PHYSICAL REVIEW A

VOLUME 45, NUMBER 6

Ionization of H Rydberg atoms: Fractals and power-law decay
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Concepts from the theory of transient chaos are applied to study the classical ionization process of a
one-dimensional model of kicked hydrogen Rydberg atoms. It is proved analytically that for a range of
field parameters the associated classical phase space is devoid of regular islands. In this case, the frac-
tion of atoms Pg(t) not ionized after time ¢ decays asymptotically according to Pp(t)~t~ with
a~1.65. The origin of the algebraic decay can be traced back to the fractal structure of the invariant set
of never-ionizing phase-space points, and is explained by the symbolic dynamics of this system, which
consists of a countably infinite number of symbols. The algebraic decay is reproduced by an analytically

solvable diffusion model that predicts a=%. Replacing zero-width § kicks with smooth finite-width

pulses, a subset of phase space is regular. For this case we observe that Pp(¢) shows a transition between
two power-law regimes with a =~ 1.65 for short times and a~2.1 for long times, where the effect of Can-
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tori and regular islands is felt.

PACS number(s): 05.45.+b, 32.80.Rm

I. INTRODUCTION

Fractal sets [1-3] appear most naturally in dynamical
systems whenever there exists a mechanism that elimi-
nates phase-space points from the region of interest.
Fractal sets were first encountered in dissipative systems
[4,5]. The dissipation is responsible for the shrinking of
the originally occupied phase space to a set of measure
zero (the attractor) which, for nontrivial cases, is a fractal
set [5]. In nondissipative (Hamiltonian) dynamics, fractal
functions appear when phase-space points may leak away
as, e.g., in scattering [6—9], dissociation [10,11], or spon-
taneous decay [12,13].

In the present paper we shall study a system that is
ionized due to the periodic application of an external
force. To gain some insight into the classical ionization
process, consider a set S of phase-space points. To each
point s €S we assign a lifetime L (s), the number of field
cycles needed to promote the point to the continuum. If
the dynamics of the system is chaotic, L (s) will be a frac-
tal function on S [6-11]. This behavior can be under-
stood qualitatively by investigating the lifetime function
L (s) for a special choice of the set S, namely a segment of
a line in phase space. Many physical systems of interest
can be modeled by a driving force that removes a fraction
g of the points in S after the first period, leaving k&
separated intervals in S with a lifetime L longer than 1.
After the next period of the field, the same fraction g is
removed, and k new intervals replace each old interval.
When this process is repeated ad infinitum, one obtains a
lifetime function that is singular on the Cantor set of
phase-space points whose lifetime is infinite. (The canon-
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ical Cantor set [14—16], the “middle-third set,” is ob-
tained for g =1,k =2.) It is clear that the Lebesgue mea-
sure of the set of points which are not removed after N
iterations depends exponentially on N, namely,
Pp(N)=e Nn1=g)ll " A" second characteristic conse-
quence of an iterative application of a time-independent
depletion rule of the type above is that the resulting set is
a scaling fractal, which therefore can be described with
the mathematical concept of a fractal dimension
[1-3,17-19].

Most Hamiltonian systems investigated in the litera-
ture are characterized by a mixed phase space [20,21].
The standard map [22] is the paradigm for this class of
systems. On the other hand, chaotic systems without
regular islands do occur in physical applications [23].
Following the suggestion of the authors of Ref. [23], we
will use the term “‘systems with fully developed chaos” as
a generic name for chaotic systems without regular is-
lands.

The process of depletion of the type described above
belongs to the realm of systems with fully developed
chaos and is exemplified by Smale’s horseshoe mechanism
[20,21]. Realizations of Smale’s model are well known in
chaotic scattering theory [6,7,9], where Smale’s mecha-
nism leads to an exponential decay of phase-space popu-
lation [24,25]. This results in a depletion of all phase-
space points except for a fractal set, the “invariant set,”
which consists of all the trapped orbits of the system. On
the other hand, most Hamiltonian systems that ionize by
an external field are examples of decaying systems with a
mixed phase space [10,11]. Typically, there remains a
rest population of nonzero Lebesgue measure due to finite
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islands of stability, which are surrounded by unbroken
Kolmogorov-Arnold-Moser surfaces. In this case we en-
counter the important class of “fat fractals,” which were
studied intensively in the literature [26—29]. In this pa-
per, however, we will exclusively be concerned with ‘“thin
fractals” whose Lebesgue measure is zero.

Apart from an exponential decay of ensemble popula-
tions and a decay that leads to a rest population of finite
Lebesgue measure, there is a third type of decay which
leaves a rest population of zero Lebesgue measure, but is
nevertheless characterized by an algebraic decay of
phase-space populations [30]. Formally, a decay of this
type can be produced by the fractal-generating process
described in Ref. [19]. It is an explicitly time-dependent
modification of Cantor’s middle-third rule. At every time
step N = 1 one has to take out not the middle third of the
rest intervals, but the middle 1/3N. For large N this
fractal generating mechanism leads to a power-law decay
of the unit interval [19,31]. We  have
Pg(N +1)=(1—1/3N)Pg(N), which, for large N, results
in the asymptotic decay law Pp(N)~N "% with a=1.
Applying to the resulting invariant set the usual
definition of the fractal dimension d, yields d,=1. This
can be reconciled with the zero linear extent of the in-
variant set by noting that, as a consequence of the expli-
cit time dependence of the fractal-generating mechanism,
the scaling symmetry of the fractal set under considera-
tion is broken [19]. Therefore the characterization of the
fractal by d, alone is incomplete. It has to be completed
by additional dimensions d,, allowing for the decay to re-
sult in a rest population of zero Lebesgue measure [17,19]
(see Sec. V). Fractals with the full dimension of the
embedding space but zero Lebesgue measure were also
encountered recently by Lau, Finn, and Ott in the con-
text of chaotic scattering [31] and by Theiler, Meyer-
Kress, and Kadtke in their study of a class of noninverti-
ble mappings [32].

The question arises whether a fractal generating mech-
anism accompanied by a power-law decay can also be
found in physical Hamiltonian systems. In other words,
we ask the question whether Hamiltonian systems exist
that satisfy the following three conditions: (i) the dynam-
ical evolution is fully chaotic inside a region S of phase
space, (ii) S. decays according to a power law in time, and
(iii) the rest population in S is of measure zero. Condi-
tions (i) and (ii) seem to contradict each other. In fact,
there is evidence for the hypothesis that power-law decay
is attributed to systems whose dynamics is regular, and
exponential decay to systems with chaotic dynamics [13].
This assignment, however, cannot be one to one. When
phase space has both regular and chaotic regions, parti-
cles initialized in a chaotic region (and as a consequence
dynamically restricted to the chaotic region for all times)
can “stick” a long time to the vicinity of the boundary of
a regular region. In many cases, the leaking away of par-
ticles from sticky boundaries will give an algebraic decay,
as can be concluded from numerical simulations [33,34]
and from a model of Hamiltonian transport theory
[35-37].

In the following, we shall present an even stronger
counterexample to the suggested assignment of algebraic
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decay to regular dynamics and of exponential decay to
chaotic dynamics. We will present a chaotic system that
does not show any regular regions in phase space, but
nevertheless satisfies conditions (i)—(iii). Furthermore, we
will show that conditions (i) and (ii) are consistent if the
system is described by a symbolic dynamics with an
infinite number of symbols.

Our model consists of a one-dimensional hydrogen
Rydberg atom [38-46] subjected to a train of strong mi-
crowave pulses of zero width. In this case, the dynamical
evolution can be described by a simple analytical map-
ping [47,48], which in Sec. II of this paper is proved to
exhibit fully developed chaos. According to a widely ac-
cepted working hypothesis in chaotic scattering [6-9],
one should therefore expect an exponential decay of
phase-space ensembles [24,25,31]. For a Rydberg elec-
tron whose initial condition is drawn randomly out of a
classical microcanonical ensemble [49], we will show,
however, that the survival probability, Pz(N), i.e., the
probability that the electron is still bound to the atom
after N cycles of the external field, decays as a power of N
under the influence of the periodic & kicks: Pg(N)~N "9,
with a=~1.65.

To investigate this decay phenomenon, we adopt two
types of approach: As long as our interest in the dynam-
ics of a microcanonical ensemble is focused on its Lebes-
gue measure as a function of time, a stochastic decription
is in order. Within this framework, the existence of the
asymptotic power law and the scaling of the decay curves
with the initial energy and the kick strength can be ex-
plained with the help of an analytically solvable model of
a random walk in phase space. The second approach em-
ploys the tools provided by the theory of transient chaos
[9] and chaotic scattering [6-9] in order to study the
structure of the lifetime function which assigns to each
individual phase-space point of the microcanonical distri-
bution its characteristic lifetime L. We will show that
the singularities of the lifetime function form a phase-
space fractal with broken scaling symmetry [19] which
underlies the power-law decay of the ensemble.

