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Correlated Suctuations in multielement systems: The stochastic-branching-process model
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A problem of correlated fluctuations in multielement systems is considered in the framework of the
theory of stochastic branching processes and is formulated in terms of a population model. Correlations
have been taken into account by means of the heredity function. An explicit mathematical method is

proposed to solve the problem without referring to the complicated theory of general branching process-
es. Using this method the global statistical properties of the system (e.g., the ensemble average and the
probability of extinction) have been found. Possible applications of the present model are discussed.

PACS number(s): 05.40.+j, 87.10.+e

I. INTRODUCTION

Various multielement systems with a local interaction
of the elements invoking each other are of great interest
for chemistry, physics, and biology. In particular, such
systems are typical objects for investigations in evolution
problems, population dynamics, branching and avalanche
physicochemical processes, heuristic and neural net-
works, in various problems of optimization, etc. [1].

A useful model to study such systems is a stochastic
branching process (SBP). The convenience of the SBP
model is caused by its clearness and by the simplicity of
the mathematical formulation. It allows one to make
conclusions on the global evolution of the system on the
basis of assumptions about its local properties. In addi-
tion, in some cases the inverse problem can also be solved
[2)

One of the features of the SBP model is the existence of
local fluctuations in the course of an elementary act of
the SBP. The importance of fluctuations in the analysis
of the complex behavior of various multielement systems
has been considered in a number of publications (see, e.g. ,
[3] and references therein).

Here we would like to emphasize another aspect of this
problem, namely, the possibility of correlations of such
fluctuations in real multielement physical systems. As far
as we know, Ref. [4] was the first work calling the atten-
tion to this essential aspect of the problem using as an ex-
ample the counting of nuclear decays.

The correlations mentioned above may occur either
due to environmental and other external causes or due to
some intrinsic properties of the elements. This implies
that the SBP model describing these systems should in-
clude the correlations of fluctuations on the microscopic
level.

For further consideration it is convenient to describe
the SBP model in terms of population dynamics. Then it
becomes clear that such fluctuations can result from vari-
ability of individuals in populations while their correla-
tions are due to heredity.

Some attempts have been made to consider such corre-
lations in the framework of the SBP model by introduc-
ing spatial diffusion of the reproducing entities, their mu-

II. MODEL

Consider a number of individuals propagating indepen-
dently from each other. The number of nearest descen-
dants (children) of an individual m is a random number
with a certain distribution P(m), m =1,2, 3, . . . . The
individuals have fixed identical lifetimes, so the process is
considered in discrete time, i.e., the time variable adopts
integer values t =0, 1,2, . . . constituting the generations
of individuals.

Let g, (t) be a numbe. r of descendants (not only nearest
ones) of an initially given ith individual which exist at
time t. Then the total number of individuals at time t is

g(t)=(, (t)+ . +g, (t) (2.1)

given q individuals at t =0.
If P(m) is the same for all individuals, we are dealing

with the simple Watson-Galton branching process which

tual transformations, age dependencies, etc. [5]. Note
that in these cases the local correlated fluctuations of the
reproducing entities number do not result from innate
properties of the entities.

In contrast to these works we present here a variant of
the SBP model in which the correlated fluctuations exist
due to one of such innate properties, namely, the inheri-
tance of fertility. Formally our approach constitutes the
introduction of hereditary modes into the standard
Watson-Galton model [6].

The concrete formulation of the model is given in Sec.
II. In Sec. III we present a mathematical approach to
treat the problem. We conclude that the main trends of
the evolution of the system can be evaluated in the frame-
work of this approach, which is very convenient from the
computational point of view. In addition, for a wide class
of concrete problems our formalism allows one to evalu-
ate the main asymptotic properties of the SBP with
hereditary modes analytically. Section IV contains an

important example which illustrates the application of
the general formalism. Finally, in Sec. V we summarize
the main conclusions following from our investigation
and discuss possible generalizations of the approach
developed.
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is a Markovian chain in terms of g(t) [7].
Now we introduce heredity in the form

(2.2)

and

Z(k, t+1)= g pk(i)[Z(f(i), t)]',
i =0

III. MATHEMATICAL CONSIDERATIONS

The aim of this section is to evaluate iterations of the
first moment (the ensemble average) & g(t) ) and of the ex-
tinction probability po(t)—=P[g(t)=0] of the process
with heredity.

Since individuals breed independently, we assume that
at t =0 there is a single individual with the feature po,
i.e., characterized by the probability distribution P„(m),Pp

where the subscript marks the average value of the distri-
bution. The generalization for an arbitrary number of in-
itial individuals is obvious.

