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Forecasting on chaotic time series: A local optimal linear-reconstruction method
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An alternative forecasting technique for chaotic time series, based on the optimal association concept,
is presented. The method is applied on series generated by the logistic and Hénon maps, and on experi-
mental data corresponding to rainfall of a storm event. In all three cases the quality of the forecasts is
analyzed in terms of the prediction interval, the length of the historic data available on the time series,
and the dimension of the embedding space. It is shown that the method is capable of producing very sa-
tisfactory short-term forecasts for data sequences of small lengths as they often occur in real experi-
ments. Our results also show that the present technique can be used to discriminate complex signals as-
sociated with deterministic chaos from those of random origin.

PACS number(s): 05.45.+b, 06.50.Dc

I. INTRODUCTION

Frequently, for both the scientist and engineer, the in-
formation available about the system under observation
comes in the form of one, or possibly more, series of
chronological data whose values in the future are to be
predicted with some degree of approximation. A simple
and well-known approach to this problem consists in try-
ing to isolate tendencies, seasonalities, and characteristic
frequencies present in the data, which are then incor-
porated in some dynamical model to simulate the main
trends of the data. In many cases the model is subse-
quently refined through probabilistic considerations with
the assumption that the time series is a realization of
some underlying stochastic process [1].

As an alternative to this classical approach, a variety
of techniques have been developed in recent years to
tackle the problem of forecasting chaotic time series
[2-10]. All these techniques show a characteristic behav-
ior when used to forecast complex time series generated
by some deterministic mechanism. On the one hand,
they produce better results than the standard statistical
models when used to perform short-term forecasting, and
on the other hand, the accuracy of predictions falls as the
prediction interval increases. This is in contrast with the
results found for truly random time series where the ac-
curacy does not depend on the prediction interval.

As it has been suggested in the literature [8,10], these
facts could be used to distinguish, at least heuristically,
deterministic complex signals from some signals which
are of stochastic origin. We are referring, for instance, to
uncorrelated time series or data which cannot be dis-
tinguished from white noise on the basis of its power
spectrum.

In this paper we present a prediction method for deter-
ministic chaotic time series, which also allows one to
detect determinism in complex signals. Unlike other ap-
proaches to this problem, such as dimension measure-
ment [11], which require large data sets [12], our method
seems to produce sensible results even for relatively
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short-time series.

The method described here combines ideas and results
already present in the literature related to this problem
with some basic results familiar in the subject of associa-
tive memories and linear-reconstruction theory. As in
previous forecasting methods for chaotic series, the his-
toric data are used to construct a file of d-dimensional
‘“/delay-register” vectors (x;,x; y{...X; +4—1), Which, for
a sufficiently high value of d, should lie in a geometrical
support diffeomorphic to the attractor of the involved
dynamical system [13,14]. Predictions are made under
the assumption that the coefficients of the optimal linear
association of a vector in terms of its near neighbors are
preserved under the dynamical rule (see Sec. II).

We present the results of some numerical experiments
in which the method is used to forecast series generated
with the logistic map [15], the Hénon map [16], and for
experimental data coming from a storm event previously
reported in the literature [17]. In order to evaluate the
quality of our forecasts, we use some estimators intro-
duced previously in the literature. They are the normal-
ized error used by Farmer and Sidorowich [2] and the
correlation between the observed and predicted values of
each series used by Sugihara and May [8]. In Sec. III we
report how these quantities depend on the number of ob-
servations, prediction interval, and embedding dimen-
sion.

II. LOCAL OPTIMAL LINEAR ASSOCIATION

As in some of the previously mentioned forecasting
techniques, the method that we present here is supported
by the fact that, if a deterministic mechanism governs the
evolution of the system, then, because the data vector will
move on a submanifold of the embedding space according
to a continuous dynamical rule, the future value of a data
vector can approximately be predicted from the evolution
of its nearest neighbors.

Naturally, the relative distances from the vector whose
future value is being forecasted (predictee) to its neigh-
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bors will be changed by the dynamics. Now, if a set of
neighbors, whose evolution is known, is chosen to define
a neighborhood to the predictee, the question is how to
locate the position of the evolved predictee within the
neighborhood defined by the evolved nearest neighbors.

Basically, our prediction technique for chaotic time
series consists in the establishment of an optimal linear
association between the predictee and a set of its near-
neighboring vectors, together with the assumption that
the same linear association holds between the unknown
predicted vector and the transformed vectors of the
neighbors.

