a temperature 1/P is given by
summing over all the possible configurations C„of the
sublattice

We can then choose a value for z such that each term of
the generating function G in (5) is of order 1 for large n

With this choice of z, which depends on P, the generating
function will diverge. Because all the terms of the sum in
the generating function are positive, one can show that
there is a smallest z for which the generating function
diverges,

zo(P)=inf[z) 0: 1/G(z, P)=0],

and that for all values of ~z~ (zo(P) the generating func-
tion (5) is an analytic function. The positivity of the
terms tells us more: zo gives the asymptotic growth of the
coefficients of the series; that is, there are two constants
independent of n such that for large enough n,

A1zo Z„A 2zo

By comparing this expression with the definition of the
free energy per site (3) we conclude that the radius of
convergence of the generating function, zo, is related to
the free energy by

Pf (P) =lnzo, (9)

which connects the generating function to the thermo-
dynamics of the system.

We will now restrict ourselves to translation-invariant
systems. This means that the interaction between sites is
independent of the position of the site. This excludes sys-
tems that have position-dependent external magnetic
field, for example, but includes the familiar case of the Is-
ing model with a constant magnetic field.

To make explicit the translation-invariant nature of the
system, the energy of a configuration can be written as
the sum of an interaction 4 of one site with all the others
of the lattice. If we do this for every site of the segment
A„ there will be a double counting of the interactions be-
tween different sites. To avoid this we can consider either
half of 4 or we can consider only the interactions to one
side of the one-dimensional lattice. In what follows we
will adopt the second choice and make 4 the one-sided
interaction.

A few common choices for 4 are the nearest-neighbor
Ising model with external magnetic field

4(o „ob ) = Jo,o b+8 —, a, (10)

or the Ising model with exponentially decaying interac-
tion

4(o„o~,. . . )=J g o,a„e
k&1

function Z„(P) will grow exponentially as a function of n,

that is,

Z„(P)~e "~f'~' as n~~ .

G(z,P)= g Z (P),
m&1 m

(5) With the definition of N we can compute the energy
H„of a configuration o when restricted to a segment A„:

where z is the formal parameter of the generating func-
tion. In general, when the thermodynamic limit exists
and the choice of sublattices A„has a vanishing surface-
to-volume ratio (as is the case for segments) the partition

H„(o)= g 4(a k, crk+'&, . . . ) .
0~k (n

(12)

Notice that this expression is not the sum of the interac-
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tion within A„plus the interaction of the sites of An with
the rest of the lattice, but it does give the correct energy
per site in the thermodynamic limit. This unusual choice
of H is convenient when periodic boundary conditions
are used. Also, if 4 is a long-range interaction, the value
of H„depends not only on the values of the sites within

An, but also on the value of the sites outside A„.
When the interactions are short range the effects of the

boundaries are irrelevant for determining the state of the
system, but this may not be the case if the interactions
are long range. With long-range interactions the boun-
daries must be specified in order to compute the energy of
a configuration H„, even when the system is restricted to
a small box. We can evaluate the partition function (2)

by adopting periodic boundary conditions. If there is
only one phase to the system, or we are only interested in
its high-temperature behavior, the boundary conditions
adopted are irrelevant for the thermodynamics. But if
there is more than one phase then which one is obtained
in the thermodynamic limit is a function of the boundary
adopted. In the case of periodic boundaries one usually
obtains a simple average of each of the phases. In the
case studied here the multiple-phase problem will be
solved by isolating some of the configurations (see Sec.
III F).

An alternative way to implement the periodic bound-
ary conditions is to work on the infinite lattice and use
only periodic configurations. For a configuration cr of
the whole lattice we will indicate its period by ~0 ~. As
the term z "exp[ PH„(rr )] app—ears frequently, we adopt
the abbreviation t for it. With this notation the parti-
tion function is

o = ( + + —
) has length 3. The relation between the

weight of t and the weight of t „ is

(15)

/cr/
G (z,P) = (16)

This sum can be grouped by the multiplicity of the orbits.
If the set of all periodic configurations of multiplicity m

that do not differ by a phase is 0', the generating func-
tion is

6= gr+ —,
' gt+-,' gt+

o EQ) cr EA2 cr E-03

Recalling the relation between t „and t we have

t2 t3
G= $ t, + t +

2 3
crt Ql

(r. )' (r. )'
(r )'+ + +

2 3
cr EQl

Next, the Boltzmann factor for all orbits that differ by a
phase is the same, for example, t(++ +& =t( +++]. The
number of times a given orbit occurs in the generating
function (14) is

~
a

~
/m (o ).

