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The structure and dynamics of powders subjected to vibration are investigated by a nonsequential and
cooperative computer-simulation approach in three dimensions. Starting from a microscopic model of
the physics, we are able to probe independent and collective effects in the dynamics of vibrated powders,
as well as in the resulting structures. In particular, we analyze the role of cooperative structures such as
bridges, which are always present in reality and which cannot be formed by purely sequential processes.
We look in depth at the behavior of the volume fraction and coordination number as a function of the
intensity of vibration, as well as at correlation functions describing contacts between neighboring grains,
also as a function of intensity. Satisfying agreement with the qualitative predictions of earlier analytic
work is obtained, and a framework is laid for future investigations.

PACS number(s): 05.40.+j, 05.60.+w, 81.90.+c, 82.70.—y

I. INTRODUCTION AND AN OUTLINE
OF THE MODEL

Powders are materials that are composed of dense col-
lections of solid grains. They vary in their composition,
ranging from coarse-grained aggregates to fine-grade
powders; in their packing, ranging from loosely to close-
packed states; and in their states of motion, ranging from
stationary piles to continuous flowing masses. They have
been of interest to engineers [1,2] for a long time, but it is
only recently that they have become an important and ex-
citing area of theoretical [3—9] and experimental [10—13]
physics.

Powders exhibit behavior that is neither completely
solidlike nor completely liquidlike, but intermediate be-
tween the two. In addition to phenomena exhibited by
other amorphous systems, their randomness of shape and
texture strongly influences their static and dynamic prop-
erties. They are highly nonlinear and hysteretic, as a
consequence of which they show complexity, so that the
occurrence and relative stability of a large number of
metastable configurations govern their behavior. Finally,
a unique feature of granular materials is that they show
dilatancy [1], which is the ability to sustain different de-
grees of packing.

However, the subjects of this paper are those features
of the static and the dynamic properties of granular ma-
terials that are universal, i.e., that do not depend on the
details of the particle sizes or on the material properties
of the individual grains. Examples of such properties are
the existence of a fixed maximum random-packing frac-
tion or the size segregation induced by shaking. In order
to investigate such characteristic granular behavior we
have investigated a model powder that is made from
monodisperse, hard spherical grains so as to highlight the

(generic) microscopic behavior of the grains, and the way
that this influences the macroscopic physics of granular
materials. We have used a three-dimensional computer-
simulation method to obtain microscopic details of the
grain configurations and to probe the independent-
particle and the collective effects that occur within a vi-
brated bed of grains. We present here an extended ac-
count of previous work [9], in which we investigate phe-
nomena that contribute to the behavior of dry powders.

Thermal agitation in a powder takes place on an atom-
ic rather than a particulate scale; therefore it is external
vibrations that play an essential role in the behavior of
powders. In the absence of external agitation, the grains
are frozen into one configuration (since their thermal en-

ergy is insufFicient to generate the equivalent of Brownian
motion), which represents one of the many possible meta-
stable states of the system —we note in passing that this
is one of the reasons why powders show complexity. In
the microscopic model [3], on which this work was based
(a quantitative version of which is presented elsewhere
[8]), a granular pile is represented by an assembly of po-
tential wells, each representing a local cluster of grains,
while the effect of vibration applied to the pile is modeled
as being an effective noise H. If H is greater than the
binding energy of the particles to their clusters, then the
grains are ejected, and move into neighboring clusters; in
terms of the real powder, this means that grains are eject-
ed individually (independent particle relaxa-tion) from
their clusters. Conversely, if H is small relative to the
binding energies of the particles, they are not ejected; this
energy goes into the reorganization of the grains (collec-
tive relaxation) within their clusters to minimize voids.
The claim is [3,8] that for high intensities of vibration,
the dominant process is single-particle relaxation,
whereas collective relaxation dominates at low intensities.
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It will be realized that while single-particle relaxation
leads to a rapid decay of the slope, it will lead to a low
packing fraction and a rough surface. Equally, when col-
lective relaxation dominates, the slope will relax slowly or
not at all; on the other hand, slow collective reorganiza-
tion of particles will lead to efficient void filling, i.e., to a
high packing fraction and a smooth surface. We have in
earlier work [4] investigated the phenomenon of granular
relaxation in relation to the decay of the slope of a sand-
pile subjected to vibration, and will focus here on the
effect of the relaxational dynamics on the structure of the
powder and the correlations within it.