Let {X,,X,,...,X.] be a set of n-dimensional vectors
which span a subspace .L CR". An arbitrary vector Y is
uniquely expressible as the sum of two mutually orthogo-
nal projections, one of which is the orthogonal projection
onto the space L. It is easy to see that this projection is
the best linear combination of the X’s which approxi-
mates Y in the sense of least squares. This approximation
of Y defines its optimal linear association with the set of
vectors X. It can be written as ¥,C,V,, where
C,=Y-V,. The dot represents scalar product, and V,, is
a member of an orthonormal Gram-Schmidt basis for the
subspace .L.

The essentials of the application of the concept of op-
timal linear association to the prediction of chaotic time
series can be formulated as follows. According to Takens
[14], if a time series x,X,,...,Xy, ... corresponds to
one of the components of a dynamical system ¢, then it is
a generic property that, for sufficiently high values of d,
the delay-register vectors (x;,x;4+,...,X;+4—;) fallin a
geometric support which is diffeomorphic to the attractor
of the dynamical system. Then, denoting by ¢ such
diffeomorphism, a functional relation of the form

(Xi4jpXidjatr o Xitjra—1)

=f0j(xi,x,-+1,...,xi+d_1) SY

exists where f=¢,po¢ ! is the composition of the in-
volved functions and the index 0j denotes the jth itera-
tion.

In other words, if we have a predictee X, which is a
member of a file of delay-register vectors, the “best pred-
ictor” j units of time later is the jth iteration of the un-
derlying dynamical rule itself. Since in general the rule is
not known, the prediction task consists in finding a suit-
able approximation to it, at least for small values of the
iteration j. In this paper we show that using the local op-
timal linear-association method a very good approxima-
tion is obtained.

In order to construct an approximation to the register
vector X’p to which the predictee X, is mapped by the
dynamical rule, we proceed in the following way. Let
{X1,X5, ..., X} be a set of the vectors nearest to X, (in
the Euclidean distance), obtained from the file of avail-
able or historic delay-register vectors. The number k of
nearest neighbors that we have chosen will be specified
below. Let us denote by §, the vector X, relative to the
centroid R of the neighbor X’s. That is,

k
R=(1/k) 3 X,, £,=X,—R . b))

i=1
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Let also £; be the relative vector from X; to the centroid
(Fig. 1):

£,=X,—R . (3)

The set of coefficients {C,} which defines the optimal
linear association of £, in terms of the §; can be obtained,
as above, by projecting §, on the Gram-Schmidt basis
constructed out of {§;}.

To predict the vector ’?p to which X, evolves after a
time lag, we look at the vectors X;, known to be the im-
ages of the nearest neighbors X; under the dynamical rule
after the same time lag. Let R be the new centroid and
3 , the (unknown) relative vector corresponding to X, i

k
Epzfp—ﬁ, R=(1/k) 3 X, . (4)

i=1
Similarly £; will denote the relative vector (Fig. 1):
E=X-R. (5)

Our fundamental approximation is that the coefficients
C,, which occur in the optimal linear association between
&, ad the set {£;} are equal to C,.

In other words, the vector §P is “reconstructed” ac-
cording to

&E=3C,V,, 6)

where the ¥, are obtained from the &; through an or-
thogonalization process and the index a orders the vec-
tors according to the distances from the corresponding X;
to X,,. It is shown in the Appendix that Eq. (6) is in fact
true up to first order. In other words, to this order of ap-
proximation, the vector reconstructed according to Eq.
(6) gives the exact result.

The procedure followed here has the additional advan-
tage of avoiding the explicit calculation of the corre-
sponding Jacobian matrix through a simple and stable al-
gorithm. This should be compared, for instance, with lo-
cal linear (least-squares) approximations to the dynamics
where conflicting requirements have to be imposed. In
fact, small neighborhoods are needed to ensure good local
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0

FIG. 1. Schematic diagram showing the principles of the
present forecasting method. An optimal linear association be-
tween the predictee and a collection of near delay-register vec-
tors is used to reconstruct an approximation to the image of the
predictee.
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approximations, whereas the stability of the linear rela-
tion between neighbors and their transformations under
the dynamics increases with large neighborhoods.

It is important to remark that although Eq. (6) takes
correctly into account the first-order terms, it contains
also nonlinear terms. Because of this, we refer to Eq. (6)
as a local linear reconstruction instead of a local linear
approximation.

III. RESULTS

A number of numerical experiments were made to test
the forecasting ability of the methodology described
above. These were conducted on the logistic map:

X, 1=4x,(1—x,), @)
the Hénon map,
X, =1—1.4x2+0.3x,_, , (8)

and on a data record of a storm which took place in the
city of Boston on October 25, 1980 [17]. This record con-
sisted of 1990 measurements of the amount of rain falling
at a specific site, taken at equally spaced intervals of 15
sec (see Fig. 2). We chose to analyze this particular data
because it has been suggested by the authors in Ref. [17]
that a low-dimensional chaotic attractor is involved.