We can rewrite the generating function as a sum over
periodic orbits that do not differ by a phase, indicating
the set by Q', by multiplying each factor by the number
of times it occurs in the sum:

2 "Z.=

()o(=n)

(13)

o EQ)

ln(1 t ), —

the z" being there to compensate for the z factor in t .
The summation is over all configurations that have
period equal to n, and this includes the "harmonic" and
"out of phase" orbits. For example, the orbit

+ —+ — is counted as an orbit of period 2, 4, 6,
etc. ; and in each case is counted twice, once for the plus
at site zero and once for the minus at site zero.

The generating function (5) is then

G(z, P)= g—1

n~1 o.

(fcr/ =n)

where we have summed the series. The sum now is re-
duced to the set of orbits that have multiplicity 1 and we
denote this set by P, for prime orbits. We will take as
definition of the g function the exponential of G,

g(z, P)=e "~'= P (1 t )—
cr&P

and by expanding the terms (1—t )
' into power series

we obtain the Euler product form of the Ruelle g func-
tion, but now for spin systems.

The inverse of g can be expanded as a power series of z

(on which the weights depend)

(14) '=1—c,z' —c~z —c3z— (20)

where the last sum is over all possible periodic
configurations on the lattice, a set we indicated by Q.

There are several properties of the Boltzmann factors
that permit the simplification of the generating function.
First, there is a relation between a harmonic orbit and its
"fundamental. " We define the maximum number of
times a shorter pattern needs to be repeated to form the
orbit s multiplicity, and indicate it by m(o ). For exam-
ple, the multiplicity of the harmonic orbit
o =(++—++ —) of period 6 is 2 as its fundamental

which is the Cvitanovic cycle expansion [2] of the Ruelle

g function. The smallest root in absolute value of this
function will always be real, as is stated in a theorem of
Ruelle [1].

III. LONG-RANGE ISING MODEL

In this section we will apply the methods that have
been developed to the one-dimensional Ising model with

long-range interactions. As an example we will use the
model with an interaction falling off as the square of the
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H(o )=—
—,
' g J(Ii —jI)o;o~ (21)

with J(x)=x '. Landau argued that for interactions
that fall off faster than the x there would be no phase
transitions, and that for interaction that fall off slower
than x there would be a phase transition. His argu-
ment left undecided the borderline case J(x)=x
Later Thouless [18] heuristically argued that the border-
line case of inverse square would also have a phase transi-
tion with a discontinuity of the magnetization at the criti-
cal point.

The conjectures of Landau were proven correct by
Ruelle [19],who showed that there is no phase transition
in one dimension for s )2, and by Dyson [20], who
showed that there is a phase transition in one dimension
for s (2. Simon and Sokal [21] have proven results simi-
lar to Ruelle's by following the essence of Landau's argu-
ments. None of these methods was sufficient to settle the
x case. The possibility of a phase transition in the
inverse-square case was studied using the renormalization
group by Anderson and Yuval [22] and proven to exist by
rigorous methods by Frohlich and Spencer [23]. The
conjectures of Thouless were shown to hold (although for
different reasons) by the work of Aizenman et al. [24].

The proofs for the existence of the phase transition for
the inverse-square model are all indirect: the existence of
the phase transition is established by showing that there
is spontaneous magnetization for low enough tempera-
tures, and not by explicitly solving the model. This
makes it difficult to use the proof to develop methods for
evaluating thermodynamic quantities, and only general
techniques are applicable. For most models the thermo-
dynamic average of an observable can be evaluated away
from a phase-transition point by the use of series expan-
sions, transfer matrices, or Monte Carlo methods. Most
numerical methods truncate the interaction J at some
finite range, substituting for it the interaction

J(x) if Ixl r,J' '=
0 iflxl)r. (22)

L

distance, but the techniques are applicable to other long-

range interactions as shown in Sec. IIIH. The one-

dimensional inverse square problem has attracted atten-

tion because of its connection with the Kondo problem
and because of the inverse square interaction being the
borderline case for one-dimensional models having phase
transitions.

The Kondo problem consists of the determination of
the behavior of electrons in a metal with magnetic impur-

ities. At low temperatures the spin of the electron cou-

ples to the spin of the impurities governing the electronic
properties of the metal. Yuval and Anderson [14,15] and

Anderson, Yuval, and Hamann [16] were able to show

that the Kondo problem is equivalent to the study of a
one-dimensional Ising model with a combination of
nearest-neighbor and inverse-square interactions.

There is an heuristic argument, probably due to Lan-
dau and Lifshitz [17],about the occurrence of phase tran-
sitions as a function of the rate of decay of the interac-
tion, for models with Hamiltonians of the form

The quantity r is the range of Jz. This is a good approxi-

mation if the interaction falls off exponentially or faster,
but not if the interaction is power law.