For the first iteration one obtains

po(1) =P„,(0) .
(3.1)

where p, h is the first moment of P of each child of the
parent that has yielded m children. The function f pro-
vides the direct correspondence between the expected
number of grandchildren and the actual number of chil-
dren. We shall call f the heredity function.

Equation (2.2) implies that children inherit the high (or
low} fertility of their parents and the productive branches
obtain a certain preference if f is a nondecreasing func-
tion. Therefore in the following we shall call the process
with the property given by (2.2) the process with heredi-
ty.

For biological and physical systems described by such
a process it is important to evaluate the quantities
characterizing their main evolutionary trends, namely,
the extinction probabilities and the ensemble average of
the number of individuals. In principle this may be done
by means of the formalism on general branching process-
es [8], as the model presented above constitutes a particu-
lar case of such processes. However, the direct applica-
tion of the general formalism to the present model en-
counters essential diSculties.

First of all, the number of possible types of individuals
in our case is infinite. Moreover, the manifold containing
the types is unbounded and the structure of this manifold
is considerably affected by the heredity function. These
circumstances strongly complicate the evaluation of gen-
erating functionals, transition functions, and iterations of
moments in the form presented by Moyal [9], Harris
[6(c}]and others.

In Sec. III we describe a mathematical procedure
which allows one to calculate the main global charac-
teristics of the process with heredity without referring to
the general formalism mentioned above.

Z(k, 1)=P„(0),
(3.3)

where k is a real positive variable.
Noting the independence of the individuals breeding,

expressions (2.2) and (3.1), and using the induction
method for the iterative relations (3.2) and (3.3) one can
directly show that

&y(t)) =F(po, t),
po(t)=Z(po, t),

(3.4)

given the single initial individual with the feature po.
In contrast to the general formalism [10], the relations

(3.2) and (3.3} have appeared to be very convenient for
numerical calculations as well as for the analytical evalu-
ations of trend asymptotic behavior and g dependencies.

For further consideration we shall assume that f is
positive and nondecreasing (except one case discussed
separately), i.e., the productivity is inherited and that P
"conserves the dimensionality, " i.e., that for positive in-
teger v it provides

&m")& =—gmgk(m)=P (k), (3.5a)

where P, is the polynomial of the vth degree of its argu-
ment and

(3.5b)

km
((}k(m)=, exp( —k) (3.6)

satisfies the constraints (3.5). Moreover, for integer
v=2, 3, . . . one obtains

&m )...„.„,=k"+k"-' (3.7)

In the next section we shall use the relations (3.5)—(3.7)
together with (3.2)—(3.4) to obtain asymptotic properties
of the ensemble average and the extinction probability
and numerical results.

Here we would like to note that even when (3.5) is not
valid, numerical results are available by the direct usage
of the iterative relations (3.2) and (3.3) for arbitrary P and
f. Numerical calculations due to (3.2) and (3.3) are trivi-
al by virtue of the simplicity of these relations. When the
constraints (3.5) are satisfied, an analytical investigation
of particular cases is also possible.

IV. EXAMPLE

for noninteger positive v. The "natural" Poisson distri-
bution

F(k, t+1)= g pk(i)iF(f(i), t),
i =0

F(k, 1)=k,
(3.2}

For further consideration let us introduce the functions To exploit our approach for obtaining numerical re-
sults, one needs explicit forms of f and P. These func-
tions are given by the concrete problem. However, in
this paper we are interested only in some typical proper-
ties of the system under consideration. As an example we
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present here the analysis of one specific application,
namely, for a problem of a population growth.

Recalling the illustrative character of the further cal-
culations, we restrict ourselves to the two following forms
of the heredity function:

f (k, g)=gk, (4.1)

(4.2)

where g is a real positive parameter.
Using the relations (3.2) and (3.4) together with (3.5)

for the heredity in the form (4.1) with g & 0 one obtains

Fig. 1(b)]. For (&0 one should redefine the heredity
function f (k, g) in k =0. Defining f (O, g)=0, one ob-
tains the overdrive decrease of & ((t) ) [see Fig. 1(b)].