We should emphasize that unlike the modified Cantor
process [19] discussed briefly above, the fractal generat-
ing mechanism for the description of ionization in our
model is not an externally imposed rule which depends
explicitly on the “iteration step” N of the fractal generat-
ing process or, equivalently, the sequence number N of
the microwave pulses. On the contrary, in our model the
breaking of the scaling symmetry is generated by the non-
linear dynamics itself. This result, like the consistency of
conditions (i) and (ii), rests on the fact that our system is
described by a symbolic dynamics with a (countably)
infinite alphabet.

The paper is organized as follows. In Sec. II we
present the physical model and derive the mathematical
properties of the mapping which describes the dynamical
evolution of our system. Section III provides numerical
evidence for the power-law decay of a microcanonical en-
semble of initial conditions and discusses the stochastic
model for this decay process. A thorough treatment of
the fractal fluctuations of the lifetime function follows in
Sec. IV. The time independence of the fractal generating
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rule is shown by establishing a symbolic description of
the dynamics which enables us to state the fractal gen-
erating rule explicitly. In Sec. V we review briefly the
mathematics of fractal sets with broken scaling symmetry
[17,19] and calculate explicitly the first logarithmic
correction to the fractal dimension of the hydrogen frac-
tal. In Sec. VI we extend our model to the case of driving
with microwave pulses of finite width and demonstrate
the existence of a transition between two power-law re-
gimes. The paper will be summarized and concluded in
Sec. VII.

II. MODEL

The starting point of our discussion is the classical
one-dimensional model of a periodically kicked hydrogen
Rydberg atom [47,48]:

H=H,— x5, (ot), (2.1a)
2
Ho )= ‘g——i for x >0
ot%oP (2.1b)

o for x <0.

The momentum transfer per kick is B/w, @ is the kick
frequency, and §,,, is the 27-periodic & function. In prin-
ciple, the parameter 8 can take positive and negative
values. In this paper, however, we will restrict ourselves
exclusively to the case B>0. With respect to H,, phase
space is naturally divided into two disjoint subspaces, the
bounded space and the continuum. Points in the bound-
ed space (xg,pp) are characterized by a negative energy
Hy(xg,pp) <0, whereas a point (x¢,pc) in the continuum
satisfies Hy(xc,pc)>0. In the bounded space, the equa-
tions of motion for H|, are solved by a canonical transfor-
mation to action-angle variables [38-43]:

H0=_._l_

72 O =27n—sin(27) ,

] (2.2)
x =2v%in%(n), p=;cot(n) .

The equations of motion for v and © under the action of
H defined in (2.1a) are given by

__OH _ 2
v 30 B8, (wt)vcot(n) , .
)= ——aH = L — 2 .
0=, =5 ~HBsini(n)dy(01) .

The equations of motion (2.3) are invariant under the
scale transformation v—v=v /v, provided that frequen-

cy, interaction strength, and time are scaled according to
[49]
o—wg=ovy, B—By=Bvi t—to=t/v}. (2.4)

Exploiting the invariance of (2.3) under (2.4) it is advan-

tageous to introduce the scaled action
n=Bv/o (2.5)

and the control parameter
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E=p/0* .

Both quantities are invariant under the Coulomb scale
transformation (2.4). Defining the scaled time

(2.6)

= gwt , (2.7)

the following set of equations of motion for the scaled ac-
tion »n and the angle © can be derived from (2.3):

%=énzcot(n)ﬁzﬂ(7/§) ,

46 1 4 (2.8)
a9 _1 _4n .2

dr a3 & sin“(1)8,,(7/§) .

Alternatively, the equations of motion (2.8) can be de-
rived directly from the scaled Hamiltonian

1
§

where the scaled position and momentum is constructed
with the help of the scaled action (2.5) from (2.2) accord-
ing to

H=H,(x,p)——x8,,(1/§), (2.9)

x=2n%in’y, p= —l—cotn . (2.10)
n

In action-angle variables, and restricted to the bounded
space, the Hamiltonian (2.9) is then given by

o~ 1

H=———é—2nzsin2(n)82ﬂ(r/§). (2.11)

2n?

The time evolution of a phase-space point (©,n) over

one cycle of the external perturbation is conveniently
represented in the form of an area-preserving mapping

T: (©,n)—(0",n") . (2.12)
The mapping is constructed in four steps [47,48].
(i) Transformation of (O, n) to (X,p) via (2.10).
(i1) Kick:
x'=x%, p'=p+1. (2.13)

Increasing the momentum via (2.13) can promote the
Rydberg electron to the continuum. In order to check
whether the electron is still bounded after the application
of a kick, the energy after the kick E’ has to be evaluated:

E'=E+p+1. (2.14)

For E’'<0 the electron is still bounded and we can
proceed with step (iii) of the mapping. For E'>0 the
electron is called ionized. Immediately after the ionizing
kick the momentum of the electron is positive (5> 1)
and according to (2.14) the energy of the electron in-
creases monotonically from there on. This means that an
ionized electron is never again trapped back into the
E <0 region and therefore stays ionized forever.

(iii) Transformation of (X',p’') back to (©’,n’') via
(2.10).

(iv) Free motion:

[}

n=n', @"'=0'+£L 2.15)
n
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The mapping T can be decomposed into a “kick” and a
“twist” according to

Tr= Ttwisto Tkick . (216)

The name twist for the free propagation over one kick
period is used because it corresponds to a rotation on the
phase-space cylinder if ©=0 and 27 are identified. The
kick mapping T, is given by

r— n =n Sinn
(1—2n coty—n?)!/2  “siny’ ’

arcsin{sin(n)[1—2n cot(n)—n?]'"?} for p'>0
(2.17)
m= m—arcsin{sin(9)[1—2n cot(n)—n2]"?}
for p' <0

The twist mapping T, is given by (2.15), i.e.,

(2.18)
v 4 g 2T
0"=0'+{— .
n

Thus the classical one-cycle propagator for the one-
dimensional model of the kicked hydrogen atom forms a
one-parameter family of mappings.

In the (6,E) space (E=—1/2n?) the domain of T
consists of all points with E <0 which are still bound
after one application of 7. This set will be denoted by
I~!. Since the domain of T, is the unrestricted (©,n)
phase space, the domain I ~! of the mapping T is identi-
cal with the domain I} of Ty. The domain I} is
defined in analogy to the domain I ~! of T and consists of
all the phase-space points (©,n) which are still bound
after one application of the mapping Ty, I e is easily
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point (8',n') by Ty if and only if 1 —2n cot(n)—n?>0.
Thus, solving this equation for n shows that I ., consists
of all phase-space points (O, n) which satisfy

172
<tan[7(©)/2] .

n=

(2.19)

L
2|E|

The relation between 7 and © is given by (2.2). It turns
out that the image of I\ under the action of T\, is the
mirror image of I} with respect to the straight line
O©=m. Therefore, although formulated with the help of
two branches in (2.17), T,y is a smooth mapping from
I ‘gc‘k into (©,n) phase space. The domain I~ ! of T is
shown in (O, E) space as the shaded area in Fig. 1(a).
Also shown in Fig. 1(a) is the intersection of I ! with a
n =1=const line. The straight line in Fig. 1(a) (the thick
black line) actually consists of 200 equidistantly placed
phase-space points which are mapped under the action of
T into the discrete points shown in Fig. 1(b). The image
of I !is also shown in Fig. 1(b). It consists of a system
of stripes [shaded areas in Fig. 1(b)] which will be the
focus of attention in Sec. IV.

All points p €I ~! are linearly unstable. This is shown
in the following way. Since for p€I~! all four steps
(i)—(iv) of the mapping T are defined, the Jacobian of the
mapping T, J=(00"'n" /30n) can be calculated as the
product of the four Jacobians corresponding to the four
steps of the mapping, ie., J=J,J3J,J; with
J,=(3%p|0O©n), J,=(3% 'p'/0xp), J;=(8©'n'/ 3x 'p '),
J,=(30"n" /30'n’). Since J,=1 and J, =J;! evalu-
ated at the “primed” coordinates, we need only

1 —6m&/n'*
0 1

n’p 2% /n

—n3/x?