A. Transfer-matrix methods

The general approach to using a transfer-matrix
method for solving a one-dimensional model with long-

range interactions consists of truncating the interaction
at some finite range and exactly solving the truncated
model. By solving the model with ever increasing trunca-
tion lengths, it may be possible to extrapolate the thermo-
dynamic average of interest (for example, the free ener-

gy).
The formalism of transfer matrices is simplified if we

adopt periodic boundary conditions. As the models may
have infinite range interactions, periodic boundary condi-
tions are implemented by repeating a segment of sites A„
to cover the entire line. This is equivalent to assuming
that the model is a segment A„with n sites numbered

0, . . . , n —1, and that all sites calculations are done
modn.

The interaction cannot depend on the site nor on the
relative orientation for the development of the transfer-
matrix approach, and we have indicated this by making
the interaction between two spins depend only on the ab-
solute value of their distance on the lattice, as in (21).
Also the interaction must have a range r smaller than the
size n of the system. The problem is then to compute the
partition function Z„(p) at a temperature I/p in the
thermodynamic limit of n ~ 00. The partition function is
given by considering all possible configurations 0„ in the
lattice A„:

Z (P) y e PH(o)—
crFQ„

(23)

T (p)=5 5 „5„e (25)

With this choice of T the partition function can be writ-
ten as

Z„(P)=trT"(P), (26)

as can be seen from substituting the definitions of T and
the trace in (26) and comparing the result with the
definition of the partition function (23).

To evaluate the right-hand side of (26) one has to sum

We will use the interaction 4 that depends on as many
sites as there are in the lattice A„, the "one-sided" in-
teraction

4(o)=4(a&, crz, . . . , o„)= g J(ll —jl)o&cr, (24)
1(j&n

as it gives the contribution to the Hamiltonian of one site
with all the spins to its right. As we are restricting our-
selves to the truncated interaction of range r, there is no
need to consider more than r + 1 spins in the argument of
4, that is, one can take n =r+1 in its definition. With
this interaction function we define a matrix T that relates
two configurations cr =(o„.. . , o „)and co=(co„.. . , co„)
of r spins
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the eigenvalues of T to the power n. In the thermo-
dynamic limit one will have that the free energy f is
given by the largest eigenvalue of T as in 865— ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

70 I t I I
)

I I I I
)

I I I I )
I I I I8

Pf (P) = —ink, ,„. (27)

As T is a positive matrix it has an isolated largest eigen-
value, which can be obtained by the mapping

860—

1
IU&-(

( (

)TI (28)
855—

between vectors, and its repeated application. It can be
shown that for almost all vectors, the repeated applica-
tion of this mapping will converge to the vector ~A, ,„)
associated with the largest eigenvalue k,„.

This algorithm can be used to efficiently compute the
eigenvector (which is an approximation to the Gibbs state
of the system) and from it obtain the eigenvalue. The
difficulty in implementing the algorithm in a computer is
that the matrix T needs to be stored in the memory of the
computer as its product with the vector

~
v ) is evaluated.

For a general matrix of size m by m, one needs to store
m terms. In general, an interaction of range r requires
that a 2" by 2" matrix be used. A computer with eight
megabytes of memory, using single-precision (four bytes)
numbers, could store the matrix for a range r up to 10.
There are more efficient numerical schemes for obtaining
the largest eigenvalue of a matrix, such as Lanczos's
method [25], that do not require storing the full matrix
for all iterations, but only a few columns of it. In the
sense of efficiency of storage, the choice of the transfer
matrix we have made is optimum, as it is duo-diagonal,
requiring a storage of only 2"+' terms, which is less than
what Lanczos's algorithm requires. This allows the use
interactions with ranges up to 20 in a 8-megabyte
machine.

Memory constraints are the bottleneck for exact
transfer-matrix calculations, and not processing time. A
typical workstation in 1990 (a Sun Sparcstation) can com-
pute the largest eigenvalue of the r =20 case to machine
precision in 20 min. Speed increases of the order of 200
can be expected with the use of a supercomputer.

The rate of convergence of the method used is linear:
one gains a constant number of "digits" per iteration.
The rate of convergence, or how many digits one gains, is
dictated by the ratio of the second largest eigenvalue to
the largest eigenvalue. These only become comparable
near a phase-transition point, and one should expect fast
convergence away from it. For temperatures away from
a transition point typically 50 iteration are sufficient to
attain machine accuracy for the eigenvalue.