The extinction probability po(t):—PI((t) =0], obvious-

ly, increases with time and reaches its asymptote
pti

=P—I g( ate ) =0] as is shown in Fig. 2. Since the proba-
bility distribution p„(t)=P [/(t) =n j is defined on posi-
tive integer numbers n, it can be shown that po(t)=1

& g(r) ) tP 5t —. 0.5t (4.3)
20—

for t»1. Moreover, for the Poisson distribution (3.6)
precise iterative relations for & g(t) ) can be evaluated:

(4.4) 10—

L1

& f(r) ) -exp(yt'+Pt), (4.5)

In general, in the long-time limit (actually, as valuations
show, for t & g) the ensemble average for the process with
heredity in the form (4.1) is given by 0 5 10 15

time (generations)

where y -In( and P- In)Mo
—In(.

For g& 1 the relation (4.5) provides the growth of the
ensemble average in time with the rate greater than ex-
ponential. The value g= 1 provides the simple exponen-
tial growth. Note that the simple Watson-Galton process
with P [((oe ) =0]%1 provides an exponential growth of
the ensemble average with the growth exponent y-lnpo
[see Fig. 1(a)]. For 0 & g & 1 the relation (4.5) provides the
decrease of the ensemble average down to zero for t ~ 00

while for short times the increase of the ensemble average
may occur [see Fig. 1(c)]. In this case the increase and
decrease rates are greater than exponential due to (4.5).

Using the relations (3.2) and (3.4) together with (3.5)
for the heredity in the form (4.2) with g & 1 one obtains

In(&f(t)&)

time

P1

&((t))-exp P g exp(yq)
q=0

(4.6)

where y -In( and P- lnpo.
Using the Poisson distribution (3.6) for integer g&1

one can evaluate the precise expression for the ensemble
average:

&g(t)) =p( (pc+1)(tu]+I) (p( +I) (4.7)

For 0 & g & 1 as well as for negative g the evaluation of
the & g(t) ) is available using the expressions (3.2) and
(3.4) while for g & 1 the relation (4.6) is valid

Thus for g & 1 the ensemble average of the process with
heredity in the form (4.2) demonstrates an "overdrive"
(exponent versus exponent) growth [see Fig. 1(a)]. For
g= 1 Eq. (4.2) reduces to the case considered above
[f(k) =k]. For 0& g & 1 the calculation due to (3.2) and
(3.4) shows that &g(t) ) grows slower than an exponent
but reaches exponential growth asymptotically [see Fig.
1(b)]. For /=0 one comes to the set of trivial Watson-
Galton processes (with @=const=l) starting from the
second generation. In this case &g(t)) =const=pe [see

I I I I l I I I I t I I I I

5 10 15
tnne (generations)

FIG. 1. The growth of the ensemble average of the number
of individuals. (a) L 1, heredity in the form (4.1) with (= 1; L2,
heredity in the form (4.1) with g & 1; P, heredity in the form (4.2)
with g&1; W, Watson-Galton process. All dependencies are
plotted in the logarithmic scale. (b) P1, heredity in the form
(4.2) with 0 & g & 1; the dashed line is the asymptote; P2, heredi-
ty in the form (4.2) with /=0. The dependencies are plotted in
the logarithmic scale. (c) L1 and L2, heredity in the form (4.1)
with 0&/&1 (g„&gt2); P, heredity in the form (4.2) with
(&0.
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a=C„(O)
)

FIG. 2. The growth of the extinction probability with time
(qualitative picture).

when and only when (g(t) ) =0. Hence in all cases con-
sidered above providing ( g(t ~ ~ ) )~0 one obtains

pc = 1. In other cases 0 &pc & 1 if P„(0))0.
Using the relations (3.3) and (3.4), it can be directly

shown that pc decreases with the increase of g (if the in-

crease of g leads to the reinforcement of the heredity
function growth rate as it is in our examples). Further-
more, if

f(k, g~ao)~~ for any k )0
then

(4.g)

And if

f(k, (~ac)~const& ~ for sotne k )0
then

po:const&P„(0) .
g~ oo

For instance, for the heredity in the form (4.2) one ob-
tains

FIG. 3. Reaching the asymptotes (dashed line) a by the full
extinction probabilities po with the increase of the g value. L,
heredity in the form (4.1); P, heredity in the form (4.2). Both are
qualitative pictures.

t)f (k, g)
Bk

then the process with heredity provides the growth faster
than the Watson-Galton process. Hence the right-hand
peak of the probability distribution p„(t) of the process
with heredity moves to the right faster than one of the
Watson-Galton process [see Fig. 4(a)]. As follows from
the above considerations, the residual of the peaks veloci-
ties is at least exponential. Thus there is an exponentially
fast "stratification" between the population branches
which are open to correlated fluctuations (variability-
heredity) and those which are not.