J1= ’ 4

—p/n

(2.20
calculated by realizing that according to (2.17) a bounded )
phase-space point (O,n) is mapped into another bounded  to calculate

J
_|r/2)(0 42+ n?)+6mErn?/x? —2% /nn’—(3mE/n'n®)1+r2+n?)
—(nn')/x? (1/2r3)(1+r2+n?) 22D

We defined r =n /n’. Since T represents the one-cycle dynamics of a Hamiltonian system, we have detJ =1. The trace
of J is given by

2
TrJ=1 r2+i2 [r+i+nn’ +E§’;L . (2.22)
r r X

For £>0 we have immediately TrJ > %(r2+1/r2)(r +1/r), and since in general A+1/A=2 for all A>0, we have
TrJ >2. This means that J has real eigenvalues and therefore all points p €I ~! are linearly unstable [20]. In particular
this implies that all period-1 fixed points of T are unstable. But in order to show that T does not generate any regular

islands, all fixed points of TY, N=1,2,..., must be unstable. In order to prove this, we note that the Jacobian (2.21) is
of the form
_ (r22)r+1/r+e)+ 4 —B
—-C (1/2r2)Xr+1/r+€)+D (2.23)

with 4,B,C,D,e>0 for £>0. In order to calculate the Jacobian J'V of TV, we have to form products of Jacobians
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10 20 3.0 40 50

%0 10 20 30 40 50 60 e
®
-1.5
00 10 20 30 40 50 6.0
(S]
FIG. 1. (a) The domain I ' of the mapping T (shaded area) and a microcanonical straight-line ensemble MEo NI~'. (b) The image

I*'=T(I"") of the domain of T and the image T(MEO N1~"). The k labels of the stripe structure are shown on the right-hand side
of the frame. (c) The set I=I*"'NT"! and the k labels of the stripe structure. The stripe pattern continues for E < —1.5 such that
k,k— oo for E—— .

with the structure (2.23) evaluated at the intermediate image points of the iterated mapping 7. Consider the product of
two Jacobians J' =JJ evaluated at arbitrary coordinates X,p and X, P, respectively. We obtain

_ [(FFP/4)F+1/F+e)F+1/F+E)+ A’ —-B’ (224

T —c [1/4FFR)F+1/F+E)F+1/F+E)+D’

with 4’,B’,C',D',e’' 2 0. In the same way, the Jacobian of TV is given by
N o 2 (N) (N)
(1725 [T ritr;+1/r;+€;)+ A —B

JM= /=t (2.25)
N .
—cW (172M [T (1 /rp)rj+1/r;+€,)+D™N
j=1
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with €,>0,j=1,2,...,N, and 4V, B™ c™ pW™ >,
With (2.25) it is trivial to get an estimate for the trace of
JW) In fact,

e v 1
TrJ(N)>F Hrjz(rj+1/rj)+Hlﬁz("j'*'l/’j)
i=

j=1 ¥
N 1
>TIrt+——2=2. (2.26)
j=1 I r?
j=1
This proves the absence of regular islands. We em-

phasize that this property holds only in the case of posi-
tive kicks, i.e., B>0. Mappings corresponding to nega-
tive kicks or kicks whose strengths alternate in time
[50,51] do possess regular islands. They exhibit a mixed
phase space with intermingled regular and chaotic re-
gions.

Keeping more terms in the matrix products, the esti-
mate (2.26) can be considerably improved. For Tr(J'?),
e.g., we get

2
Tr(Jm)22+3—72T§—+min 1,%& (2.27)

Since the matrix elements J{Y and J$}’ contain only posi-
tive terms (only negative terms in J{)’,J5"), which fol-
lows from the fact that J'V is a product of matrices with
the structure (2.23), we can discard any number of terms
in J and still get a lower bound for the trace of JV if we
form products of those “reduced” matrices. Define the
reduced matrix

a r? —3w&/nn’

I= —nn'/4 1/r? (2.28)
and f(N’=fN0fN_lo s oj,. Then the following
rigorous estimate holds:

Tr(J M) 2 Te(FV) . (2.29)

It is easy to evaluate the product of reduced matrices.
For £=4/3m, however, the calculations are especially
simple and we use this case to outline the general pro-
cedure. For £=4 /3w the Jacobian is given by

A r? —4/nn’
—nn'/4  1/r? 2.30)
With a;,a J’ > 0, the structure of 7V is of the form
L L
2a —2X4
A(N) i=1 J=1 N—1
J= , L=2 (2.31)

L L
—>1/a; 3 1/a;
i=1 j=1
which is easily proved by induction. Thus we obtain
2N71
TrJ V> 21 (a;+1/a;)z2x2N"1=2N
j=

(2.32)

The eigenvalues A'Y of J¥ are given by
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(N)
A= %———i%(TrJ‘MZ—Mm : (2.33)
With (2.32) we obtain trivially
AN = 1N (2.34)

Thus, as far as the eigenvalues are concerned, the invari-
ant set of our mapping T meets the requirements for uni-
form hyperbolicity [20,21]. But since the bounded part of
the kicked hydrogen phase space is open, we would have
to show additionally that the angle ® between the stable
and the unstable directions of the Jacobians JV is
bounded away from zero, i.e., there must be a positive
constant ¢ with 0 <c¢ <®. This, as a matter of fact, is not
true in (O,n) phase space since the angle ® can become
arbitrarily small for n —0. Therefore the type of hyper-
bolicity of the mapping T is most conveniently character-
ized by the term ““fully developed chaos” (absence of reg-
ular islands), which was introduced in Ref. [23].

A more intuitive proof of the absence of islands is
presented in Ref. [52]. Suppose that R is a fixed point of
the mapping TV and Q is a point infinitely close by. If
the fixed point R were elliptic, the slope of the straight
line segment connecting the points Q'™ =TMN(Q) and
R has to change sign as Q™R rotates around R under
successive applications of TV. In Ref. [52], however, it is
shown that TV maps a monotonically falling curve of
infinitesimal length into a monotonically falling curve for
any N. Therefore R cannot be elliptic. This proof is gen-
erally applicable to the whole class of Poincaré mappings
which conserve in a similar way the monotony of curves.
To reveal such a conservation feature for a given Poin-
caré mapping may require a suitable canonical transfor-
mation of the coordinates.

The proof that is based on the monotony conservation
of T allows for a corollary: For any (unstable) fixed point
R of the mapping T¥ the stable eigenvector has to have a
positive slope in (6,n) phase space, whereas the unstable
eigenvector has a negative slope. This feature can be con-
sidered as a generalization of Smale’s horseshoe model,
where one stable and one unstable direction are universal
for all periodic points.

III. POWER-LAW DECAY

When a microcanonical ensemble of initial conditions
[49] is exposed to a train of 8-kick pulses, the set of
phase-space points which remains bounded decays with
the number of kick pulses according to a power law.
This unexpected feature is illustrated in Fig. 2. It
displays several decay curves resulting from the repetitive
application of the mapping T with £=1 to five initial
straight-line ensembles. The ensembles are characterized
by a fixed initial action ny=1/(2|E,|)'/? and 3 X 10° ini-
tial angles © drawn randomly and uniformly from
[0,27]. We chose n,=1.0,0.5,0.25,0.1,0.05 for the five
different straightline ensembles, respectively. Straight-
line ensembles were chosen as initial conditions since
they are the closest classical approximation to a
quantum-mechanical eigenstate (2.1b). In the following
we shall use the abbreviation MCE for microcanonical
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FIG. 2. Survival probability Pz(N) vs the number of kicks N
for five different initial straight-line ensemble n,=1.0, 0.5, 0.25,
0.1, and 0.05, respectively. The ensembles consist of 3X10°
points each and £=1.

ensemble. The long-time asymptotics of the classical de-
cay curves displayed in Fig. 2 clearly show an algebraic
decay. The value of the power extracted from the numer-
ical data, a=1.65, was found to be independent of the in-
itial energy E; and of the control parameter &£ if £ 1.
The consequences of the power law for the fractal proper-
ties of the invariant set of the mapping T are addressed in
Secs. IV and V. In this section we will clarify its dynami-
cal origin by means of a random-walk model. We ap-
proximate the deterministic dynamics described by the
mapping T by a nontrivial random walk in one dimen-
sion, the energy E. Not only does this model elucidate
the dynamical process responsible for the power law, but
predicts scaling properties of the decay curves which are
obeyed by the numerical data of the deterministic map-
ping to a high degree of accuracy.