In Fig. 1 we have the plot of the free energy for an Is-
ing model with the long-range interaction

850
0

I i i s t I t & s t I s s s s

5 10 15
range

20

FIG. 1. Points represent the convergence of the free energy
for the one-dimensional Ising model with exponential interac-
tions, as in Eq. (29), as the size of the matrix is increased. For
clarity, only the last three digits of the free energy are indicated,
the origin of the plot being 0.732850. The points rapidly con-
verge to a limit.

energy for the interaction

J(x)=x (30)

TABLE I ~ The free energy, computed from a transfer matrix,
for the system with exponential interaction for @=0.5. It
reaches machine precision with a short truncation of the poten-
tial.

Range pf (0.5)

This interaction leads to a model with a phase transition
for P around 1, and in Fig. 2 the free energy has been
computed for the larger temperature of @=0.5. The
slowness of the convergence can be appreciated if we try
to extrapolate the result for the infinite range of the in-
teraction. The extrapolated value is indicated by a dotted
line in the plot. Notice that the large distance between
the actual points and the extrapolated values diminishes
one's confidence on the extrapolated value.

As a test of the extrapolation procedure, and on the ab-
sence of any error bounds on the procedure, we have used
several different procedures to do the extrapolation. We
have used a modified Euler method, and the Levin T and
U transforms (see the review by Guttmann in Dornb and
Lebowitz [26]). The results are indicated in Table II, and
tend to agree with one another.

The slow convergence is not due to the existence of a
phase transition in the model, but just a reAection of the
longer range of the interaction, and we have studied the
model with the inverse fifth-power interaction. In Fig. 3
we have compared the gain in precision of the plotted
points as the range is increased. The precision 6 is indi-

J(x)=e (29)

and computed from a transfer matrix. Notice that there
is no need to extrapolate, as the values obtained are accu-
rate to machine precision. A few values for @=0.5 are
given in Table I.

The same does not happen if instead we use a power-
law interaction. In Fig. 2 we have the values of the free

4
6
8
10
12
14
16
18

0.732 854 740 737 943 3
0.732 864 823 174496 5
0.732 865 007 715 138 1

0.732 865 011095 032 8
0.732 865 011 1569390
0.732 865 011 1580709
0.732 865 011 158 098 2
0.732 865 011 158072 3
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1.16

1.14

I I ) l I I I
i

I I I I
/

I I I I 0 I I I I
I

I I I I
I

I2 I I I I I I I I

1 ~ 12
LA~ 1.10
CQ.

1.08

1.06

10—
CI

~ ~ ~
~ ~

~ ~

~ ~

~ ~ ~ ~ ~

1.04 I I I I I I I I I I I I I i I I I

5 10 15
range

20
0 I I I

0
I I I I I I I I I I I I I I I I

5 10
n

20

cated by the number of unchanged digits:

b(n)=log, o[f„(0.5)—f„,(0.5)] . (31)

B. Cycle expansions

The long-range Ising model with x interaction and
Hamiltonian

FIG. 2. Free energy for the Ising model, but now with
power-law interactions. Notice that there is a large distance be-
tween the last computed point and the limit indicated by the
dotted line.

FIG. 3. Rate at which digits are gained as a function of the
range n in the computations of the free energy for different in-

teractions with transfer matrices. Squares are for the e " in-

teractions, circles for x ', and crosses for x

This interaction requires the knowledge of an infinite
number of sites and in general has to be approximated by
truncation, but in the case of the g-function cycle expan-
sions the configuration is periodic and the value of 4 for
it can be exactly determined. For example, if we need to
determine the value of 4 for the configuration
010101.. . , which has prime period 2, we write

H„(o }=-
i(cp ) I& Jl

j( &i)

(32) 5 5 5
4(0, 1,0, 1, . . . )= + + +

(2—1)' (3—1) (4—1)'

5
@(o,,oz, . . . )= g

, 2 (J —1}' (33)

TABLE II. Three different methods were used to extrapolate
the sequence of points for the power-law interaction: the
modified Euler method and Levin's U and V transforms.

is known to have a phase transition for a temperature P,
in the range from 1 to 2. Anderson and Yuval [22] have
estimated that P, = l.23+0.06 by a renormalization-
group calculation. (They apparently invented the renor-
malization group independently of Wilson for this calcu-
lation. ) In this section we will use the g-function formal-
ism to compute some of the properties of this model. As
we have seen in the transfer-matrix approach, even away
from the phase-transition point it is diScult to obtain
good estimates for the thermodynamic averages.

To develop the cycle expansion for the long-range Ising
model, we need to determine the Boltzmann factors t as-
sociated with each prime periodic configuration cr. This
is done in two steps. First we determine the interaction
function of one site with the rest of the system, and
second we determine the Boltzmann factor by consider-
ing translations of the periodic configuration.

