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Clustering in globally coupled phase oscillators
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A model of many globally coupled phase oscillators is studied by analytical and numerical methods.
Each oscillator is coupled to all the other oscillators via a global driving force that takes the form

g, g(p, ), where g(p, ) is a periodic function of the jth phase. The spatiotemporal properties of the at-
tractors in various regions of parameter space are analyzed. In addition to simple spatially uniform fixed

points and limit cycles, the system also exhibits spatially nonuniform attractors of three kinds. First,
there are cluster states in which the system breaks into a few macroscopically big clusters, each of which
is fully synchronized. Second, there is a stationary state with full frequency locking but no phase lock-
ing. The distribution of phases is stationary in time. Third, in an extremely narrow regime of parame-
ters, a nonperiodic attractor exists. It is found that the cluster state is stable to the addition of weak sto-
chastic noise. Increasing the level of noise beyond a critical value generates a continuous transition to a
stationary ergodic state. In the special case where the nonlinearities in the dynamics involve only first

harmonics, marginal states are observed, characterized by a continuum of marginally stable limit trajec-
tories. These states are unstable under the introduction of noise.

PACS number(s): 05.45.+b, 05.90.+m, 87.10.+e

I. INTRODUCTION

Many systems in physics, chemistry, and biology can
be described as populations of coupled oscillators [1].
Examples are charge-density waves [2], some chemical-
reaction systems [1],and oscillatory neuronal systems [3].
Understanding the cooperative dynamical properties of
such systems is therefore of considerable theoretical and

experimental interest. The conditions under which such
populations exhibit synchronized activity have attracted
renewed attention because of the recent discovery of syn-
chronized oscillatory neuronal responses in the cat visual
cortex [3,4].

Models of coupled oscillators have been studied by
Kuramoto and co-workers [1,5,6] and others [7—9]. It
has been shown that limit-cycle oscillators with weak
coupling can be described by a system of phase oscillators
where each individual oscillator is described by a single
variable, its phase. The form of the phase equations is

where P; denotes the phase of the ith oscillator and co, its
local frequency, i.e., its frequency in the absence of in-

K, =K/N, iWj . (1.2)

In cases of strong interactions between limit-cycle os-
cillators, the simple phase model [Eq. (1.1)] may not be
appropriate. Even within a phase description, one ex-
pects important deviations in the form of nonlinear local
terms [10], as well as interactions that depend on the
states of the interacting oscillators and not just their
phase differences.

In this work we study phase equations of the form

teraction between the oscillators. The last term
represents the interaction between phases. The
coefficients K; are the coupling strengths between pairs
(i,j), I (4)) is a periodic function of P, and P; are fixed
phase shifts. Thus, in the weak-coupling limit, the pair-
wise interaction are synchronizing interactions: They de-
pend only on the phase difference of pairs of oscillators
and tend to pin these differences to the values P;J. Impor-
tant work has been done on understanding the behavior
of such a phase model, including the effect of stochastic
and quenched fiuctuations in the frequencies cv, [1,5—9]
and stochastic external noise [10]. Most of these studies
focus on the mean-field case, where all pairs are interact-
ing with equal strength:
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(1.3)

where f and g are periodic functions. Unlike the model
of Kurarnoto and co-workers, the local phase oscillators
are not simple rotators, but may exhibit a rich variety of
behavior, depending on the structure of f. In addition,
the interaction term is a driving force that does not de-

pend on the phase of the driven oscillators. We will

study only the case of global coupling; i.e., we will as-
sume Eq. (1.2). In our case this implies that the driving
force on each oscillator is equal. We shall focus here on
the long-time behavior of this model in the limit of large

A special case of the phase model [Eq. (1.3)], appropri-
ate for linear Josephson-junction arrays, has been studied
recently [ll]. This case corresponds to f(P}=A sing
and g(P)=cr sing. As we shall find, these special cases
are highly non-generic. This nongeneric behavior may be
associated in part with the generalized time-reversal sym-
rnetry that the above equations exhibit for this choice of
f and g, as discussed in [12]. One of the goals of the
present study is to try to characterize the nature of the
long-time properties of this model for general forms of f
and g, where no special symmetry exists. In particular,
we will be interested in finding whether nontrivial spatio-
temporal structures appear in such a model despite the
global nature of the interaction.

A related model is the globally-coupled-map model
studied by Kaneko [13]. The main difference is that in
our case the local degrees of freedom are much simpler
(in the absence of interactions) and in particular cannot
exhibit chaotic motion. In fact, we find that the
coupled-phase system does exhibit nonperiodic temporal
behavior, but only in restricted regimes in parameter
space. Nevertheless, some aspects of the collective dy-
namics found in the present model occur also in the case
of coupled maps. In particular, we find that the system
often spontaneously breaks into macroscopic clusters of
coherent oscillating phases. These clusters are similar to
the clusters found in [13], for globally coupled logistic
maps, and in [14], for coupled maps in the vicinity of a
single-map period-doubling bifurcation.

The paper is organized as follows. In Sec. II the model
is presented and the different possible attractors of its col-
lective dynamics are characterized. In Sec. III the prop-
erties of several explicit forms of the functions f and g
are analyzed. These forms are characterized by the nurn-
ber of harmonic terms contained in their Fourier expan-
sion. We first study the special case off and g containing
only the first harmonics. In this case a large regime of
parameters exhibits a huge marginality: There is a con-
tinuous manifold of marginally stable limiting trajec-
tories. The marginality is resolved by adding more
Fourier components to the dynamics. We show that, in
the generic case, the system possesses mainly two spatial-
ly inhomogeneous limit-cycle attractors: (1) an attractor
where the phases group in macroscopic clusters, each of
which consists of fully synchronized phases, in which all
the rotators have the same phase, and (2) an attractor
where the oscillating phases form a continuous tirne-

independent distribution. As mentioned above, we also
find, in a narrow regime, attractors characterized by a
continuous nonperiodic time-dependent distribution of
phases. Also, the properties of the simple spatially homo-
geneous fixed points and limit cycles are studied. In Sec.
IV we study the effect of adding external stochastic noise,
analogous to thermal noise. The results are discussed in
Sec. V.

II. MODEL AND THE ATTRACTORS

A. Model of coupled oscillators

f(P)= g A„sin(ng+f„),
n=1

g (P)= g cr „sin(nP+a„).
n=1

(2.2}

Our main quantitative results will be presented for f con-
taining up to three harmonics and g containing only its
first harmonic. On the basis of these results, we will draw
conclusions regarding the generic behavior of a system of
equations of the form (2.1).

An important quantity characterizing the properties of
our system is the single-phase distribution function
defined by

N

Ptv(p, t)=—g 5($ P; ) . —
i=1

(2.3)

We are interested in the behavior of the system in the
limit of large N. The N ~ co limit of P~(P, t ), defined by

P(P, t }= lim P~(P },
N~ oo

obeys the continuity equation [15]

(2.4)

(2.5)

where

co(t)=~ —f P(P', t)g(P')dP' .
0

(2.6)

We consider a system of N oscillators. The state of
each oscillator is characterized by a phase P;, 0 ~ P; (2m. ,
i =1, . . . , N. The state of the system will be described by
the vector P=[P;];, z. The equations of motion
for the phases are assumed to be of the form

N

P;=ro+ f(P, ) ——g g(P. ), i =1, . . . , N, (2.1)
j=1

where f and g are continuous and periodic functions:
f(y) =f(/+2~), g(y) =g(/+2~).