Let us follow the time evolution of a MCE at E =E,.
With (2.2), (2.14), and (2.17) it is easy to calculate the
probability distribution pg (E) of energies E’ after a

kick was applied to the ensemble at £ =E. The proba-

bility distribution of momenta p(p) of a MCE satisfies
p(pldp =p(©)dO=dO /2w, from which we get

p(ﬁ)=2nosin4(n)/1r

=2n,sin*[arccot(nyp)]/m=(2ny/m)/[(nop)?+1]?

Because of (2.14), p(p )dp =p(E')dE’ and, finally,

‘/_
pE (EI)= 2 2 -

V)
E 1 E' — 132
7T'\/| ()I 2|E0|( 7)

(3.1)

While o (E’) remains unaltered bv the subseauent twist.
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ﬁE ( AEstoch )

angle variable of the image points. Having propagated
the MCE over one kick period, we end up with a set of al-
most horizontal lines in (6, E) space, covered with an al-
most homogeneous point density [see Fig. 1(b)]. This
suggests that the time evolution over the next kick period
can be approximated by assuming that each of the lines is
itself a MCE, and by disregarding memory effects in the
O distribution.

The absence of memory effects was checked by com-
paring the energy distributions p'”(E) and p'®°T(E) for
the exact mapping T and the composite mapping Ro T,
respectively, where R randomizes the phases according to
R(O6,E)=(6,E), 6 uniformly random in [0,27]. For
ny=0.2 and £=1 we compared pm(E) and p'R°T(E) for
N=1,2,...,12 applications of the respective mappings
and found the two distributions to be indistinguishable.
This proves that phase memory is not important for the
mapping 7. In another test, we checked the idea that
phase-space points in a band E, —A<E=<FE,+A can
effectively be represented by a MCE at E =E,; with uni-
formly distributed angles. To this effect, we propagated a
straight-line ensemble started at n,=0.25 over ten kick-
periods with §£=1. All  points arriving in

—A<E=<E,+A, E;=—2.0,A=0.2 were exposed to
another kick to obtain p(E). Subsequently, a MCE at E,
was propagated over one kick to obtain p(E). Both p(E)
and p(E) turned out to be practically identical within the
statistical errors.

Thus we arrive at the following Markovian random
walk in energy as a model for the underlying determinis-
tic evolution of a MCE. For any momentary energy posi-
tion E, the energy position E’ after one more kick cycle is
drawn randomly out of an ensemble with a probability
distribution given by pz(E’).

In the following we will derive an analytical expression
for the time evolution of this energy distribution—more
precisely, of the leaking out of the energy distribution
into the continuum—on the basis of the Markovian mod-
el. The present random walk occurs in discrete time
steps of size 27£. It is characterized by a constant drift
term 1 and a stochastic increment AE,;, whose proba-
bility distribution p;(AE ) depends on the energy po-
sition E and is closely related to pg(E’) by

:pE(EO+%+AEstoch)
= V2 .62

2
\/
T T—1+EEIAEmm)‘

The variance of the stochastic increment caused by the
next kick pulse is proportional to the current energy posi-
tion and explicitly given by

{((AE..+.))=2lE| . (3.3)
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3f(Eyv7) _ 1 3f(Em) 1 ??
or 47 OE 2mE JE?

[(—E)f(E,7)] .

(3.4)
It has to be solved together with the boundary conditions

f(E,T)|,—c=8(E —E,), (3.5a)

f(E,T)|E=0=O .

Here the &-shaped initial distribution (3.5a) reflects the
starting microcanonical ensemble, whereas the absorbing
barrier at E =0 expresses the fact that positive kicks do
not allow for a back coupling from the continuum to the
bound space.

Since we are only interested in the integral of f(E,7)
over all negative energies, we have to solve the first-
passage-time problem [53] corresponding to the Fokker-
Planck equation (3.4). Starting the random walk at ener-
gy E,, the probability G(E,,7) to remain bound has to
fulfill the first-passage-time equation [53]:

(3.5b)

dG(Ey,7) 1 OG(E,T)
ar  4m€é JE,
+L(—E)2 GE,m (3.6)
arg % 9EZT Y '

This equation has to be solved together with the bound-
ary conditions [53]

G(Ey,7)|,—o=1 for E; <0,
G(EO,T)|EO=0=O for 720 .

(3.7a)
(3.7b)

The condition (3.7b) is due to the immediate absorption
of the wandering electron at the barrier E =0. Since the
boundary conditions require G(E,,7) to be constant on
two straight lines through the point E =0, 7=0, the an-
satz G(E,,7)=G(E,/T) appears promising. Inserting
this ansatz into (3.6), one obtains an ordinary differential
equation, where E, and 7 emerge only in the combination
Ey/7,

E, d*G 1 E, dG

—_— = |=+2 — | . 3.8
T dEyE |2 T T | | aE (3.8)
Defining

F(Ey/7)=dG(Ey/7)/d(Ey/7)

we arrive at a linear homogeneous differential equation of
first order, which is solved by

172
E
Fl|=2

=F, exp (3.9

27T§% ‘

with integration constant F,. The integral required to
calculate G(E,,7) can be found in Ref. [54], formula
3.381. With this result, the solution of (3.6), which fulfills
the boundary conditions (3.7), is given by

G(Ey,1)= , (3.10)
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where y denotes the incomplete gamma function. This
result can be simplified even further. Since (2.7) shows
that 7/(2m€)=wt /27 is the number of kicks, N, we ob-
tain

3 |Eo|

2° N

1
r)?

2

(3.11)

G(E,,N)=

It is astonishing that this result does not depend either on
the kick strength B or on the kick frequency w. With

E,=—1/2n} it is seen to be only a function of the scaled
variable
z=2niN . (3.12)
Expressed in the variable z, we obtain finally
G(2)= y(3,1/z)=erf(1/Vz) 2—exp(—1/z),
re)" 2 Virz
(3.13)

where erf(x)=(2/V'7) [Je ' ’dt is the error function.
The scaling (3.12) is a genuine and unexpected predic-
tion of our stochastic model. It can be checked, e.g., by
properly rescaling the data presented in Fig. 2. If the
scaling (3.12) were exact, the scaled Py data in Fig. 2 are
expected to collapse onto the universal decay function
G (z). The function G(z) is shown as the full line in Fig.
3. Also shown are survival probabilities Pg(N) at select-
ed values of N taken from Fig. 2 and scaled according to
(3.12). The five different plot symbols in Fig. 3 corre-
spond to the five different straight-line ensembles in Fig.
2, respectively. Given that the survival probabilities of
the unscaled numerical data differ by a factor 5000 at
N =200 (see Fig. 2), the scaled data (plot symbols in Fig.
3) show that the scaling (3.12) is fulfilled to a very good
degree of accuracy. The scaled data collapse within a

1001 .

10" .
G
102[ . 7

103

101 1
| | | i

102 107 10 102 10

FIG. 3. Test of the stochastic model and its predictions for
the scaling of the decay curves of periodically kicked hydrogen
atoms. Full line: survival probability G as a function of scaled
time z as predicted by the stochastic model. The five plot sym-
bols +, <>, A, O, and O correspond to the five initial straight-
line ensembles n,=1, 0.5, 0.25, 0.1, and 0.05, respectively,
whose decay curves are displayed in Fig. 2. The plot symbols
represent survival probabilities at selected values of N taken
from Fig. 2. Data were taken for n,=1 at N=1,5,20,70,200,
for n,=0.5 at N =1, 10, 50, 100,200, 500, for n,=0.25 and 0.1 at
N =1,10,50,100,500, and for n,=0.5 at N=1,50,200,500,
1500.
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factor of 3 into a narrow band close to the theoretical
prediction (3.13).
Expanding (3.13) for large arguments z, we obtain
G(z):%z*m:Z—‘/iN*m, zZ—o .

(3.14)
3n;

Thus the stochastic model confirms that the decay due
to ionization follows asymptotically an algebraic law, and
that the decay power is independent of the starting ener-
gy of the microcanonical ensemble as well as of the kick
strength 8 and the kick frequency w. Moreover, the de-
cay power of the random-walk model, =2, is in reason-
able agreement with the decay power extracted from the
numerical data of the deterministic map a~=1.65. The
following considerations offer further insight into the
dynamical mechanism which is responsible for the alge-
braic decay: The asymptotic power of the incomplete ¥
function is given by the negative of its first argument,
which in fact equals

a=1+s, (3.15a)
where
1 1 1
= |— — |== 15
47§ / 27é 2 (3.150)

is the ratio between the constants in front of the drift
term and the diffusion term of the Fokker-Planck equa-
tion (3.4). Even in the absence of any drift-term, i.e., for
s =0, the leaking out across the absorbing barrier would
follow an algebraic law, namely 1/N, the slowest decay
possible for a Fokker-Planck equation of the type (3.4).
Thus the mechanism responsible for our type of power-
law decay is given by the stochastic fluctuations whose
variance increases linearly with |E|. An ever growing
fraction of trajectories that are not yet ionized is wander-
ing toward lower energy values, thus thinning out the
probability distribution near the ionization barrier at
E =0 and diminishing the portion of trajectories leaving
the bound space per kick period. As a result, the leaking
into the continuum slows down in time and we end up
not with an exponential, but with an algebraic decay.
According to (3.15), the effect of the energy drift, which
in our model is directed toward the absorbing barrier, is
to accelerate the decay process, resulting ina=1+s> 1.