The interaction function 4 of one site with all the oth-
er sites to its right is read from the Hamiltonian to be

1 1 1=—+—+—+
42

1=—4(2)=
24

(34)

That is, the value of 4(0, 1,0, 1, . . . ) can be expressed in
terms of the Riemann g function

14(&)= g
n~1

(35)

@(o„oz, . . . , o,o „.. . }

1
~& ~k ~

z&k&q &0 (k —1+np)

The same can be done for orbits of longer period, but
now the values need to be expressed in terms of the Lerch
transcendental function, defined as

Z
k

4L (z, s, a) = g (36)
k&0 (k+a)

with the restriction that if a term of the sum has k+a
equal to zero, it is not included in the sum. In general, if
(o „o2, . . . , o~ ) is a periodic configuration of period p,
then from the definition of the interaction we can con-
clude that

Method

Euler
Levin U
Levin V

Limit

1.146 92
1.147 28
1.147 26

2
2~k ~p I

1

„)0 [n+(k —1)/p]X

5
QL(1,2, (k —1)/p) .

2~k ~p I
(37)
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As we only consider periodic configurations we will often
denote the interaction function @(oi, o 2, . . . , rr, cri, . . . )

by 4(a'i, o'2, . . . , o'z), leaving it implicit that the prime
period indicated as an argument is to be repeated
indefinitely to obtain the complete argument. The deter-
mination of the numerical value of the Lerch transcen-
dental function does not require the evaluation and es-
timation of the limit of its defining series, as there are
efficient algorithms for evaluating the function.

Once the interaction function can be computed for any
periodic configuration, we can evaluate its Boltzmann
factor

t =z~ exp P g 4(o„o,+i, . . . , 0, +~ i)
1&i & /crj

(38)

The summation rotates the periodic configurations so
that every spin is once the first argument of the interac-
tion 4. For P equal to 1, we would have for the
configuration (001) the Boltzmann factor

z 3e 4(0 0 1 ) +4(0 1 0)+4( 1 0 0)
(001 )

timating the total number of factors as q~+' and by
bounding the number of floating-point operations by
2pq~+'. In an actual program the cycle expansion needs
to be evaluated once for each value of P considered, but
the Boltzmann factors need only be computed once. For
the same precision in the result, the cycle expansion re-
quires less computer time than the extraction of the larg-
est eigenvalue from a transfer matrix.

C. Smallest-root determination

The thermodynamic properties are determined from
the smallest root of the cycle expansion set to zero. A
truncation of the cycle expansion to order z furnishes a
quadratic equation that can be solved to obtain a first
guess to the root, which can then be refined by Newton's
iterative root-finding algorithm. We routinely determine
all the roots, real and complex, to determine if the small-
est root is a multiple or single root, and if it is isolated in
the complex plane.

The cycle expansion for P=O. 5 for terms up to z is

1 —4.55222z+3. 67199z +1.40271z +1.361 35z

z 3e 2.01 (39) (42)

The first few cycles for P= 1 are listed in Table III, from
which the values for any P can be computed by appropri-
ate powers. Given the Boltzmann factors we can com-
pute the cycle expansion:

'(z, P) =1—(to+ t, )
—(to, tot, )—

For calculations the g function is computed for periods
up to 12. To estimate the quality of the root obtained
from the cycle expansion, the root is also computed from
cycle expansions of shorter periods and a plot is made of
how the root is converging. Let N be the largest period
in a given cycle expansion

—
( t ooi + to) 1

—
to t oi

—t i tI )— ' ', (40) '(z, P) = 1 — g c„z" (43)

where we have grouped terms in the powers of z that are
implicit in the t . In practice the cycle expansion is ob-
tained from the Euler product of the g function

(41)

where the factors are multiplied one by one, and only
terms up to the largest period considered are kept. If we
have the Boltzmann factors up to period m then all the
powers up to z are kept in the cycle expansion.

To compute the cycle expansion from the product of n

factors for periods up to p requires less than pn multipli-
cation s, and less than pn additions. An order-of-
magnitude estimate of the total number of operations re-
quired when there are q states per site can be done by es-

TABLE III. The first few cycles for the power-law interac-
tion. The spin-flip symmetric cycles are not listed.