In all cases the number k of neighbors was taken ini-
tially as twice the embedding dimension d. This number
seemed to us sufficiently high so as to allow the Gram-
Schmidt procedure an appropriate selection of a basis for
the local subspace. Predictions were made using a fixed
number of previous register vectors as history. The set of
register vectors was updated after each prediction.

In order to have a numerical indication of the quality
of our predictions, the following two quantities were
computed for each run: the centered correlation between
the series of predicted values and the observed values [8],

C= <(xpred_fpred)(xobs_-fobs)> (9a)
= , a
[<(xpred —fpred )2><(xobs_xobs )2 ) ]1/2

and the normalized error [2]
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FIG. 2. Experimental data corresponding to a temporal

record of a storm event which occurred in the city of Boston on
October 25, 1980.
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2\1/2
((xpred —Xobs) )

E= (9b)

( (xobs _fobs )2 > 172

Some qualitative features of our results for the logistic
map are contained in the scatter diagrams of Figs. 3(a)
and 3(b), where predicted values are compared with the
real ones at intervals of 1 and 5 units of time ahead, re-
spectively. It is seen that the prediction quality gets
poorer as the interval of prediction is increased. This is a
general characteristic of chaotic signals and is due to the
presence of positive Lyapunov exponents. This behavior
was not observed when our method was used, for in-
stance, in periodic time series contaminated with a cer-
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FIG. 3. (a) and (b) Scatter diagrams for 500 forecasts of a
1000-point realization of a logistic time series. The prediction
intervals into the future are (a) one and (b) five time steps. The
set of delay-register vectors employed is built out of 500 points
in the series, for an embedding dimension of 2.
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tain amount of noise [8]. This is due to the fact that for
random signals the register vectors do not evolve through
continuous rules, and then near neighbors can evolve,
even at short term, toward rather distant vectors. The
results are depicted in Fig. 4.

It is worth mentioning that if instead of our method, or
similar ones, standard statistical techniques are used,
short-term predictions made on chaotic time series are
found to be poorer essentially because of the absence of
correlation between the values of these series.

In Fig. 5 the behavior of the correlation coefficient be-
tween predicted and real values, for the data of Fig. 2, is
compared with the corresponding coefficients for the
logistic and intermittent maps [18],

X, =1—1.7498x? , (10)

contaminated with a 10% additive noise. It can be seen
that although in all three cases the correlation coefficient
decreases when the prediction interval increases, the
curve falls slower for both the intermittent map and
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FIG. 4. (a) Prediction accuracy as measured by the centered
correlation function C and (b) relative error E as a function of
the time interval. In the figure B corresponds to the logistic
map, + to the Hénon map, and * to a limit cycle of the logistic
map with parameter 3.542 to which a 30% uncorrelated noise
was added. In all cases the embedding dimension is 2. The set
of delay-register vectors employed is built from 500 points in
the series out of which 500 predictions are subsequently made.
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FIG. 5. Correlation function C as a function of the predic-
tion interval for data from a storm event (+) compared to simu-
lations over the logistic map (M) and the intermittent map (%)
contaminated with a 10% additive noise. Both for the logistic
and intermittent maps the embedding dimension is 2, the histor-
ic data contain 500 points, and we make 500 predictions. For
the storm event the embedding dimension is 9 and the number
of register vectors is 800.

storm data than for the chaotic series. For the intermit-
tent map this result follows from the fact that when pre-
dicting the portion of the data corresponding to the lami-
nar regime (period-3 cycle), the correlation coefficient is
independent of the prediction interval. Similar observed
behavior of the correlation coefficients for the intermit-
tent map and storm data suggests that the chaotic behav-
ior reported in this latter case [17] could be of the type of
an intermittent phenomenon. Although this observed be-
havior does not a priori rule out other classes of deter-
ministic dynamics, it is not compatible with the kind of
results obtained, with the present method, for stochastic
processes where the correlation coefficient remains very
small for all forecasting intervals.

As expected, our results show a marked sensitivity to
the number of points taken as the history to effect the
predictions. As this number gets higher, the attractor is
covered with a higher density and so the distance from
the reference vector (from which the prediction is made)
to its neighbors diminishes. This has the effect of im-
proving our linear approximation. This can be seen from
Fig. 6. This effect should be expected as long as the den-
sity of points on the attractor is not so high that the
mean distance between them gets lower than the numeri-
cal resolution, in which case the predictions become dom-
inated by the resolution noise [15]. Finally, this behavior
is not observed for random data because, as there is no
relation between a given vector and its neighbors, there
should be no improvements in the quality of predictions
when the number of points in the history increases.