Our mechanism, although very different conceptually,
is nevertheless close in spirit to the mechanism discussed
in Refs. [33-37]. Both diffusion mechanisms lead to
power-law decay which is explained by a progressive una-
vailability of trajectories for decay. But whereas trajec-
tories in Refs. [33—-37] hide from decay in a hierarchy of
Cantori and stable islands, the trajectories in our model
hide in phase-space regions with ever lower energy.

IV. FRACTAL REGIONS OF STABILITY

When focusing on the decay of a one-dimensional en-
semble of phase-space points, a probabilistic description
of the ensemble dynamics is an adequate approach as
demonstrated in the preceding section. Under the deter-
ministic time evolution mediated by a sequence of T map-
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pings, however, each single phase-space point has a
characteristic lifetime. To illustrate this further, let us
again choose a horizontal line of length 27 in phase
space, follow the time evolution of each single phase-
space point and record the number of kick pulses for
which the point stays bounded. For a given ensemble en-
ergy E,, this number is only a function of © and we
denote it by L (©), the lifetime of the point (©,E,). For
Ey=—1 and £=1, the lifetime function L is displayed in
Fig. 4. As mentioned in the Introduction, this function is
highly irregular and shows singularities on a fractal-like
set of © values. The fractal structure of L is demonstrat-
ed in Fig. 4(b), which shows an enlargement of the left-
most feature in Fig. 4(a).

50 T T T

30 n

20— I

10 —

50 T T

(b)

404 —

30— -

20— -

1 1
4517 4.518

0
4.516 4.519

(S}

FIG. 4. Lifetime function L(©) for E=—1 (n,=1).
L(©)=0 for © <. (a) Full range 7 <O <27. (b) Enlargement
of the leftmost feature in (a). L shows structure on all scales.
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An alternative way of showing visually the assignment
of lifetimes to phase-space points is to translate lifetimes
into a code of gray values: the darker the shade of gray,
the longer the lifetime. The result of a scan over an area
of (©,E) phase space can be seen in Fig. 5 and shows a
fractal-like pattern which repeats itself on all scales. Our
phase-space patterns are organized about the set A" of
initial conditions for trajectories which never ionize. The
closer an initial condition is to A™, the longer it will
remain bounded. The concept of two points being
“close” to each other will be explained more precisely
below. The darkest stripes in Fig. 5 are the finite-N ap-
proximants of A*. Similar patterns are known from the
studies of chaotic scattering [6-9], and in order to make
use of the existing concepts and techniques, we must ex-
tend our ionization problem in a way which will turn it
(at least formally) into a scattering problem. This is done

0.0

-1.0

-1.5

-0.25

-0.26

-0.27

-0.28

-0.29

-0.30
5.2 5.3 5.4 5.5

(S}

FIG. 5. Two-dimensional visualization of L (6,E). The life-
times L =1,2,...,5 are represented with the help of five shades
of gray indicating the fractal properties of L (©,E). (b) Enlarge-
ment of a detail in frame (a).
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by endowing phase-space points (O, n,) artificially with
a past by means of T !, the inverse mapping of T. The
extended problem admits forward as well as backward
propagation and has a chaotic repeller A, which is a
“double fractal.”” The set A is called the invariant set
since TM(A)C A for all N EZ. The set A™ of our original
problem is then nothing but the stable manifold of A and
therefore has fractal features only along the unstable
direction of never-ionizing points.

An element of A has to be necessarily a preimage—as
well as an image—point of the mapping 7. If we denote
by I'"! the domain of the inverse mapping T !, the inter-
section of the domains of Tand T~ L, I=I"'NI") isa
superset for A. It is trivial to show that I T!=T(1"").
The set 1! is shown in Fig. 1(b) as the shaded region of
phase space which appears as a system of infinitely many
stripes. This is due to the action of the twist mapping
(2.18) and the fact that the Kepler-frequency 1/n° is
singular for n—0. The set I=1"'NI"!, the union of
the shaded stripes in Fig. 1(c), contains all orbits of
infinite length.

Due to the action of the twist mapping, the set I is nat-
urally partitioned into an infinite number of disjoint sub-
sets which are labeled by k =1,2, ..., » [see Fig. 1(c)].
To each point of the invariant set A we can assign a
time-ordered sequence of the subsets k into which the
point is mapped under the effect of TV, N=1,2,3, ...,
and T°Y N=1,2,3,.... Such a sequence contains in
the zeroth position the k label where the point can be
found at the time N =0, and tells its past and future in
the course of the dynamical propagation. This descrip-
tion corresponds to a symbolic dynamics with an infinite
alphabet. One can show that a trajectory may visit any k
subset without restrictions imposed by its past history
[52]. In other words, the formation of symbolic se-
quences which are relevant to our dynamics is not sub-
jected to any grammatical restrictions.

As a consequence, each symbolic sequence which ex-
tends infinitely both to the left and to the right,
represents at least one phase-space point ¢ €A. Each
symbol sequence ...kkk... represents a fixed point of
period 1, each sequence . . .k k,k k, ... a fixed point of
period 2, etc. Thus the number of periodic orbits in-
creases exponentially with the period length as required
for systems with fully developed chaos [23]. We conjec-
ture that the correspondence of infinite orbits and se-
quences is one to one, i.e., any arbitrarily selected se-
quence uniquely determines an orbit within A.

Returning to our ionization problem, which requires
only forward mappings of phase-space points, we focus
on the set A", the stable manifold of A. The iterates of
some starting point p €A™ are confined to I for all times
N =1, hopping from one k subset of A to the next. This
way, a grammatically unrestricted sequence of k labels,
extending from 1 to o, can be assigned to the forward
orbit of p. Note that p itself is not necessarily an element
of ™! and therefore cannot in general be assigned a sym-
bolic digit at the zeroth position of the sequence. The
specification of the orbit of p for all times N’ with N'<N
is done in terms of a symbolic string of length N and
determines a stripe in phase space in which p has to lie
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(compare Fig. 5). In order for the one-to-one correspon-
dence of infinite sequences and points in A to hold, all the
stripes have to be uniformly contracted as the length of
the specified symbolic string is increased, such that for
N — o one arrives at a one-dimensional set. Strong evi-
dence for the uniform-contraction property is provided in
Ref. [52].

We are now in a position to specify more precisely
what is meant by an initial condition (O, n,) being close
to some point of A*: Two points (6y,n,) and (©,,n,)
are said to be close to each other if they visit the same
subsets k during the next K propagation steps, i.e., if the
first K digits of their corresponding symbolic sequences
are identical. The degree of closeness is measured by the
magnitude of K.

In order to apply this criterion to arbitrary phase-space
points, a slight extension of the symbolic dynamics is re-
quired: For any point g @A™, the future orbit in the
bounded space is finite. That point of its orbit, which is
followed by the jump into the continuum, is an element of
I, but no more of I ™!, and hence not contained in any
of the k sets. Since we do not want to lose the dynamical
information attached to this last orbital point, we will re-
late the last digit of any finite symbolic sequence to the
partition of 7! [shaded area in Fig. 1(b)] instead of 7 !
[shaded area in Fig. 1(c)]. The disjoint subsets of I*!
which extend from ©=0 to 2 receive the label k [see
Fig. 1(b)]. Since each set of the I *! partition contains ex-
actly one k set of the 17! partition as a subset, k is
chosen so as to fulfill K =k [see Figs. 1(b) and (¢)].