1~k ~N

and call z' '(P) the smallest root of g '=0. In Fig. 4 we

have plotted the successive free energies obtained from
these roots. The points of the plot are a sequence of
numbers and one would like to know the root of the cycle
expansion when all the cycles are considered, which cor-
responds to determining the limit of the sequence of num-

bers as N ~ 00. To accomplish this we can use one of the
many sequence extrapolation methods. We have chosen
to use the Levin U and V transforms and also a modified

I I I I
I

I I I I
I

I I I I
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~ 1.16—
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Weight

1.644 93
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FIG. 4. Dots represent the value of the free energy as ob-

tained from the g function by increasing the number of cycles
considered. The scale of this figure is more detailed than that of
Fig. 2. The dotted line is the numerical limit of the sequence of
free energies.
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Euler method. The Levin transforms have proven suc-
cessful in handling statistical-mechanical models, and
they are well tailored to estimate the partial sums of the
Riemann g function. The Euler method is different from
the Levin methods and it is used as a check. The distance
of the last point of the plot (n =12) we take as an esti-
mate of the order of magnitude of the error in the free en-
ergy. Even though the limit from the cycle expansion
and the limit from the transfer matrix are close, the
cycle-expansion points are closer to their limit than the
transfer-matrix points are. We view this as a sign of the
higher precision of the cycle expansion. These results
take a few seconds of workstation time to obtain (as only
of the order 2' operations are required) and are to be
compared to the transfer-matrix calculations, which
reached the limits of the memory of the workstation after
20 min of computation without attaining the same accu-
racy (see also the discussion in Sec. III A).

One can intuitively understand why the cycle expan-
sion should be more precise. The cycle expansion ap-
proximates the model by considering an infinite subset of
all the configurations and does not introduce abrupt trun-
cations of the interaction. Recall that the cycle expan-
sion was obtained after summing up an infinite subset of
configurations. Also, because the periodic configurations
can be extended to cover an infinite chain, there is no
need to truncate the interaction as in the transfer-matrix
case.

D. Tail resummation

%e can further improve the values obtained by observ-
ing that the coefficients of the cycle expansion, the curva-
tures, are growing (the name curvature was given by Cvi-
tanovic in Ref. [2]). The rate at which the coefficients are
growing is an indication of the type of singularity that the
cycle expansion may have. In Fig. 5 we have plotted the
curvatures c„of (43) as a function of n Their g.rowth
rate can be well approximated by an exponential, and we
shall assume this for the numerical calculations. Away
from the phase-transition point this is a good approxima-
tion.

By assuming that the rate of growth of the curvatures
is exponential we are implicitly assuming that the point
of nonanalyticity is a pole. We can then remove the pole
from the cycle expansion, therefore increasing the radius

will in general have a larger radius of convergence than
' and have the smallest zero at the same point. Even if

we do not locate the pole precisely, we can still remove
most of its effects from the cycle expansion, therefore lo-
cating the smallest root with a higher accuracy.

Adding the term (z —
zp )' to the cycle expansion can be

done by determining the slope of the points in Fig. 5 and
assuming the form

c = pe~"
n

for the curvatures beyond a certain N, that is,

(45)

'((,P) =1— g c„z"—
1+n (N

CNZ

1 —e z
(46)

indicating that the pole is at z =e . Assuming this we
can again repeat the calculation for the free energy as a
function of the truncation of the new cycle expansion of

The results are in Fig. 6, where we have kept the
line that indicates the limit obtained for the cycle expan-
sion without the resummation of the tail terms. The
points are now closer to the previously estimated limit,
and also to the limit one obtains from the Levin U extra-
polation of the new sequence.

In general the quality of the results obtained are a
function of the number of terms kept in the cycle expan-
sion and upon assuming the correct form for the behavior
of the points of nonanalyticity. We have been assuming
that there is one nearby point of nonanalyticity that
determines the radius of convergence and that it is well
isolated from the other points of nonanalyticity that may
exist. The radius of convergence has been assumed to be
determined by the existence of a pole, as is the case for
exponentially decaying interactions (see Ruelle [1]).

The lack of oscillations in the sign of the curvatures c„

of convergence and improving the quality of the zero ob-
tained. Notice that unless the root is at the point of
nonanalyticity the residue of the pole does not affect the
value of the zero. Assume, for example, that we have a
pole at z; then the function

gp (z,p)= & (p)(z —zp)'g (z,p)

(44)
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FIG. 5. Logarithm of the curvatures of the g function.

FIG. 6. Free energy obtained as the number of cycles in-
creases, but now with tail resummation. Squares are the /-
function calculation and circles the transfer matrix.
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is an indication that only one singularity is relevant in the
region of z and P considered. The form of the nonanalyti-
city is difficult to determine numerically, even if we as-
sume it to be a pole. To obtain the order of the pole re-
quires many terms of the series to be determined.