These equations describe a system of globally coupled
oscillators. In the absence of coupling, the (free) motion
of each oscillator obeys P;=co+f(P;). Thus, at large
times, the trajectory of a free oscillator converges to a
limit cycle or a fixed point. The global coupling is an ad-
ditive term which is the same for all the oscillators.

The functions f(P) and g(P) are parametrized by their
Fourier expansions, namely,
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The solution P(g, t ) must satisfy the periodicity condition

P(2', t ) =P(0, t )

and the normalization condition

f dPP(f, t)=1 .
0

It must also be non-negative,

P(g, t)~0, Vg, t .

(2.7)

(2.8)

(2.9)

From the point of view of distribution functions, the
model can be interpreted as a system of particles that
move on the circumference of a circle. The velocity
u(P, t) of a particle with position P depends on its posi-
tion and on the position of all the other particles:

u(P, t ) =to+f(P) f P(P—', t)g(P)dP' . (2.10)
0

The "current" J(P, t ) of particles through a point P is

(2.17)

where the operator L(P ) is

[ [tu(t )+f(P) ]5P(P, t ) ]
a

+ ' f dP'g($')5P(P', t) .

L (P )5P(P, t )=—

(2.18)

The solution of Eq. (2.17) is 5P(g, t ) = V(t )5P($,0),
where the operator V(t) is

V(t ) = T exp f dt'L(P(t'))
0

the system in terms of this function. The temporal evolu-
tion of an infinitesimal perturbation 5P(g, t) of P(g, t) is
given by

J(f, t)=P(f, t)u(f, t) .

B. Stability of solutions

(2.11) This equation can be simplified in two cases: a stationary
distribution, i.e., P(g, t) =P, (P) independent of t, and a
time-periodic distribution. In the first case,

A trajectory po(t) is stable if every suSciently small
perturbation in the initial conditions 5$(0) decays to zero
at large times. Focusing on linear stability, the evolution
of the perturbation 5$(t ) is given by

=M(P, (t ))5$(t ), (2.12)
dt

where the stability matrix M, is

(2.13)

The solution of Eq. (2.12) is 5$(t ) = U(t )5$(0), where the
operator U(t) is

U(t)—= T exp f dt'M($0(t'))
0

(2.14)

The symbol T denotes the time-ordering operator. The
trajectory p(t) is stable if the norm of U(t) decays ex-
ponentially with t.

For two cases, a fixed point and a limit cycle, this sta-
bility criterion can be put in a more explicit form. In the
case of a fixed point, $0(t ) =$0 and

U( )
M(y )f0 (2.15)

Thus the fixed point (FP) is stable if all the eigenvalues of
M have negative real parts. In the case of a limit cycle
with time period T, the perturbation 5$ after n periods
1s

5$(n~T~)=[U(T~)] '5$(0) . (2.16)

The limit cycle (LC) is stable if all the absolute values of
the eigenvalues of U(T ) are smaller than 1, except for
the eigenvalue which is associated with a perturbation 5$
along the limit cycle, which is equal to 1.

When the distribution function P(P, t ) is continuous, it
is sometimes more convenient to discuss the stability of

V(t)=e (2.20)

C. Classification of the asymptotic behavior

At long times the system approaches a limiting trajec-
tory. The limiting trajectory can be an attractor, i.e.,
stable to small perturbations. However, in our model
there are cases where the limiting trajectory is not an at-
tractor, but is marginal to some fluctuations.

The possible asymptotic behaviors of the system at
large time can be classified according to the temporal and
spatial properties of the various limiting trajectories, ap-
proached by the system at large time. The distribution
function of the oscillators in the trajectories can be con-
tinuous or contain a sum of 5 functions in P. Analyzing
the limit trajectories is the main goal of this work.

The possible limiting trajectories that are found in this
system are the following.

1. Fixed point

Fixed points Po satisfy /=0 for /=$0. In general,
many fixed points can exist. For those which are locally
stable, all the eigenvalues of the matrix M($0) are nega-
tive. The simplest attracting FP's are spatially homo-
geneous fixed points (HFP's), i.e., $0;=go. The phase Po
is a solution of the equation

tu+ f (Po) —g(Po) =0 . (2.21)

and the stationary distribution is stable if all the eigenval-
ues of L have negative real parts, except for one eigenval-
ue which is equal to 0. This eigenvalue is associated with
the unphysical perturbation 5P(P, t ) ~ P„which does not
obey the normalization condition (2.8). The second case
is when the distribution function is periodic in time with
a period T . It is unstable if the operator V( T ) has ei-
genvalues whose absolute values are greater than 1.



45 CLUSTERING IN GLOBALLY COUPLED PHASE OSCILLATORS 3519

i i=
a (4o) —a

(((lo) .af ag (2.22}

The other eigenvectors correspond to inhomogeneous
fluctuations, i.e., g~, 5P; =0. Their common eigenval-
Ue p2,

=aV~= a&(((o» (2.23)

has (N 1)-f—old degeneracy. The HFP is stable if p& and

pz are negative. The stability analysis of inhomogeneous
FP's is more complicated. However, in the regimes that
were investigated in this work, the inhomogeneous FP's
are not stable.

2. Limit cycles

In this limit trajectory the system moves periodically
with time period T . There are special important kinds
of periodic attractors.

a. Homogeneous limit cycle [P;(t)=P(t)]. All the os-
cillators are coherent in phase and move together accord-
ing to

In this case the stability matrix M has one eigenvector
that corresponds to a spatial homogeneous fluctuation,
i.e., 5P; =5/, and the corresponding eigenvalue p& is

&,(p)=
to+ f(P)

(2.29)

where v is determined by the normalization condition
(2.8) and co is determined self-consistently from the equa-
tion

CO
—

CO

to+f(P)

The equation of motion of each oscillator is

(2.30)

perturbing the system of N, equations (2.26). In addition,
there are fluctuations that break the clusters. In Appen-
dix A it is shown that the stability conditions associated
with these nonuniform fluctuations are

af(e„(t))
Ik —=f dt &0, k=1, . . . , N, . (2.28}

o 8@k

Note that the HLC is a degenerate case of this limiting
trajectory with N, =1.

c. Stationary distribution. In this state the phases of
the oscillators are smoothly distributed over [0,2n ]; i.e.,

there are no macroscopic clusters, and the continuous
distribution is constant in time. From Eq. (2.5) one ob-
serves that the general form of such a stationary distribu-
tion (SD) is

4=~+f(0 } g(4)— (2.24) 0; =~+f(4;) (2.31)

Note that for given f and g, the homogeneous limit cycle
(HLC) and HFP do not coexist. In Appendix A it is
shown, using Eq. (2.16), that the stability condition of the
HLC, computed by integrating the nonuniform fluctua-
tions along one period T of the trajectory, leads to

ud af(p(t))
o dy
2n af (p)

o a0 to+f (4) g(0)— (2.25)

N

~'k =~+f(@k)—g e,g(4, ), k=1, . . . , N, , (2.26)
j=1

where e N is the number of oscillators in the jth cluster
and

N

E'~ =1
j=1

(2.27)

For stability analysis two kinds of fluctuations should be
taken into account. There are fluctuations that keep the
cluster state, but perturb the coordinates Nk of the clus-
ters. The stability of these fluctuations is investigated by

b. Cluster states. The system breaks into N, clusters.
Within each cluster the phases of the oscillators are the
same, but the phases between different clusters are func-
tions of time. A state is termed a cluster state if N,
remains finite as N~~, and it is inhomogeneous if
N, & 1. Thus the number of oscillators in each cluster is
macroscopic. In the cluster state the distribution func-
tion is a sum of N, 5 functions, represented by their
phases @k. These phases evolve according to

Thus all the oscillators move periodically with the same
frequency. Generally, the phase difference between two
oscillators changes with time. The number of solutions
of Eq. (2.30) and the stability of the corresponding SD de-

pend on the functions f and g.
Using the language of "currents, " it is seen from Eqs.