Let us now use this symbolic dynamics for an under-
standing of the fractal stripe pattern in Fig. 5. All areas
of the same shade of gray consist of points with symbolic
sequences of the same length. The darkest area (“black”)
in Fig. 5 represents the set of all points which did not ion-
ize after the N =>5th kick. Figure 5, therefore, does not
provide any stability information beyond the N =5th
kick pulse. In order to reveal the fractal structure hidden
in the black area, we have to specify the behavior of its
points for one more kick pulse, i.e., we have to specify the
(N +1)th digit on top of the string of N digits of the sym-
bolic sequence. Because of the infinite alphabet of sym-
bols and the absence of grammatical restrictions concern-
ing the formation of sequences, we arrive at a partition of
the stripe into infinitely many substripes, one of which
consisting of initial points being ionized by the (N +1)th
kick pulse. The (N +2)th step will then remove a sub-
stripe of each of the substripes of the (N +1)th genera-
tion, and so on.

In the following we investigate the lifetime function L
on a horizontal line in phase space which is characterized
by E,. It will be denoted by M Ey Since points in

MEOFWAJr never ionize, the lifetime function will be

singular on this set. Since A1 consists of a bundle of
curves (O,n) which extend over the whole range
0<n < o and have a slope dn/d© >0 [see Fig. 5(a) for
finite time approximants of A*], the lifetime function of
any selected horizontal line M represents, by means of
the set of its singularities, the whole fractal structure con-
tained in A*. Let us denote by C E, the set given by such
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a horizontal cut through A" at the energy E,. Following
the iterative process, which leads to C Ey will answer the

following question: Which set of points on the line corre-
sponds to a certain finite lifetime? Moreover, on the level
of a one-dimensional cut through the fractal of Fig. 5, we
are able to answer the following question: Given a sym-
bolic sequence k, - - - ky of length N, what can be said
about the position of k; --- ky relative to the other
stripes, and how can we determine the width of such a
stripe?

We start with the set M E, The first iteration step de-
pletes the interval M| EO\I ~ ! which consists of points that

are transported into the continuum by the first kick. For
the remaining set M E, inter] !, the dynamical evolution

over one kick period is given by the mapping T. Accord-
ing to the results presented in Sec. II, T(MEoﬂI_l) is

composed of curves which extend from ©=0 to 27 and
have a small, monotonically negative slope. This is illus-
trated by the MCE (consisting of 200 equispaced points)
shown in Fig. 1(a) whose image (solid dots) is shown in
Fig. 1(b). With the help of the phase-space partitions,
which served as the basis for the symbolic dynamics, one
easily verifies that each of these curves is a subset of one
of the k sets of the (I ™'!) partition [see Fig. 1(b)], and that
this correspondence is one to one. Therefore, according
to our symbolic dynamics, all preimage points of such a k
curve have the digit & at the first position of their symbol-
ic sequence. Recalling the continuity of the mapping
T —which is veiled by the modulo 27 prescription in-
herent in T, —we arrive at the coarsest level of struc-
ture imprinted on a horizontal line in phase space by
specifying the first symbol k, of the symbolic sequence:
The left part of the interval M Eyr M EO\I ~1 consists of

points for which the symbol sequence is of length zero.
The remainder M, g, ~!is partitioned into an ordered

set of infinitely many &, intervals starting with k, =1.
For a more quantitative characterization of this parti-

tion, one has to know for any value of k, the fraction of

the image set T(MEO NI~'), which is represented by the

k, curve. This fraction can be calculated approximately
in two steps

(i) Projecting the two-dimensional k sets onto the ener-
gy axis and treating the overlap in a consistent way, the k
partition of I 7! can be translated into a k partition of the
energy axis.

(i) Formula (3.1) tells us how the points of
T(M E, NI~ ') are distributed over the energy E’ and,

therefore, how T (Mg NI ~1) is distributed among the k

intervals on the energy axis which were obtained in step
(i). Within the framework of the Markovian approxima-
tion of Sec. III, the whole process is iterative. According
to Sec. III, each k subset of T (Mg, NI~!) can be well ap-

proximated by a MCE. This assigns to each symbol
kEN a MCE ME;? according to the k partition of the en-

ergy axis [cf. (i) above]. Since this way the initial condi-
tion for the next iteration of T is identical with the start-
ing condition, the specification of one more symbolic di-
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git for the points on the initial horizontal line is
equivalent with another application of the above de-
scribed procedure.

The essence of this procedure can be summarized as
follows. Let an ensemble of trajectories be characterized
by the symbol sequence k, - - - ky_,ky. Then, the parti-
tion of this ensemble under the (N +1)th application of
the mapping T depends only on the k, image set in
which all the orbits of the ensemble reside prior to the
(N =+ 1)th application of the mapping 7. Thus the behav-
ior of the ensemble under the (N +1)th application of T
is completely determined by the last symbol kK in the se-
quence. This means that the prehistory, i.e., the symbols
ky,...ky_y, is not important for the future time evolu-
tion. This, of course, is nothing but a statement on the
approximately Markovian nature of the dynamics on the
level of symbolic strings. Therefore the partition scheme
can be represented in the form of a o X o matrix 4
which does not depend on the iteration step N. Each
symbol kyEN is represented by a row in A which
reflects the branching ratios of the MCE M E; into the

N

different “‘channels” such as decay into the continuum or
redistribution into the different k., sets with ky_ ,EN.
Therefore, and to a good approximation, subsequent ap-
plications of T form a Markov chain with the transition
matrix 4.

If the initial horizontal cut in (6,E) phase space is

chosen to be identical with one of the M E; ensembles,
0
the length of an arbitrary subinterval consisting of points

characterized by the symbol sequence k; - - ky. ky,
can be determined directly on the basis of the transition
matrix A: The length of the interval is simply 27 times
the product of the N transition matrix elements
(kg—k Nk —ky) - (ky_1—ky).

V. THE HYDROGEN FRACTAL:
A SET WITH BROKEN SCALING SYMMETRY

In the preceding two sections we presented two seem-
ingly unrelated aspects of the ionization process of the
classically described kicked hydrogen atom. In Sec. III
we studied the decay of phase space ensembles. We
found that classical MCE’s decay algebraically in time.
In Sec. IV we investigated the fractal set A* of points
which remain bound for ever. In the present section we
will show that there is an intimate connection between
these two subjects. We will show that because of the
power-law decay obtained in Sec. ITI, the set A™ is a frac-
tal with rather uncommon properties. As a matter of
fact, since scaling fractals lead to exponential decay, the
hydrogen fractal (see Fig. 5) cannot be a scale-invariant
fractal. Hence it must belong to the class of fractal-like
sets with broken scaling symmetry [17,19]. Only the bro-
ken scaling symmetry allows for an algebraic decay of the
Lebesgue measure in the course of the fractal-generating
process. We note that, although the fractal displayed in
Fig. 5 consists of many subintervals in every step of its
generation, it cannot be a multiscale fractal [3] since
there are no fixed scaling relations. Also, a multiscale
fractal would again lead to exponential decay.

The mathematical description of fractals with broken
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scaling symmetry requires the introduction of concepts
which are not commonly used in the physics literature.
We shall briefly review these concepts below, and refer
the interested reader to Refs. [17] and [19] for further de-
tails.

Self-similar fractals can be adequately characterized by
their Hausdorff-Besicovich dimension [17] d,, which is
closely related to the d-dimensional measure of a fractal
set C. Let C be embedded in a D-dimensional space and
consider coverings of C by D-dimensional boxes of length
€. For an arbitrary positive and real number d, the d-
dimensional measure of C is defined as

u'¥=1im N(e)e?, (5.1)
€—0
where N (e€) is the smallest number of € boxes that is
sufficient to cover C. There exists a critical value of d,
say d,, such that u'? is infinite for all d <d, and zero for
all d>d,. This critical exponent d, is called the
Hausdorff-Besicovich dimension of C. The definition
given above does not ensure that the d,-dimensional

Hausdorff measure p(do) is finite. Sets with broken scal-
ing symmetry require a generalization [17,19] of
definition (5.1) in order to achieve finiteness of the Haus-
dorff measure. In order to counterbalance the prolifera-
tion of € boxes when performing the limit e—0, the class
of functions € has to be extended to a wider class of
functions A(€), resulting in the Hausdorff measure with
respect to a gauge function A:

,u,\=lir%N(6)k(e) . (5.2)
€—

The particular function A that yields a finite u, is called
the intrinsic gauge function [17,19] of the set C. For a
large class of fractals the intrinsic gauge functions are
contained in the following expansion scheme:

—d,
i k
d— - ]

Thus a large class of sets with broken scaling symmetry
can be characterized in terms of exponents d,d, ...,
where d,,d,, . . . are the coefficients of higher-order loga-
rithmic corrections to the usual Hausdorff-Besicovich di-
mension d,.