At first we may expect that the essential singularity
that exists in the inverse-square model (see Anderson and
Yuval [22]) manifests itself in the cycle expansion. But
the essential singularity is of the free energy when ex-
panded as a function of the inverse temperature p, and
not of the parameter z.

In determining the derivatives of the cycle expansion,
we wi11 simpify the resummation by observing that there
is a simple dependence on the resummed coefficient and
the (inverse) temperature p, the term e in Eq. (46). The
plot in Fig. 7 is the value of e for different temperatures,
and from the plot we can see that the term can be as-
sumed to be varying linearly with P. We will assume that
the resummation can be expressed by a term of the form

tive equal to zero, but this is more expensive in computer
time) the phase-transition point can be determined to be

p, = 1.1803, with the last digit being numerically correct
within the procedure adopted. If the same calculation is
repeated, but now keeping only cycles up to period 10,
the result is 1.1816. The value of P, is within the value
estimated by Anderson and Yuval of p=c l. 23+0.06.

To estimate the error in the critical temperature we no-
tice that at P= l. 17 the tail resummation technique
breaks down as one of the tail coefficients changes sign.
We will then conservatively estimate the error to be the
difference between the occurrence of the sign change and
the double root, that is, P, =1.18+0.01. This number is
higher than previous numerical estimates (see Bhatta-
charjee [28]), but within the uncertainty of the
renormalization-group estimate of Anderson and Yuval
[22].

F. Factorization of the cycle expansion

CN2

1 —
( A +BP)z

and use it in the cycle expansion.

(47) There is a phase transition in this model that is a
reflection of the spin-flip symmetry of the Hamiltonian.

E. Determination of p,

Up to this point we have assumed that the calculations
were performed at temperatures above the phase-
transition point, but no method has been given for deter-
mining the phase-transition point. The phase transition
occurs at the point where the largest eigenvalue becomes
degenerate, so we shall look for this point numerically.

Once we perform the tail resummation for the g func-
tion the smallest root is simple. As the temperature is
lowered the second smallest root approaches the smallest
and at the critical point they fuse into a single double
root. Both of the roots are within the radius of conver-
gence of the g function and are therefore part of the spec-
trum of the transfer operator, or better, approximations
to the two smallest eigenvalues of the Ruelle-Araki
operator (see Ruelle [27]). In Fig. 8 we have plotted the g
function at a temperature above the phase transition and
at the point where the two smallest roots meet.

By using a root-finding method to locate the point
when the two smallest roots are equal (or the first deriva-
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FIG. 7. Growth of factor e as a function of the inverse tern-

perature p.

FIG. 8. (a) Plot of the cycle expansion with tail resummation

for P equal to 0.5. (b) The cycle expansion, but now for P, . No-

tice that the scales are not the same in both plots.
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For low temperatures both phases coexist for the choice
of periodic boundary conditions, which leads to a double
root in the cycle expansion, degrading the quality of the
numerical ealeulations for low temperatures. To elimi-
nate this problem, we will factorize the g function so as to
eliminate the spin-Hip symmetry. This can be done by
noticing that there are two types of configurations with
respect to the value of the Boltzmann factor: the self-
dual configurations that remain unchanged under spin
Hip, and those that do not. Those that are not self-dual
contribute two identical factors to the product form of
the cycle expansion, and those that are self-dual have an
even number of spin sites and can be factored into the
product of two terms.

The factorization then corresponds to keeping only one
of the two terms that are not self-dual, and the "square
root" of the self-dual configurations. That is, in the fae-
torized cycle expansion substitute

4 I I I
)

I I I I
t

I I I

3—

2

o I i i s

.5
I I i i i i I s s s

FIG. 9. Free energy obtained above and below the critical
point. The curve is smooth in spite of the fact that two different
methods were used above and below the critical point.

(48)

say we want to develop an expansion for the derivative of
the free energy, the energy u

where in the last case the configuration cr is self dual.
%hen the phase transition is a reAection of a symmetry of
the system, this procedure can be justified by directly
block diagonalizing the transfer matrix, see Mainieri [13]
and Cvitanovic and Eckhardt [30].

The factorized cycle expansion can again be
resummed, and the results further improved, although
the factorized cycle expansion without the resurnmation
has an accuracy in the large-P regime comparable to the
resummed cycle expansion in the small-P regime. The
reason for this is that the cycle expansion for small p has
a double root as the smallest zero that gets split when the
expansion is resummed. In the case of the factored cycle
expansion one does no have a double root, but the mono-
tonic growth of the coefficients takes longer to set in.
Any calculation in this model must trade the accuracy of
the tail resumrnation for the gain in accuracy due to fac-
torization.