When the heredity function provides (g(t)) =const,
the probability distribution p„(t) in the long-time limit
constitutes a certain smooth distribution with the average
value jtto and with 0 &p„(0)& 1 [see Fig. 4(b)].

When ( g( t ~ ao ) )~0 the limit distribution reduces to

(4.9)

Obviously in this case [if $„(0))0]

(see Fig. 3). For the heredity in the form (4.1) the rela-
tion (4.8) is valid and hence po converges to {()„(0)with

the increase of g (see Fig. 3).
Noting the results illustrated in Figs. 1 and 2, we come

to the following qualitative forms of the probability dis-
tribution Jt„(t) in the long-time limit. For both forms of
the heredity function with such a g that provides the en-
semble average growth at t~ 00 one obtains the double
peak distribution [see Fig. 4(a)]. In this case essentially
nonzero probabilities correspond to g(t) =0 and to some
exponentially (or even more) large number of individuals
while the probability of a somewhat intermediate situa-
tion is very low.

The same situation arises in simple Watson-Galton
processes with po) 1. However, if the generalized deriva-
tive of the heredity function

I
I
I
I
I
I 1
t

l
I l

\
II

&f0(~)=~)

FIG. 4. The qualitative form of the probability distribution
p„{t):P[(l t) =n j in the lon—g-time limit. {a)For SBP's provid-
ing the growth of the ensemble average; solid line, the process
with heredity {g&1); dashed line, the Watson-Galton process.
The arrows mark the direction of the right-hand peaks move-
ment. (b) For SBP's providing ( g{t) ) =const.
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where 5;. is the Kronecker symbol.
An interesting feature of the heredity function (4.1)

with 0 & g & 1 is the relay of the increase and the decrease
of ( P t) ). As is clear from the above consideration, this
leads to the relay of probability distributions. First, the
probability distribution similar to that presented in Fig.
4(a} origins and then its collapse to the trivial distribution
of the form (4.9) takes place, which implies the full ex-
tinction of the population. Such a peculiar behavior of
the system is determined by the production of the large
number of low-productive individuals in first generations.
Initially they cause the maximum of ( g(t) ) at some time
t, but they yield few descendants; these, in addition, have
low productivity. That is why the population eventually
comes to extinction.

V. CONCLUSION

The model presented here describes the system with
the local selection of its elements due to a certain feature,
namely, the fertility. The mechanism of the selection is
represented by the correlation of fluctuations postulated
in the model as the intrinsic feature of reproducing ele-
ments. The mathematical formalism developed in Sec.
III allows one to evaluate the main characteristics of the
global behavior of multielement systems with such corre-
lations.

For more complicated forms of correlations, Eq. (2.2}
should be replaced by the general functional equation.
However, if the fertility is inherited, our approach is like-
ly to be valid in this case. Furthermore, one can expect
that the global behavior of the system will be the same as
that described in Sec. IV, where our approach is applied
to one important problem of population dynamics [11].

The existence of local correlated fluctuations
significantly affects the global properties of the system. It
has been shown that these global properties strongly de-
pend on the form of local correlations characterized by
the heredity function. Comparing the illustrative results

presented in Sec. IV with the behavior of various
Watson-Galton processes, one can conclude that the
model presented above provides the greater variability of
evolutionary trends, which are strictly governed by the
heredity function. In most cases the existence of correlat-
ed fluctuations given by such a function in the form (2.2)
leads to the sharpening of two attractors (growth and ex-
tinction) of the system.

As is clear from the results obtained, in some cases
correlated fluctuations can lead the population to the re-
gime of the stationary stochastic process. Furthermore,
the existence of correlated fluctuations can determine the
relay of the "prosperity" and the extinction of the popu-
lation.

Situations similar to those discussed above appear in
various population models taking into account the
influence of the resources provision, concurrent struggle,
environmental conditions, etc. [12]. This implies that the
explicit form of correlated fluctuations in the system
given by the relation (2.2) can be interpreted not only in
terms of intrinsic properties of individuals but also in
terms of the joint effect of innate and environmental im-
pacts. This fact constitutes the evidence of the general
nature of the model presented above.

The approach developed is convenient from the
mathematical point of view. It provides a simple way to
investigate the global behavior of the system using expli-
cit iterative relations (3.2) and (3.3). These relations al-
low one to carry out numerical calculations as well as to
develop various analytical approximations and even pre-
cise evaluations concerning the evolutionary trends of
multielement systems characterized by correlated fluctua-
tions.
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