(2.10) and (2.11) that the particles' current J(g, t) in the
SD state for any point on the circle does not depend on
space and time: J(g, t)=J. This is the condition for a
steady state.

d. Other periodic continuous distributions. There are
additional limit trajectories whose distribution functions
are continuous in (t and periodic in t The oscilla. tors are
periodic in t with the same period.

3. Nonperiodic trajectory

Nonperiodic behavior is observed in a small regime in
the parameter space that defines the functions f and g
(see Secs. III B and III C). The nonperiodic limit trajec-
tories are either quasiperiodic or aperiodic, but this
remains to be determined conclusively.

4. Quasiperiodic trajectory

In a special case (see Sec. III B), quasiperiodic limit tra-
jectories have also been found.

It is convenient to use global order parameters in order
to characterize the dynamical behavior of the system.
Possible order parameters are the coefficients of the
Fourier series of the distribution function. We use main-
ly the first Fourier component Z, which is defined as
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Z(t)—:—g e ' =f dPP(g, t)e'~ .
N, i o

(2.32)

In the cases of FP and SD, Z converges to a point in the
complex plane. Generally, when the distribution depends
on time, Z is also time dependent. In the case of the
HLC, the limit trajectory of Z in the complex plane is a
unit circle.

D. Numerical methods

In most cases the study of the present system requires
the use of numerical methods. Two types of numerical
studies have been used in this work: simulations of net-
works with N oscillators by numerical integration of the
system of Eq. (2.1) and numerical solution of the con-
tinuity equation (2.5). Simulations of Eq. (2.1) have been
performed by integrating the equations of motion with a
fourth-order Runge-Kutta algorithm. The time step At
was chosen to be 0.01 for co= 1 [6]. We have checked
that decreasing the time step does not significantly affect
the results. Networks of 100—10000 oscillators were
considered, but it was verified that in general reliable re-
sults are obtained already with a network of 100 oscilla-
tors. The initial conditions of the oscillators were chosen
randomly according to three possible initial distributions
of the oscillators phases: (1) uniform distribution, (2)
sharp Gaussian distribution with standard deviation 0.05,
and (3) distribution with several (two to five) sharp
Gaussian peaks, all of them with a standard deviation
0.05.

We have also solved numerically the continuity equa-
tion. Besides reconfirming the results of the simulation,
this numerical method helps us to understand what hap-
pens to the system in the limit E~~ and eliminates the
influence of finite-size effects. Equation (2.5) was solved
in Fourier space [10]. The infinite set of ordinary
differential equations for the Fourier components of the
distribution was truncated. We obtained a finite number
of equations and solved them by using a fourth-order
Runge-Kutta method [10]. The validity of the truncation
was checked by comparing the results obtained by taking
into account different number of Fourier components. It
is clear that such a truncation is not justified when the
distribution function has one or more 5-function peaks,
as in the case of the HFP or cluster LC's. However,
when the limiting distribution is smooth in P, this
method gives reliable results that are in good agreement
with the simulations.

(3.2}

In this section we will discuss the case +%0. The case
a =0 is special and will be discussed in Sec. III B.

For all values of the parameters, there exists either a
homogeneous FP (HFP} or a homogeneous LC (HLC).
Equation (2.21) for the HFP (P; =go) becomes

sin($0 —P) = ——, (3.3)

where

A =(A —20 A cosa+o2)'i

o sina
tI}=arctan

A —o. cosa

(3.4)

(3.5)

o cosa & A —co (3.6)

or if

cr coscx & A+co and o. &0 . (3.7)

In the domain where this FP does not exist, a homo-
geneous LC exists. The stability condition [Eq. (2.25)] is
found to be

A cos(j}

a+A sin

cT sina&0 .
A (co —A )'

(3.8)

Thus the stability condition is

o &0. (3.9)

Besides the FP and HLC, the stationary distribution
state may also exist. This distribution (2.29) has the form

&,((t)=
co+ A sin(P)

(3.10}

Using Eqs. (3.10), (2.30), and (2.8), one obtains

(-2 A 2)1/21

2m
(3.11)

A homogeneous FP exists outside the ellipse
A —2Ao cosa+o =co . Equation (3.3) has two solu-
tions, but only one of them is stable to uniform fluctua-
tions. Using Eqs. (2.22) and (2.23), one can show that sta-
bility to both uniform and nonuniform fluctuations
occurs if and only if

III. SOME SPECIAL CASES OF fAND g

oco=co+(co 27tv) cosa (3.12)

Equations (3.11) and (3.12) have a solution with co )0 if
A. Case I: f(P)= A sin(P ),

g((}})=cr sin((}}+a)

As a first case, we consider the situation where both f
and g contain only the n = 1 Fourier component:

or

o. cosa) A —cu and o. cosa) 0

co &o cosa&0 .

(3.13)

(3.14)

f(P)= A sin(P), g(P)=o sin(/+a) . (3.1)

By changing the normalizations one can always redefine
the problem such that

Note that c0 has to obey the inequality
co —[o cosa( ~co~co+)o cosa( [see Eq. (2.30)]. From the
stability analysis of the SD, reported in Appendix B, it is
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found that the SD with a positive 6 is marginal in the re-
gime

o. )0 . (3.15)

marginal
regime

(a)

(b)

marginal
regime

HFP

FIG. 1. Phase diagram of the model defined in Eq. (2.1),
where co=1, f(P)= A sin(P), and g(P)=o sin(/+a). In the re-
gime denoted by "HFP," the HFP exists and is stable. The
HLC exists and is stable in the regime denoted by "HLC." In
the marginal regime the SD exists and is marginal. (a) a=+/4.
(b) a=a./2. The solid circle represents the parameters chosen
in Fig. 4. (c) a=0. On the left side of the dashed curve, both a
stable HFP and a marginal SD exist.

In this regime all the eigenvalues of the stability operator
L are pure imaginary except two complex conjugate ei-
genvalues that have negative real part [as shown in Fig.
7(a)]. Besides this SD, there exists another SD with nega-
tive co if o cosa) A +co. However, this SD is always un-
stable. The regime where a marginal SD exists is termed
in the following as the marginal regime. The different re-
gimes are displayed in Fig. 1(a) for a=m/4 and in Fig.
1(b) for a =n. /2.