In Fig. 9 we have plotted the free energy for the system
using both methods: nonfactorized for small p and fac-
torized for large p, and the smoothness of the plot is an
indication of the consistency of the results. The arrow in
the plot indicates the point where the methods were
switched. It is also the phase-transition point and the
point where the curves from the two methods cross.

(p)
d(Pf)

dP
(49)

W'e have to determine the derivative of the free energy,
which in turn is computed from the smallest root of the
cycle expansion zo(P),

dzo

zo(p) dp
(50)

dzp

dP
(51)

The derivatives are evaluated at a given p and for z equal
to the smallest root at that temperature. Given the
derivative we can compute the energy u.

To determine the heat capacity c (p) at inverse temper-
ature p we need the second derivative of the free energy,

As we do not have an explicit expression for the smallest
root, the derivative must be determined implicitly in
terms of the defining equation g '=0. The derivative of
zo as a function of p is computed from the total deriva-
tive with respect to p of the equation g

' =0 from which
we get that

G. Derivatives of the free energy

Given that we can estimate the free energy accurately,
we can now proceed to determine the other thermo-
dynamic quantities. These can be obtained from the
derivatives of the cycle expansion. For example, let us

c(p)=p =p
dp2

2 2
GAP j 8 zQ

zo dP zo dP
(52)

To evaluate this second derivative we need the first and
second derivatives of the sma11est root. Again by implicit
differentiation we get that

ZQ
(53)
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TABLE IV. The critical inverse temperatures for the Ising
model with power-law interaction of the form x', with s the ex-

ponent. The error on all values is of +0.01.

Exponent
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FIG. 10. Heat capacity curve obtained from the g function.
The curve is continuous and the missing part corresponds to the
region where the tail resummation fails.

We only need to compute derivatives in z and p of the
cycle expansion and evaluate the resulting series at the
root for a given p. These new series can again be
resummed just as we did for the cycle expansion.

The results of these calculations are indicated in the
plot in Fig. 10. Notice that the plot of the heat capacity
is not symmetric, as was the plot obtained from Monte
Carlo calculations for the same model [28]. The plot for
the heat capacity actually goes to higher values as we ap-
proach the phase-transition point, but those points
represent variation in p that are smaller than the +0.01
error in the transition point.
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FIG. 11. Heat capacity as a function of the inverse tempera-
ture P for the x interaction.

H. Other potentials

The methods described in the previous section are not
limited to the inverse-square interaction, and can be ap-
plied to any translation-invariant interaction. This would
include other types of power-law interactions, mixtures of
long- and short-range interactions, and modulated in-
teractions. In many of these cases there may be no expli-
cit formulas to obtain the interaction energy of one site
with the rest of the infinite configuration, but as the form

of the potential is known it is simple to develop efficient
numerical schemes to extrapolate partial sums with
machine precision accuracy. (This can be done by sum-
ming the series using the Euler-Maclaurin summation
formula. )

As a form of example, in Fig. 11 we have plotted the
heat capacity curve for the interaction x . The
methods for obtaining the curve are identical to those
used in the inverse-square case. Also as an example we
have listed in Table IV the critical points for several
diferent interactions that are known to have phase tran-
sitions.

IV. CONCLUSION

g-function methods converge faster than transfer-
matrix methods when dealing with long-range potentials,
and as fast as transfer matrices when dealing with short-
range potentials. In both case g functions are a better nu-

merical scheme, as they require a fixed amount of com-
puter memory, the bottleneck of transfer-matrix calcula-
tions, and the same amount of computer time. The im-

provement comes from not neglecting the interactions
beyond a certain range.

The g-function method had not been used previously to
compute thermodynamic quantities when there was more
than one phase present. It has been remarked that g
functions can only be used in the "hyperbolic phase" [9].
But, as we saw in Sec. III F, with the factorization of the

g function it is possible to compute thermodynamic aver-

ages, even if there is a phase transition in the system. A
consequence of factorizing the g function to deal with the
states at low temperatures is that the transition point can
be accurately computed by matching the behavior at low
and high temperatures. In this way the critical points for
the long-range Ising models were determined with higher
accuracy than had been previously done, and the results
show that the transition point is at higher temperatures
than previous numerical estimates.

Given that g functions can successfully deal with phase
transitions, one is now in a position to apply them to the

problem that motivated this work: dynamical systems
with marginal stability points. This is the case for mode
locking or for Hamiltonian systems [31—34]. The prob-
lern there is that the margina1 stability points give rise to
thermodynamics with phase transitions and it becomes
difficult to apply the usual techniques off(u) curves [35],
and previous methods [9] using g functions presuppose
that the phase transition is of first order.
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