Figure 7 shows how predictions depend on the embed-
ding dimension d, keeping fixed both the volumes of data
employed and the prediction interval. For small values
of d, the register vectors do not lie in a support
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FIG. 6. Correlation function C as a function of the number
of points taken as history. In the figure * corresponds to a su-
perposition of a limit cycle of the logistic map, with parameter
3.542, and a 30% uncorrelated noise. The symbols B and +
refer to the logistic and Hénon chaotic maps, respectively. In
all cases the embedding dimension is 2 and the time interval is
5.

diffeomorphic to the attractor and consequently do not
represent bijectively the underlying dynamics. This im-
plies that increasing d (from small values to those which
give a diffeomorphic reconstruction of the attractor)
should improve the quality of the forecasting. On the
other hand, the distance between a predictee and its
nearest neighbor is prone to increase when, keeping fixed
the used data volume, d is augmented. This fact has the
effect of deteriorating the predictions. There exist then
two competing effects when the value of d increases up to
the critical value which corresponds to a diffeomorphic
reconstruction of the attractor. Above this value, predic-
tions deteriorate systematically. Again, because of the
reasons already mentioned, this type of behavior is not
observed for random series.
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FIG. 7. Correlation function C is shown as a function of the
embedding dimension d for predictions four steps into the fu-
ture and a 100-point history. The symbols correspond to H,
logistic map with parameter 4; +, Hénon map; and *, logistic
limit cycle, with parameter 3.542, contaminated with a 60% ad-
ditive, uncorrelated noise.
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IV. CONCLUSIONS

We have presented an alternative method of forecast-
ing chaotic time series. It consists basically in establish-
ing an optimal local linear relation between a delay-
register vector and a set of its nearest neighbors. The ap-
proximation we use consists in taking the coefficients of
this local relationship as constants during the desired pre-
diction interval, so that the predicted vector can be easily
reconstructed from the set of transformed nearest neigh-
bors. We have applied the method to a number of in-
teresting typical cases. In all cases the results for short-
term predictions are satisfactory, even for history lengths
as small as 300 values of the series.

The most important features of the method are, first of
all, its geometrical simplicity, a fact that can be translat-
ed to a very simple algorithm and, correspondingly, a
very time-efficient computing code that can be imple-
mented in microcomputers. The forecasting accuracy we
have found using the method described in this paper is as
good as those found with other methods in similar exam-
ples [2,3,8-10]. These other methods are either more
difficult to implement or are more time consuming since
they require a substantially larger data set.

The good accuracy found in short-time series, as those
which often occur in real measuring problems, makes the
method highly suitable for processing experimental data.
There is no need of preprocessing the data in order to
rule out possible seasonalities or tendencies. Finally, the
method makes it possible to discriminate random series
from deterministic ones. This can be achieved by apply-
ing the method over the data set of interest and observing
the behavior of the prediction quality for different values
of the embedding dimension, the length of the history
used to construct the file of delay-register vectors, and
the prediction interval.

To conclude, let us mention a number of possible ways
of improving some of the distinct aspects of the method.
The forecasting accuracy could be improved by adjusting
the coefficients of the local linear relation, after the evolu-
tion, in some more complicated and presumably more ex-
act way. This, however, would require some amount of
previous processing of the data before the method is ap-
plied. A more promising modification could be to estab-
lish a nonlinear local relation, instead of the linear one
adopted here, but in this case it would not be proper to
speak of nonlinear transformations which are optimal in
an absolute sense.
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APPENDIX

In this appendix it will be shown that, up to first order,
the vector Ep can be reconstructed according to Eq. (6).
In fact, the predictee X, =R +§, is mapped by the dy-
namics to
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X,=f%X,)=fUR)+HE, , (A1)

where & denotes the Jacobian matrix. A similar expres-
sion holds for the neighbors of the predictee. It then fol-

lows that, up to first order, R=f%R). Since
§,= 3 C,V,, then
X,~R+ 3 C,dV, . (A2)

Let ¥, =E, be the vector taken as the first member of the
Gram-Schmidt basis for the evolved neighborhood. Then
Vi,=f%R +&)—R~d4V,. The other vectors of the
basis are constructed according to the recursive formula
~ . Bzr
Ve=Ep— 3 (P EQ(V,/IV, 1Y),

a=1

(A3)

which, up to first order, leads to

_ p=1

—[(V-Ep)/ |V, IP1}HV, . (A4)

For locally invertible transformations, in this order of
approximation, the scalar products are invariant. Hence
the term within the curly brackets in the right-hand side
of (A4) is then strictly zero. In any other case this is a
higher-order term. Therefore, ¥3=dV, for all B, up to
first order. Substituting these results in Eq. (4), we see
that Eq. (6) is exact up to this order.
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