A canonical way [19] to generate a fractal C with bro-
ken scaling symmetry is based on the iterative middle
third mechanism given by Cantor. In Cantor’s original
example [14-16], the iteration steps consist of taking out
a constant fraction, say one-third, from the middle of
each interval. By allowing the deleted fraction to display
a dependence on the number N of the iteration step, the
dependence being described in terms of the so-called hole
function Ay, the resulting fractal (in general) is no more
scaling, and a logarithmic correction to the power law in
the set’s gauge function arises. For example, the hole
function hy=c/N, where ¢€(0,1) is a constant, gen-
erates a fractal object characterized by the exponents
dy=1,d;=—c, and d;=0 for all / > 1. This means that

AMe)=e™ T |n*
k=1

In (5.3)

=exp |ln(e)d0 —In
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the algebraic decay of the Lebesgue measure during the
fractal-generating process is too slow to alter the dimen-
sion dy=1 of the interval one starts with, but that this
algebraic decay nevertheless gives rise to zero linear ex-
tent (i.e., zero Lebesgue measure) of the resulting fractal.
The ““fractal” nature of the resulting set is given quantita-
tively by the first logarithmic correction d;.

In order to get a grip on the fractal properties of a
given set, the concept of the uncertainty dimension
defined in Ref. [12] turns out to be particularly useful.
Based on this technique we will present below numerical
evidence for the conjecture that the hydrogen fractal
displayed in Fig. 5 has a broken scaling symmetry.

The procedure for calculating the uncertainty dimen-
sion of a fractal set C embedded in a one-dimensional
covering space U (a straight-line segment whose length is
assumed to be normalized to 1) is as follows [12]: Choose
a set of points p,€U, j=1,...,Q equidistributed in U.
A point p €U is € certain if p and the two neighboring
points p _ =p —¢€ and p, =p +€ have the same lifetime
in U. The point p is called € uncertain, if any two of p,
p_, or p, differ in their respective lifetimes. With the
help of the function

0 if p is € certain

bdp)= 1 if p is € uncertain , 5.4
we define the function
1 £
fley=—3 ¥lp;), (5.5)
j=1

Q ;
which is the ratio of the number of e-uncertain points to
the total number of points. (Note that the usual
definition of € certainty requires that the function at p |
differs from its value at p _ by less than a fixed amount §.
In our case the function L assumes only integer values,
and therefore one can require strict equality.)

The function f(€) is intimately connected with the
question of how many intervals of length € are necessary
to cover C. The following heuristic arguments explain
the connection. C is the set of all points in U whose life-
time is infinite. In order to cover C, all points of equal
(=finite) lifetime can thus be subtracted from the line
segment U as far as covering of C is concerned. The total
length of these intervals is nothing but the fraction of e-
certain points, i.e., 1—f(€). This argument shows im-
mediately that f (€) is the ratio of N(€), the number of €
intervals necessary for covering C, and 1/¢€, the number
of € intervals in U. In the limit e—0 we have

fle)~N(e)/(1/€)=€eN(e) .

Since for a scaling fractal N(e)~e
tain [12]

fle)~¢€",

(5.6)

~o [see (5.1)] we ob-

(5.7)

where y =1—d,, is the uncertainty dimension of the frac-
tal set.

Applying the concept of the uncertainty dimension to
our ionization problem, we calculated f(e) for
C=C, =E, NA™. Wechose ny=1.1and £=1. Figure

6(a) shows In[f (€)] vs In(€) over several decades in €. If
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FIG. 6. The fraction f of e-uncertain points vs € for the en-
semble M,,Oﬂlf' with n,=1.1 and £=1. (a) A log-log-plot of
f vs € shows that the H fractal is not a scaling fractal. (b) A
double-log scale in € reveals that In(f) scales in InIn(1/¢€).

C,,o were a scaling fractal, the data points shown in Fig.
6(a) should lie on a straight line. Clearly this is not the
case. Figure 6(b) shows In[f(e)] plotted against
In[In(1/€)]. This time we obtain asymptotically a
straight line, which proves that
f(6)~e—yln(ln(l/e):[ln(1/6)]—,u (5.8)
with u~1.2. Comparing (5.8) with the expansion (5.3) of
the gauge function Ag(e)~N(e) '~ef(e)”!, the
Hausdorff-Besicovich dimension of C,,O is seen to be given

by dy=1, and —pu is nothing but the first logarithmic
correction term d;. Since C,,0 is only a one-dimensional

cut through the hydrogen fractal displayed in Fig. 5, the
numerical value of d; (= —1.2 for ny=1.1) can still de-
pend on ny. On the other hand, we expect that the global
properties of the fractals C,l0 are structurally stable and

independent of the precise location n, of the cut. Thus
the kicked hydrogen atom is an example for the appear-
ance of a fractal with broken scaling symmetry in a phys-
ical nonlinear system.

Despite the close analogy between the modified Cantor
set described in Ref. [19] and the invariant set A1 of the
kicked H atom, there is a fundamental difference. In the
schematic model of Ref. [19], the algebraic decay of the
Lebesgue measure hinges on an explicitly time-dependent
hole function hy. For the positively kicked H atom,
however, it was shown in Sec. IV that the fractal generat-
ing mechanism can be written in the form of a transition
matrix which is not dependent on N. The question arises,
how in this case an algebraic decay is possible at all?



45 IONIZATION OF H RYDBERG ATOMS: FRACTALS AND...

Consider the ensemble of points whose lifetime L
satisfies L>N. Every one of its points therefore
possesses a symbolic sequence k,, .. .,ky_;,ky. For in-
creasing N, the weight within such an ensemble will shift
to symbolic sequences with higher and higher values of
ky. This effect is purely dynamical. On the level of the
random-walk model, it corresponds to a drift to lower
and lower energies (see Sec. III). But since the transition
probabilities to the continuum decrease with increasing
ky, an algebraic decay results.

We conclude that a time-independent fractal generat-
ing mechanism can lead to power-law decay only if the
symbol alphabet is infinite. Only in this case, a shift of
phase-space probability to ever higher symbols is possible
and provides the basis for algebraic decay in a system
with fully developed chaos.

VI. DRIVING WITH PULSES OF FINITE WIDTH

Although the kicked H atom is an interesting system in
its own right, the realization of narrow pulses in laborato-
ry experiments seems to be feasible now, and it is interest-
ing to find out which features of the idealized 8-kick
model are robust against the replacement of the & kicks
by smooth pulses. The power-law decay is such a quanti-
ty: it can be observed over a long time interval, even
when the H atom is driven by a train of smooth impulses.

In order to demonstrate the feasibility of the proposed
impulsive driving experiments, we replaced the periodic §
kicks in (2.8) by smooth periodic Gaussian pulses of
width o:

1 -7ne ’

5 _yolo) —
2ol /) g (/)= ——

—a<7/§<m. (6.1

Accordingly, the kick mapping T defined in (2.17) is re-
placed by a mapping T'°). Of primary importance for
the proposed experiments is to know the order of magni-
tude of the pulse width o which is necessary for observ-
ing the power-law decay originating from the mechanism
discussed in the preceding sections. To answer this ques-
tion, we ran several Monte Carlo simulations with £=1
and E,=—1. For two cases, 0 =0.04 and 0.002 the re-
sulting decay curves are shown in Figs. 7(a) and 7(b), re-
spectively. The decay curves (solid lines) can be com-
pared directly with the decay curves for 6 kicks (dashed
lines). Both finite-width decay curves show an initial
offset from the decay curves corresponding to the kicked
(zero-width) case since finite-width pulses are not as
effective for ionization as § kicks. The finite-width decay
curves subsequently run parallel to the kick curve, ap-
parently emulating 8-kick decay mechanism. Note that
the 0 =0.002 curve runs closer to the kick curve (and for
a longer time) than the 0 =0.04 curve since, due to its
smaller width, it ionizes more effectively than the
0 =0.04 pulses. The slopes of both decay curves in this
initial phase are very close to the value a=1.65 charac-
teristic for the zero-width case. After this initial phase,
the decay in both cases accelerates and the corresponding
decay curves bend toward an algebraic decay with an
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asymptotic decay power of a=2.1. The critical time at
which the bending occurs will be denoted by N/°’. Fig-
ure 7 shows that N9 =009 < N{0=0002) i e  the narrower
width pulses follow the prediction of the kick model over
a considerably longer time. The reason for the deviation
from the predictions of the kick model becomes apparent
if we monitor the average action of an ensemble of classi-
cal trajectories as a function of time. Figure 8 shows the
ensemble average of the action {n ) for the case o =0.04.
It is seen that the action is bounded from below, which is
due to the fact that T'°) does not show fully developed
chaos. A phase-space portrait of T'°’ for o =0.04 is
shown in Fig. 9. Apparently, the phase space of T'?
possesses regular and chaotic regions. Actions below a
critical action n/°’ are not accessible due to the existence
of sealing KAM surfaces (see Fig. 9). This explains the
saturation of {(n ) at (n)=n{""0®=0.41.