There are also cluster states for all arbitrary N, ) 1.
For each N, there is a regime of e for which a solution
exists. It was found that the N, clusters (with N, ) 1) ex-
ist only in the marginal regime. These cluster states were
found numerically to be stable to intercluster Auctua-
tions. The stability of a cluster state to intracluster Auc-

tuations was found by calculating the N, integrals [Eq.
(2.28)], which become

T
Ik= f dt cos[4k(t)], k=1, . . . , N, .

0

The trajectory cannot be expressed in an analytical closed
form, and we are only able to compute this integral nu-

merically for particular values of the parameters A, cr,
and a in the marginal regime. In all the cases we have
considered, we have shown that the N, clusters are mar-

ginal; i.e., all Ik vanish, as long as there is no cluster that
contains more than half of the oscillators, i.e., ek (—,

' for
all k. Otherwise, one Ik is positive and the cluster state is
unstable. For example, the two-cluster state is marginal;
i.e., the integrals I, and I2 are zero, if the number of os-
cillators in each cluster is equal: 61=62.

The analysis that was presented here is linear. Using
it, we can neither find the basins of attractions of the lim-
it trajectories nor find what happens to the system when
we begin with general initial conditions, especially in the
marginal regime. In order to investigate these questions,
numerical simulations of Eq. (2.1) were performed. The
simulation results are characterized conveniently by
measuring the order parameter Z [Eq. (2.32)]. It is found
that in the regimes where the HFP or HLC were stable,
they were global attractors and the oscillators always
converged to them.

The situation is more interesting in the marginal re-
gime. The main result of the simulations in this regime is
that for most initial conditions the system does not con-
verge to one of the above-mentioned limit trajectories.
Instead, the attracting set consists of a manifold of inho-
mogeneous periodic trajectories. The limiting trajectory
depends on the initial condition —different initial condi-
tions usually lead to different trajectories. We can see
that these trajectories are not attractors by letting the
system converge to one of them. Then the values of the
oscillators are changed by a small amount, and the dy-
namics is run again. It is seen [Fig. 2(a)] that the system
converges to another trajectory, which is close to the
original one, but does not coincide with it.

Usually, trajectories are characterized by continuous
distribution functions, which are periodic in time. How-
ever, there can be also mixed states where some (but less
than half) of the oscillators belong to a cluster and the
others are distributed continuously. This can happen, for
example, if the initial distribution has two peaks.

It was found numerically that, in every trajectory in
the marginal regime,

T

f dtcos[P;(t)]=0, Vi . (3.17)
0

However, we do not have any general proof for this re-
sult, except for the case of the SD.

The continuity equation (2.5) was also solved in this
case. Starting from a uniform initial distribution func-
tion in the marginal regime (for instance, A =0.5,
o =0.5, a=n/4), it was f.ound that the stationary distri-
bution is reached asymptotically at long times. However,
for a general initial distribution, the solution of Eq. (2.5)
leads to a distribution which evolves periodically in time,
as shown in Fig. 2(b).

B. Case II: f(f)= A sin(P), g(P)=rr sin(P)

This is a special case of the previous subsection with
a=0. The model with this choice of f and g has been
used to describe a linear series array of Josephson junc-
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tions, in which the load is purely resistive and the capaci-
tance of the junction is neglected [11,12].

The existence and stability of the simple attractors are
found using the formulas developed in the previous sec-
tion. The HFP exists in the regime ~o —A

~
&co and is

stable if o (A —m. The HLC exists in the regime
~tr —A

~
&co, and its stability is marginal there. The SD

with positive co exists if o.) A —co and o. )0 or if
(A —co )/2A &cr &0. From Eqs. (816) and (B20), it is
seen that all the eigenvalues of the stability operator L of
the SD are purely imaginary. Thus the SD is marginally
stable in a/I directions. The region where the SD is mar-
ginally stable is again called the marginal regime. The
N, -cluster states are also marginal, both to intracluster
and intercluster fluctuations. For Sxed values of N, and

ek, k =1, . . . , N„there is a continuum of limit trajec-
tories in the space of the coordinates 4k of the clusters,
which depend on the initial condition. This occurs also
at N =2 and et =a&=0.5, as shown in [12]. The phase di-

agram for this case is represented in Fig. 1(c).
The system was simulated numerically for large X

(100—1000) with initial conditions that are chosen ran-

domly from a uniform or sharp distribution (see Sec.
II D). When the HFP was stable, it was found that the
system converged to it for all the initial conditions that
were checked. Thus the basin of attraction of the stable
HFP for large 1V is very large. This should be compared
to the situation for %=2, where there is a domain of
coexistence of two types of limiting trajectory: a HFP
and nonhomogeneous cycles [12].

The situation is more interesting when there is no
stable HFP. The limiting trajectories of the system are
either quasiperiodic, usually with two basic frequencies,
or aperiodic. This is in contrast to the case a&0, where
the limiting trajectories are periodic. As in the case of
a =0, the trajectories depend on the initial conditions —a
sma11 change in the initial condition causes a change in
the limit trajectory. However, in the a=0 case, even the
qualitative behavior of the limit trajectory may depend
on the initial conditions. As an example, we present the
case of A =0.5 and o =1.0. When the initial conditions
are taken randomly from a uniform distribution of
phases, the limiting trajectory is quasiperiodic with two
basic frequencies, as is shown in Figs. 3(a)—3(c). The
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FIG. 2. Limiting trajectory of the order parameter Z (solid
line) obtained from simulting Eq. (2.1) with %=100. The pa-
rameters co=1, A =0.5, or=0. 5, and a=a/4belong to the mar-
ginal regime [Fig. 1(a)]. The dashed line is the limiting trajecto-
ry that is obtained after changing all the phases by a random
number taken from a distribution with 0.1 rad standard devia-
tion. This trajectory is close to the first one, but they are not
identical. (b) The limiting trajectories of Z obtained from the
solution of the continuity equation (2.5) for three different initial
distributions. The initial distribution is defined by its Fourier
component a„.We chose a„=0for n 4. Initial distribution
with a, =0.2, a 2 =0.2, and a 3 =0.1 leads to the outer cycle; ini-
tial distribution with a I =0.05, a 2 =0.05, and a 3 =0.05 leads to
the middle cycle; and initial distribution with al =a2=a3=0
leads to the stationary distribution represented by the solid cir-
cle.
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27T

0
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FIG. 3. Limit trajectory in the case co= 1, f((I))=0.5 sin(p),
and g(g)=1.0sin(/+a) obtained from simulating Eq. (2.1)
with N= 100. The system is in the marginal regime [Fig. 1(c)].
(a)—(c) The initial conditions are taken from uniform distribu-
tion. (a) The order parameter Z. (b) Poincare section of the
trajectory. It is obtained by plotting the value of Z every time
when the phase II), is zero. The Poincare section is a close line,
implying that the full trajectory is quasiperiodic with two basic
frequencies. (c) Projection of the limit trajectory on the space of
two oscillators PI and P2. (d) —(I) The initial conditions are tak-
en from a Gaussian distribution with standard deviation 0.05.
The motion is aperiodic. (d) The order parameter Z, (e) Poin-
care section of the trajectory, and (f) projection of the limit tra-
jectory on the space of two oscillators (I), and $2.
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Poincare section of Z is a cycle [see Fig. 3(b)]. However,
if the initial conditions are taken from a sharp distribu-
tion with 0.05 rad standard deviation, the limiting trajec-
tory is aperiodic and probably chaotic, as appears in the
analysis of the motion, performed using Fourier trans-
form and Poincare section. This case is presented in
Figs. 3(d) —3(f).

This huge marginality in the case a =0 may be related
to the symmetry of the system (2.1) under the transforma-
tion t + t,——P~~ P

—in the case of f{/)=A sin(P),
g{(())=a'sin(P) [12]. This generalized time-reversal sym-
metry may be the origin of the conservative-type behav-
ior of the oscillators that occurs at some parameters in (at
least) part of the phase space [12]. However, it should be
emphasized that marginality of the limit trajectories ex-
ists also in the case aAO, as observed in Sec. III A, al-
though there is no obvious symmetry in that case.

C. Case III: Resolving the marginality:

fwith three harmonics

The marginality of limiting trajectories in the case
f(P)= A, sin($), g(P)=a, sin(/+a&) is resolved if more
Fourier components are added to the functions f and g.
We have studied in detail the following coupled ordinary
differential equation:

3 0 i
N

P,. =co+ g A„sin(ng;)— g sin(P~. +a),
n=1 j=1

(3.18)

The model (3.18) with Az, A3%0 does not exhibit a
marginal regime, and the system always converges to at-
tractors. In the following we focus our attention on the
values of A „0.&, and a such that, if the higher harmon-
ics vanish, the system would be in the marginal regime.
When the amplitudes of the higher harmonics are small,
the system converges to one of the following attractors:
(1) the cluster state with N, macroscopic clusters, (2) a
periodic state with a stationary distribution, or (3) a non-
periodic state with a continuous distribution. The phase
diagram of the model is represented in Fig. 4, where the
attraction regimes of these attractors are shown. In this
phase diagram we have included only cluster states with
N, ~3.

In general, the cluster state is not unique even for a
given N, . There may be trajectories with different distri-
butions of oscillators between the clusters, i.e., with
different e'J. of Eq. (2.26). The N, clusters are stable to in-
tracluster fluctuations if the largest value of all the in-
tegrals Ik is negative [Eq. (2.28)], and these integrals de-
pend on the fraction of oscillators in each cluster. It was
found in all the cases studied that the maximal integral is
smallest when the number of oscillators in each cluster is
equal, i.e., E; =E/ for all i,j [see Eq. (2.26)]. In the case of
N, =2, the two stability integrals are shown in Fig. 5 vs
~e&

—
e2~ for typical values of the parameters. It is seen

that the large stability integral increases with
~ e&

—
e2~ un-

til it become positive, signaling the instability of the two-
cluster state for larger values of ~E, E2~. Similar results
were obtained for coupled maps [13,14]. We have used

the fact that the N, -cluster state with equal number of os-
cillators has the most stable cluster trajectories, to find
the borders of the regions where the two- and three-
cluster states are stable. Near the border of such a re-
gion, the stability region in the e space shrinks. On the
border the solution with equal ek is marginal and all the
others are unstable.

The stability regions of the two- and three-cluster
states are shown in Fig. 4. There are regions where only
the two- or three-cluster state is stable. There is a region
when both states are stable, and there is a region where
neither one is stable. Stable cluster states with

E, =4, 5, . . . were also found. For example, in most of
the regime where the three-cluster state is stable and the
two-cluster state is unstable, there is a stable four-cluster
state. Numerical simulations of the full system [Eq. (2.1)]
reveal that when the cluster states are stable, the system
converges to them. The system tends to converge to a
cluster state with a minima/ number of clusters if the ini-
tial conditions are taken from a uniform or a sharp distri-
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0.01—

0.005

0

I I I I I I I I I I I I I

-0 1 0 0.1 0.8
Aq

0.0004

A3

(b)

-0.0004

0.07 0.075 0.08
A~

FIG. 4. Phase diagram of the model in the case m=1,
f(P)=g„,A„sin(ng), A, =0.5, and g((I)) =0.5 sin((()+m. l2).
Note that with A2 = A3 =0, the parameters belong to the mar-
ginal regime as seen in Fig. 1(b). The solid line represents the
border of stability of the two-cluster states, the dashed line
represents the border of stability of the three-cluster states, and
the dotted line represents the border of stability of the second
mode of I, the stability operator of the SD. Numbers such as
(2,3) indicate the stable cluster states in each region; the region
where the stationary distribution is stable is labeled by SD.
There is a nonperiodic regime between the solid and dotted
lines. Stable cluster states with 4, 5, . . . clusters may also exist
in parts of the regime of this figure where stable two- or three-
cluster states exist. However, the borders of existene of cluster
states with X, +4 are not presented. (b) shows an expanded
view of the square marked in (a).
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bution with one peak. If a cluster state with higher N, is
stable, the system can converge to it if the initial condi-
tions are taken from a distribution with N, peaks. This
fact indicates that the basin of attraction of the cluster
state with the minimal N, is much larger than the basin
of attraction of the cluster states with bigger N, .

The stability of the state with a stationary distribution
(SD) is numerically studied by calculating the eigenvalues
A,„ofthe operator 1. [Eq. (2.18)]. The eigenvalues can be
ordered according to their imaginary parts. The number
of maxima of both the real and imaginary parts of the
eigenvector as a function of (ti is equal to n. For all the
cases that were studied, it was found that if both Rek2
and Rek, 3 are negative, the real part of all the other eigen-
values is negative too, and the SD is stable. In Fig. 4 it is
seen that the regime in 32- A 3, where the SD is stable, is
inside the regime where the two- and three-cluster states
are not stable. An N, -cluster state is stable only if the N,
mode of the SD is not stable.

From the phase diagram (Fig. 4), it is apparent that
there is a small region between the line where X2=0 and
the line of stability of the two-cluster state. In this area
neither the SD nor the cluster states are stable. Numeri-
cal simulations of the system in this regime reveal that
the trajectory of each rotator, as well as the distribution
as a whole, are nonperiodic in time. This is shown in Fig.
6(a) by plotting points of the trajectory in the Z plane.
The distribution of oscillator phases is represented in Fig.
6(b) for several times. In this case the probability distri-
bution has two peaks, but the attraction among the oscil-
lators at those peaks is not strong enough to generate full
clustering. The Fourier transform of Z(t) or it(t) eixhib-

its two basic frequencies, indicating a quasiperiodic state.
However, the Poincare section is not a line, and so the
motion may have another, very slow, component. There-

FIG. 6. System is in the nonperiodic regime for ~=1,
f(P) =0.5 sin(P) +0.077 sin(2$), and g ((t ) =0.5 sin(i))+ m /2).
(a) The limit trajectory of the order parameter Z for these
values of the parameters and (b) the distribution function in the
nonperiodic regime for several times: t=1 ~ 5X10 (solid line),
t = 1.8 X 10' (dotted line), and t =2. 1 X 10' (dashed line).

fore, it is possible that it is aperiodic and even chaotic.
Since the dynamics in this regime is very slow, more
simulations for longer times are needed for better under-
standing of the temporal structure of this attractor.