The critical action n/°’ at which the shielding KAM
curves become active can easily be estimated by expand-
ing the form factor of the driving pulses g$?'(7/£) into a

10 LB TIIIHI
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(a)

10" F

1 llllLlll 1 llllllll 1

1 10 100
N

IIIIIIII T |ll||ll| T T
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1 ||||Illl Lol L1

1 10 100
N

FIG. 7. Decay curves for finite-width pulses (solid lines) in
direct comparison with decay curves for 8-kick driving (dashed
lines). (a) 0=0.04, (b) 0 =0.002.
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FIG. 8. The ensemble average {n ) of the action n as a func-
tion of the number of pulses N for finite-width pulses with
0=0.04. Occasional spikes are due to very highly excited tra-
jectories which are on their way to ionization and dominate the
average for a short while.

Fourier series according to

857 (x)=1by+ 3 b, cos(mx) .

m=1

(6.2)

For narrow width pulses, the Fourier amplitudes b,, are
approximately given by

bmzifw g'7(x)cos(mx)dx
m — o0

1 o 1 —x2/202
== ——e ¥ /*7 cos(mx)dx
Trf—ool/277'0

Le“(ma)z/Z . (63)
m

This result shows that the amplitudes b,, vanish quickly

0.435 T g T T T T

]
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FIG. 9. Phase-space portrait of a one-dimensional H atom
driven by a finite-width pulse of Gaussian shape with o =0.04
and £=1. The phase-space contains regular and chaotic regions
and shows sealing KAM curves for n $0.4.

for m >m?'~1/0. The angular frequency of the funda-
mental harmonic in (6.1) is @=1/£. The m!°’th harmon-
ic excites a primary resonance of the one-dimensional hy-
drogen atom at (1/n!°)*=m!?’/&, which implies
n!?~(a&)13. For n <n!?, the m °’th harmonic acts as
an adiabatic perturbation which implies the existence of
shielding KAM curves in this action region.

In order to check the o!/3 scaling of n'?’, we plotted
five additional phase-space portraits analogous to Fig. 9
to obtain numerically the onset of the KAM curves for
all together six different pulse widths: o=0.15, 0.10,
0.04, 0.02, 0.01, and 0.002. We obtained n!”’=0.65,
0.56, 0.41, 0.33, 0.26, and 0.15, respectively. For the six
ratios n'%'/o!/3 we obtain 1.22, 1.21, 1.20, 1:22, 1.21, and
1.19, respectively, which confirms the al”3 scaling to a
very good accuracy.

The shielding of n values with n <n!°’ explains in a
natural way the existence of a critical time N’ from
which on (N >N!°’) an acceleration of the decay is ob-
served (see Fig. 7). As soon as the tail of the energy dis-
tribution function f‘°)(E,N) [the distribution function
f(E,N) for finite width o] has reached the blocking
KAM curves at n =~n!?), which happens at N =~N/?’, the
mechanism presented in this paper and based on the fully
developed chaoticity of T has to compete with the mech-
anism discussed in Refs. [33-37] which applies to a
mixed phase space. The latter mechanism is clearly the
relevant mechanism once the probability has drifted to-
ward the “sticky” boundary layer at n znc(‘”.

The critical times N'°’ that mark the crossover be-
tween the two power-law regimes can be extracted easily
if the data presented in Fig. 7 are rescaled by compensat-
ing the initial decay of the finite-o decay curves which
emulates the 6-kick mechanism. We define the compen-
sated decay function:

RO(N)=rON*"""PU(N) . (6.4)

The normalization constant »'’ is not important and can
be chosen arbitrarily for a convenient presentation of the
compensated decay function (see Fig. 10). The exponent
59 which is expected to be close to 1.65 (the value com-
pensating the decay due to kicks), compensates the initial
decay of P{°)(N). The resulting compensated decay
curves for three choices of o are displayed in Fig. 10.
The existence of a transition in PY)(N) between two
power-law regimes is apparent. After an initial plateau
corresponding to the prevalence of the hyperbolic mecha-
nism all three curves bend up sharply at their respective
N/!?) reaching an asymptotic slope close to a=2.1. For
0=0.04, the transition occurs at N'°~%%=6. For
0=0.01 and 0.002 we obtain N°=%°V=12 and
N!9=0.02)=25 respectively. The sharp bend and the en-
suing linear behavior in In(R *?) vs InN for N > N'° indi-
cates the transition to the Cantorus diffusion mechanism
[33-37], which is based on the picture of slow diffusion of
phase-space probability in and out of a hierarchy of Can-
tori and island chains. In Ref. [52] this evidence is corro-
borated by a sequence of time-resolved phase-space por-
traits which show explicitly the sticking of trajectories to
the regular structures at n=~n, for times N >N'°). The
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observed exponent a~2.1 (see Fig. 10) in the finite-width
case is consistent with the results presented in Refs.
[33-37].

The scaling of the critical times N'°’ with ¢ can be ob-
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FIG. 10. Demonstration of the crossover between two
power-law regimes for smooth pulse drive by means of three
compensated decay curves R°’ with (a) 0 =0.04,0.01 and (b)
0 =0.002. In frame (b) the compensated decay curve for kicks
(dashed line) is also shown. The crossover between the two re-
gimes occurs at N.°'=6,12,25 for the three cases o=0.04,0.01,
and 0.002, respectively. The scaling factors 7'’ and s'°) were
chosen to be independent of o: r'?’=r=1.52 and s*)=5=1.55.
For the compensated kick curve [dashed line in frame (b)], we
chose r=1.52 and s =1.65.
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tained in the following way. It is easy to show that the
Fokker-Planck equation (3.4) possesses solutions f (E,N),
which scale in E/N. One such solution, e.g., would be
f(E,N)~y(—3,6E/N), where v is the incomplete y
function. These solutions do not, in general, fulfill the
boundary conditions (3.5). Also, they apply strictly only
for the case of & kicks. These drawbacks, however, are
probably of little concern for the scaling of the tails of the
distribution function f‘°)(E,N) as long as N <N'°’ and
therefore |E|<|E!”|=1/2(n{"’)%.. Assuming E/N-
scaling, the variance of f(E/N) scales like N3 and the
energy spread of f scales like N3/2. Therefore the magni-
tude of the probability function f becomes appreciable at
the critical energy E@ after times
N ~|E{D[22~1/(n{")*3. This implies the scaling re-
lation N.”'0*°=const. As mentioned above, Fig. 10
shows that Nc(“)=6, 12,25 for 0 =0.04,0.01,0.002, respec-
tively. For the scaling product we obtain
N!90%°=1.4,1.6,1.6, respectively, which confirms the
above considerations to a good accuracy.

VII. SUMMARY AND CONCLUSIONS

The main result of this paper is that the survival proba-
bility of a set of phase-space points decays like a power
law under the influence of a mapping T which is analyti-
cally proved to exhibit fully developed chaos. The sym-
bolic description of the dynamics of this system requires
an alphabet with an infinite number of symbols. This ex-
plains the observed power-law decay. Moreover, we were
able to construct an analytically solvable Markovian
model which closely approximates the dynamics of T.
Solving analytically a first-passage-time equation, the ex-
ponent of the algebraic decay was predicted to be 3. This
agrees very well with the numerical data, which point to
an exponent in the vicinity of 1.65. The algebraic decay
was also discussed within the framework of the theory of
fractals. The invariant set of T was identified as a fractal
set with broken scaling symmetry. The first logarithmic
correction to the fractal dimension of the invariant set
was determined numerically with the help of the method
of the uncertainty dimension. Finally, we extended our
investigations to the case of driving with periodic mi-
crowave pulses of finite width. The existence of a cross-
over between two power-law-decay regimes was estab-
lished.

We hope that apart from contributing to a theoretical
issue concerning the decay properties of classical sets in
chaotic systems, our results can be tested experimentally.
An ionization experiment with Rydberg atoms perturbed
by a train of finite-width microwave pulses appears to be
a promising candidate.
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FIG. 5. Two-dimensional visualization of L (0, E). The life-
times L =1,2,...,5 are represented with the help of five shades
of gray indicating the fractal properties of L (6,E). (b) Enlarge-
ment of a detail in frame (a).