We have investigated also, but in less detail, more gen-
eral cases. When more Fourier components A4, A5,
were added to f, but g had only the first harmonic, all the
qualitative results remained valid. When more Fourier
components are added also to g, a cluster state with

N, )3 clusters can have a large basin of attraction and
the system can converge to it, even if the initial condi-
tions are taken from the uniform or sharp distribution.

IV. DYNAMICS WITH STOCHASTIC NOISE

A. Model with noise

i=1, . . . , N (4.1)

where the "temperaturelike" noise j,(t) is Gaussian and
uncorr elated:

(4.2)

In many real physical and biological systems, the dy-
namics is not purely deterministic, but is also affected by
some stochastic noise. Here the effect of white noise on
the behavior of the system of oscillators is investigated.
The equations of motion in the presence of noise are

N

(t,. =~+f(P, ) ——g g(it, )+g, (t),
j=1
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(g;(&)gj(t')) =2T6; J5(t —t') . (4.3)

N

p(p, t )= lim —z 5(p —
p, )),N,

(4.4)

where ( ) means averaging over the noise. This function
I

In contrast to the case T =0, numerical simulation of
Eq. (4.1) is not an efficient method, because one has to
average over many realizations of the noise g;(t ) in order
to obtain a good statistical average. In addition, N must
be large enough. Otherwise, the thermal fluctuations will
cause all ensemble averages to be constant in time and
will destroy ergodicity breaking phases that may exist in
the N~ oo limit. Instead of solving Eq. (4.1) directly, it
is more efficient to study the average single-phase distri-
bution function. This function P(g, t ) is defined as

satisfies the Fokker-Planck equation [15]

8 P—(g, t)+ [[$(t)+f(P)]P(iI), r)]
a

Bt

(4.5)

where co(t ) is defined in Eq. (2.6). The distribution func-
tion should obey conditions (2.7)—(2.9). The Fokker-
Planck equation (4.5) was solved in Fourier space [10].
Substituting

(4.6)

in Eq. (4.5), and using Eq. (2.2) yields an infinite set of
coupled differential equations:

a„=(intro nT—)a„+—g A [(a„+ —a„)cosg +i(a„+ +a„)sing ]2

n——a„g0 [(a —a )cosa +i(a +a )sina ] .
2

(4.7)

From the normalization condition, ao=1. The infinite
set of equations was truncated at some value of n, no,
substituting a„=Ofor n & no. This leads to a finite set of
equations which was solved numerically using a fourth-
order Runge-Kutta method [10]. The Fourier coefficients
a„decay sufficiently fast with n when T&0 because
P(g, t ) is smooth in (ti. Therefore the truncation method
is a good approximation. The validity of the truncation
was checked by comparing the results obtained for
different values of no.

The stationary distribution (SD) is given by the solu-
tion of the differential equation

(4 g)

with the conditions (2.7) and (2.9). The quantities v and
io are calculated from Eq. (2.6) and the normalization
condition (2.8). The methods for evaluating co and v ex-
plicitly and analyzing the stability are of the SD de-
scribed in Appendix C.

B. Effects of noise on the long-time behavior

When N is finite, the system is ergodic, and all
ensemble-averaged quantities are constant in time. In the
limit N~ ao, we still expect the system to be ergodic at
high noise levels. In the ergodic phase, the system will
converge at long times to the SD state. However, this er-
godicity may be broken at low noise level and there may
be a phase transition from a stationary phase to a time-
dependent phase.

For all the parameter regimes, it was found that the
noise tends to stabilize the SD, i.e., decreases the real part
of the eigenvalues of the stability operator L [Eq. (C3)].
At low levels of noise, the behavior of the system depends
on the nature of its state at T=O. Here we discuss our

results for the main three regimes. These results are
based on the numerical solution of Eq. (4.5) and on the
stability analysis for the SD.

2. Marginal regime

In the regime where the SD is marginal at T=O, there
is a phase transition at T, =O and any finite noise stabi-
lizes the SD state, which becomes the global attractor.

In Fig. 7(a) the spectrum of the stability operator L at
finite T [Eq. (C3)] is exhibited for three values of T:
T=O, 1 X 10,and 3 X 10 . It is seen that all the eigen-
values A,+„with n ~ 2, which are marginal at T=O, have
a negative real part at T)O. The real part of the two ei-
genvalues A, +, remains negative when T&0. This sug-
gests that a small amount of noise stabilizes the SD in the
marginal regime. This is corroborated by the results of
Fig. 7(b), where the real parts of some of the eigenvalues
are shown as a function of T. It is seen that Re(A,„)
grows linearly with T. Numerically, we find that, for
small T,

Rei,
„ =const, n ~ 2 .

n T
(4.9)

3. Cluster-state regime

In the cluster-state regime, where the SD is unstable at
T=0, it is unstable also at T & T„where T, )0. There is
a phase transition at the critical noise level T„above
which the SD is the global attractor. Below T, the distri-

1. SD regime

In the regime where the SD state is stable and attract-
ing at T=O, it continues to be the global attractor also at
T&0.
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T
' 1/2

Z„,—= f 'dt~Z(t) —Z~'
Tp 0

(4.10)

where

T
Z= J 'dt Z(t) .

Tp 0
(4.11)

bution P(P, t ) is periodic in time. The cluster structure is
smeared because of the noise. Hence the peaks in P
dependence of P(P, t ) acquire finite width. An example is
shown in Fig. 8(a).

The trajectories of the order parameter Z for some
values of T in this regitne are represented in Fig. 8(b). At
low T the radius of the limit cycle of Z remains finite. It
shrinks to zero as T~T, . The magnitude of the time
dependence of Z is measured by the parameter Z,

„

which measures the rms average of the distance between
a point on the cycle and its center:

Z, ,(T) ~ (T, —T)' (4.12)

Note that this transition is similar to a Hopf bifurcation
[17] in that the frequency of the oscillators remains finite
as T~ Tc.

V. DISCUSSION

The phase model studied here is a generalization of the
model proposed and studied in the context of linear ar-
rays of Josephson junctions [ll], where the local non-
linear function was restricted to f(P)= 3 sin(P) and the
interaction term to g(It ) =o sin(p). In this case there is a
regime where there is no attractor, but rather a continu-
um of marginal limit trajectories. Studying this case, it
has been argued [12] that the nonattractive behavior re-
sults from the existence of a generalized time-reversal
symmetry P~tr Pa—nd t ~ —t, which leads to a conser-

The dependence of Z„,on T is presented in Fig. 8(c).
The results are analogous to a second-order phase transi-
tion in equilibrium statistical mechanics. The order pa-
rameter Z, , vanishes continuously when T increases to-
ward T, . Its vanishing with T near T, from below is con-
sistent with a critical exponent —,, i.e.,
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FIG. 7. Spectrum of the stability operator L for different
values of the noise T. For T=O (solid circles) the system is in
the marginal regime. All the eigenvalues of L have zero real
parts, except two eigenvalues A, +& whose real part is negative.
For T= 1 X 10 (open circles) and T= 3 X 10 (triangle), the real
part of the eigenvalues A,„with n 2 is negative. The change in
the eigenvalues A,+, is small and is not seen in the figure. The
parameters are A, =0.5, o., =0.5, and a&=7T/2. (b) The T
dependence of the real part of eigenvalues A.2 (solid line), A, 3 (dot-
ted line), and A,4 (dashed line) of the stability operator L.

FIG. 8. Behavior of the oscillator system when noise is add-
ed. The system is in the two-clusters regime when T=O.
A& =0.5, Hz=0. 3, $2=0, o, =0.5, a, =m/2, and all the other

and cr„are zero. The critical temperature is

T, =5.885X10 . Above the critical temperature, the SD is
stable. Below it the distribution function is periodic in time. (a)
The distribution function P(P, t ) for fixed t and several values of
T. At T=O the system consists of two clusters, represented by
two 6 peaks. Below T, two peaks with finite width that evolve

periodically in time are found. The distribution function at
T=2 X 10 ( ( T, ) is represented by the dashed line. Above T,
the distribution function is stationary. It is represented for
T=1.0X10 ' ()T, ) by the dotted line. (b) The limiting tra-

jectory of the order parameter Z for some values of T:
T=5 X 10 (dashed line), T=5.5 X 10 (dotted line),
T=5.8X10 (solid line), and T=6X10 (solid circle). (c)
The order parameter Z, , [see Eq. (4.10)] vs T The system un-.
dergoes a second-order transition from a periodic state to a
steady state.
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vative behavior, at least in part of phase space. However,
we have found that the marginality exists also in the case
of f(P)= A sin(P) and g(P)=o sin(/+a) with a@0,
where there is no such symmetry. It would be interesting
to understand the origin of this marginality in the
general-a case.

For functions f and g which include higher harmonics,
the system converges to well-separated attractors. The
differential equations of all the oscillators in our model
are the same, and the coupling has an infinite range.
Therefore, naively, one would expect to find either a com-
pletely hotnogeneous state (e.g., a homogeneous fixed
point or a homogeneous limit cycle) or a completely inho-
mogeneous state, i.e., a state with a stationary distribu-
tion. Such attractors have been actually found. A main
result of our study is that the system often converges to
cluster states, i.e., to partially homogeneous states. The
appearance of cluster states represents a spontaneous
breaking of the spatial symmetry of the system.

Each attractor in the cluster-state regime is, of course,
highly degenerate, as the grouping of the oscillators into
clusters is arbitrary. This degeneracy can be broken by
external inputs whose spatial structure has a significant
overlap with a particular clustering pattern. Thus our
system can recognize and amplify spatial structures in
external patterns. This may give a new insight about the
possible functional relevance of synchronized oscillatory
neural networks [3,4].

Adding noise to the system causes the smearing of the
cluster states. Below a critical value of noise, the state of
the system is nonergodic in the limit N~ao. This is
manifested by the single-phase distribution function,
which is periodic in time, despite the presence of stochas-
tic noise. It has some peaks with finite width in its P
dependence. At a critical noise level, a phase transition
occurs and the distribution function is constant in time.
In the marginal regime, any finite noise causes the sta-
tionary distribution to be the global attractor. Stabiliza-
tion of the steady-state attractor by stochastic noise is
shown also in [16], in the context of Kuramoto's model
[1].

In both the state with stationary phase distribution and
the cluster states, the phases are periodic in time. In a
narrow regime of parameters, there exists a nonperiodic
attractor, characterized by a continuous distribution of
phases that display complex time dependence (see Fig. 6).
A more systematic analysis and more time-consuming
simulations are needed to understand the temporal struc-
ture of this attractor.

It is interesting to compare our model to other models
with infinite-range interactions. Kaneko [13] has studied
chaos in systems of maps coupled by uniform infinite-

range interaction. In these systems the appearance of
chaos is not surprising since the local maps are already
chaotic. Perhaps more relevant to this work are the
chaotic phases found in neural networks [18]and coupled
Ginzburg-Landau oscillators [19],as in both cases the lo-
cal elements are linear elements or limit cycles. Never-
theless, these models differ from the present one in that
they are not spatially uniform. In the case of neural net-
works, the couplings were random; in the Ginzburg-
Landau model, the local frequencies are random. Thus
our model is unique in that it represents a global coupling
between simple oscillators in a uniform system. It is
therefore surprising to find nonperiodic behavior in such
a system.
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APPENDIX A:
STABILITY OF CLUSTER STATES

In order to check if a limit cycle is stable, one has to
find the eigenvalues of the operator U(T~) [Eqs. (2.16)
and (2.15)]. Generally, this is a complicated problem.
The situation simplifies if there exists a set of vectors
[v„]which are eigenvectors of the matrix M for any
point P(t) along the trajectory. The eigenvalues p„(P)
corresponding to these eigenvectors can vary from point
to point. These global eigenvectors span a subspace V~~.

In this basis U(T ) is diagonal in V~~. Its diagonal ele-
ments are

(Al)

M)) M)~ ". M)~

M~ ) M~2 ". MN~

(A2)

The diagonal block Mkk is a ek N X ek N square matrix:

The subspace orthogonal to V~~ is denoted by Vj. Calcu-
lating the matrix elements of U(T ) in this subspace is
still a difficult task.

We apply this method now to the N, -cluster state, with

ekN oscillators in the kth cluster. The matrix M is built
from blocks:

Mkk =
ag (@ )

N ap

af 1 ag 1 ag
ay " x ay " x ay

ag
x ay' "'

1 Bg
x ay

af 1 ag
ap x ap

(A3)
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The nondiagonal block Mk& is a ekN Xe&N matrix which
has all its elements equal to (1/N )(Bg Ii3$)(4( ). Each di-
agonal block is a cyclic matrix and can be diagonalized
by Fourier transform. The mth component of the nkth
eigenvector of the kth diagonal block is

(U„) =exp
2&ink m

ekN

nk=0, . . . , ekN 1,—m=1, . . . , ekN . (A4)

The corresponding eigenvalues of the diagonal block are
p„=(Bf/(}(ti)(4i, ) for 1 ~ nk ~ ekN 1 —and po
=(af /ay}(e„)—(ag ray)(C „).

Corresponding to the block matrix M, we define an N-

dimensional vector Vk" with N, segments, where the kth
segment has ekN components. The components of all the
segments are zero except the component of one segment,
the kth. This segment is equal to one of the vectors v„
with nk 1. The vector Vk' is an eigenvector of the ma-

trix M with an eigenvalue ((tk" =((}f/BP)(4(, ) and corre-
sponds to an intracluster nonuniform fluctuation which
tends to destroy the spatial cluster structure. Using Eq.
(Al), it is seen that it is also an eigenvector of U(T ),
with eigenvalue

(}f(4„(t))
Ik (A5)

0 k

There are N —N, such vectors that span the subspace V~~,

which has N, different eigenvalues. Thus the N, -cluster
state is stable to intracluster fluctuations if, for all the
clusters,

[[co+f(P)]5P(g, t)]a

BP, (P)+ J dP'g(it)')5P(P', t) .

L 5P(g, t )
=—

(B2)

The linear stability of P, (i') depends on the spectrum
of eigenvalues of L. A convenient basis to solve the
eigenproblem for L is provided by the functions e
where

G((t )= J dit)'P, (it)') .

Expanding 5P(i', t)IP, (it)) on this basis

5P(p, t ) + 2;&G(y)

p, (p)

(B3)

(B4)

and substituting in Eq. (B2), one finds that

a„(t) = 2nin va—„(t)+b„g f a (t ), (B5)

where

and

= J
2 dp( )

dP
(B6)

f J dgg(y)P (y)e2wimG(P)

The spectrum of L is found by diagonalizing the matrix
N„

(B7)

where v and co are determined self-consistently from the
normalization condition (2.8) and Eq. (2.30). Linearizing
the continuity equation (2.5) around P, (i'), one writes
i}(5P) Ir}t =L 5P, where the operator L is defined by

Ik &0, k=1, . . . , N, . (A6) N„= 2nin v5—„+. b„f (B8)
In order to compute Ik numerically, we have to know

the trajectory. Thus we integrate Eq. (2.26) numerically
for the N, degrees of freedom, until it reaches the limit
cycle. Since N, is small in our model, this integration is
much less time consuming than simulating the full sys-
tem.

In particular, for one cluster (HLC) there is only one
stability condition that can be written, using (2.24), (A6),
and (A5), as

d()() co A=—+—sing(G) .
dG v v

Therefore

(B9)

In the specific case f(P) = A sing, in which the station-
ary distribution is given by Eq. (3.10), we evaluated the
integrals (B6) and (B7). From (B3) and (B1) one can see
that, in this case,

1-2~ (lf (P)
"0 ay ~+f(y) —g(y)

(A7) P(G }=2arctan
27TV

tan[m(G —G, )]——
N N

(B10)

APPENDIX B: STABILITY ANALYSIS
OF THE STATIONARY DISTRIBUTION AT T=O

The stationary distribution when T=0 is

p( )=
co+f(P)

(Bl}

We do not have a simple way to calculate the interclus-
ter fiuctuations (for N, ~ 2). However, we use the results
of the numerical integration of Eq. (2.26) and say that if
the system of N, degrees of freedom converges to a limit
cycle, it must be stable in the N, -dimensional space of the
clusters, and thus it should be stable in the N-dimensional
space to intercluster fluctuations.

2 tan[/( G) /2]
1+tan [P(G ) /2]
—A +a) sin[2m. ( G —G ) ]

co —A sin [2'( G —0 ) ]
1 —tan [P(G)/2]cos G
1+tan [(t)(G)/2]

(ai —A )' cos2~(G —C)
a —A sin[2m. (G —G )]

(B1 1)

where G, is determined from the boundary condition
P(G =0)=0. Using Eqs. (B10), (3.11), and (B9), one ob-
tains the identities
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where

sin[2m(G —G )], (813)
A 6 A +co —A

)O. (822)

A, +,A, , =—(co —A )'/ [co—(co —A )' ]cosa

arctan[ —A /(co —A )'/ ] .1

2' (814)

f dG e '"
[ro —A sin[2n(G —C)]]

Q) A 0

(
—2niG5 e 2miG5 ) (815)2(-2 A 2)1/2

Since b„=0for in ~%1, the matrix N„has a set of left
eigenvectors ai, ~l ~%1, whose mth components is

ai (m ) =51 . The corresponding eigenvalues are

Integrating Eq. (86) by parts and substituting (813) and
(3.11) in it, one obtains

T '2
—2minG(P)2n dG(rfi)

0 d

If co )0, Eqs. (821}and (3.2) yield o )0. In this case Eq.
(822) is always satisfied if cosa )0. If o )0 and cosa &0,
then Eq. (822) is satisfied if

co ( A —2o cosa) ) A(o cosa —A ) (823)

Using Eqs. (823), (3.12), and (3.11), the following inequal-
ity is obtained:

( A 2+ 2cr cos a 2—A tr cosa )(co —A +2 A cr cosa) '

)2c0( A —o cosa)o. cosa, (824)
which holds automatically because the left-hand side is
positive and the right-hand side is negative. Similar
analysis shows that if 0 & n & ~, the SD with co &0 has al-
ways one eigenvalue with a positive real part. Thus the
two roots of Eq. (820) have a negative real part [in the re-
gime defined in (3.2)] if and only if

i(.1
= 2nivl—, ii~%1 . (816) cr)0 and co)0 . (825)

2rriv+b—,f,
b 1f1-2mtv+ b, f. (817)

The eigenvalues A,+, were calculated explicitly in the
case g(P)=o sin(/+a). Using Eqs. (Bll}, (812), (3.11),
and

2mimG

dG
o co —A sin 2m.G

(-2 A 2)1/2

one can write

'm
co —(co —A )'/

A
m&0,

(818)

—~ m —
le 2m'mG( 2A 2 }-1/2

~m

[io (@2 A 2)1/2]mX, (sina+i cosa), m )0 .
A m+1

(819)

Substituting (815) and (819), it is found that the charac-
teristic equation of matrix (817) is

A, +A,—[co—(co —A )'/ ]sina+ —(co —A )'
A A

X[co—(8 —A )' ]cosa+co —A =0. (820)

The two roots of this equation, A, + &
and A, &, have both

a negative real part if and only if

A, +1+A, 1=——[co—(co —A ) /2]sina&0, (821)

In addition to these eigenvalues, there are two extra ei-
genvalues A,+,. In order to calculate them, one diagonal-
izes the restriction of I. on a supplementary two-
dimensional subspace, which is the matrix

APPENDIX C: THE STATIONARY DISTRIBUTION
AND ITS STABILITY AT T)0

BP,(P)+ f dP'g(i'')5P(P', t )

8'[5P(P, t ) ]
Qp2

%'hen TWO it is more convenient to use the standard
Fourier basis than the specific basis that was described in
Appendix B. Expanding 5P(P, t ) in the Fourier basis

5P(i', t ) = g c„(t)e1

n = —oo

(C3)

(C4)

The stationary distribution at finite T is calculated by
solving Eq. (4.8). P, (P) is expanded in the Fourier basis

P, (P) = g E„e1
(C 1)

2K .=-.
Substituting Eq. (Cl) in Eq. (4.8) yields

(co+inT)+ g . (e™E„+—e ™IC„)
m=i

=22rv5„0 . (C2)
This infinite set of linear equations is truncated, and only
n0 modes are kept. The resulting finite set of equations is
solved numerically self-consistently with Eq. (2.6) for co

and with the normalization condition E0=1. The SD is
calculated numerically as follows: Using an initial guess
for co, the distribution is calculated by solving Eq. (C2).
Then a new guess for co is calculated by substituting the
new distribution in Eq. (2.6) and vice versa. The process
continues until co converges to a fixed value.

The stability of the SD is analyzed by diagonalizing the
operator I.:

L 5P ( i', t ) = —
[ [co+f ( P ) ]5P ( P, t ) j

a
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+—g A (e c„+ —e c„)
2

o (e c —e c )K„.
2

(C5)

and substituting Eqs. (C4) and (Cl) in Eq. (C3), we obtain

c„=(in@ —Tn )c„
The infinite-dimensional stability matrix defined by Eq.
(C5) is approximated by a finite truncated
(2no+1)X(2no+1) matrix, where no is the number of
modes that are taken into account. The finite matrix is
diagonalized numerically. We chose no to be 20. It was
checked that increasing no does not change significantly
the part of the spectrum near zero, which is the more
relevant part in the stability analysis.
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