II. A SURVEY OF REORGANIZATION SCHEMES:
THE PHILOSOPHY UNDERLYING OUR OWN

The static powder is only characteristic of the method
of preparation —thus demonstrating hysteresis; and an
ensemble of configurations, built from independent reali-
zations of the whole powder using the same method, is
representative of a particular aggregation method. Many
aggregation schemes have been investigated in this way,
including the deposition model of Void [14], ballistic
deposition [15], close packing with surface restructuring
[16], and diffusion-limited aggregation [17]. Of these
schemes, the simplest is the Void model, in which parti-
cles stick instantaneously on impact. In ballistic deposi-
tion, no trajectories are computed, and aggregation sites
are chosen from a list, while in diffusion-limited aggrega-
tion, random-walk trajectories precede the aggregation
phase. In all these cases, the initial choice of a site ter-
minates the process, i.e., particles stick on impact. The
model of Ref. [16] goes further, in that particles are al-
lowed to roll around after impact on a stationary aggre-
gate until they find a local minimum of potential energy,
but this is still a sequential process. In contrast, the
schemes developed here and elsewhere [4,9] contain col-
lective restructuring, where the aggregate restructures
simultaneously with the incoming particles, thus making
our process nonsequential and cooperative, and therefore
capable of incorporating realistic reorganization process-
es. This essential ingredient makes our methods much
more reflective of many-particle events in a moving
granular system.

When mechanical energy is supplied to a powder, in
the form of stirring, shaking, or conveying operations,
periods of release are introduced. During the periods of
release, the grains have some freedom to rearrange their
positions relative to their neighbors, and the powder
"jumps" [3] between different, but related, grain
configurations. In this case a series of grain
configurations represents the dynamic response of the
powder to forcing excitations. In general, this response
has both transient and steady-state components. Thus a
shaken powder follows a path through the phase space of
powder configurations, which depends on both the dy-
namics of the individual grains and on the intensities and
frequencies of the component vibrations of the driving
force.

In practice, qualitatively similar driving forces may re-
sult in rather different behavior in the powder. Thus vi-
brations are frequently used to enhance powder mixing,

whereas, in contrast, they may also be identified as a
source of size-segregation effects [18—20]. Similarly, slow
shaking, or "tapping, "may be used as a means of powder
compaction, especially after a pouring process, but agitat-
ed powders can also be significantly more fluid than their
unshaken counterparts. Our aim is to distinguish, in
terms of individual and collective relaxations [9], the
different microscopic responses that underlie the macro-
scopic response of a powder subject to vertical vibrations
at different intensities. In our simulation model [4,9], the
driving force is periodic, and leads to clearly defined
periods of dilation of the powder assembly, between
which we have static configurations of grains. The driv-
ing force is applied uniaxially and is coupled homogene-
ously to the powder, so that free volume is introduced
uniformly. During the periods of dilation the grain
motion is dominated by a strong uniaxial gravitational
field and by hard-core interactions with neighboring par-
ticles and the container base.

For a noncohesive powder, it is clear that stirring,
shaking, and pouring are a11 many-particle operations.
During these processes the particles follow complicated
trajectories, composed of free-fall segments punctuated
by hard, inelastic collisions with the other particles be-
fore they reach stable positions in a static assembly.
These trajectories are fundamentally nonsequential, that
is, the route of one particle to its stable position cannot
be computed without simultaneously computing the
routes of many other particles. Stable configurations are
those in which each particle rests in a potential-energy
minimum, and therefore cannot lower its potential energy
any further by local or nonlocal motion. In practice, this
means that each particle is in contact with at least three
others.

The static configurations of grains that result from
shaking reflect the essentially nonsequential nature of the
process. These configurations contain particle bridges
[4,9] and a wide variety of void shapes and sizes that do
not occur in sequentially deposited aggregates. In this
context, a bridge is a stable arrangement of particles in
which at least two of the particles depend on each other
for their stability. Bridges cannot be formed by the
sequential placement of particles into stable positions but
are a natural consequence of the simultaneous settling
motion of closely neighboring particles. In our simula-
tions [9] we have approximated the precise particle tra-
jectories by using a low-temperature Monte Carlo
method supplemented by a nonsequential random-close-
packing algorithm. This is a compromise. At the ex-
pense of losing information concerning the granular dy-
namics, we can efhciently produce static structures that
correspond to a nonsequentia1 deposition process. Previ-
ous simulations [15,16] have failed to build in this aspect
of shaking.

Our method falls between authentic granular-dynamics
simulations [21,22] and previous shaking simulations
[15], which combine sequential deposition with a search
for global minima of the potential energy. Visscher and
Bolsterli [15] have performed computer simulations of vi-

brated beds of hard spheres; they have, however, inter-
preted the shaking process only in terms of its outcome,
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i.e., in terms of the final, static configurations of the
grains. Their shaken grain configurations were built, us-

ing an adapted random-close-packing procedure; that is,
by adding grains one by one at sites of minimum poten-
tial energy chosen from a set of trial random-close-
packing sites. The resulting packings, which remain fully
sequential, have volume fractions P—=0.60, which are
greater than those for unshaken configurations but still
significantly below the maximum volume fraction for ran-
dom close packing of /=0. 64 [23]. More recently, Rosa-
to et al. [24] introduced a two-dimensional Monte Carlo
method to study the size segregation that is induced by
shaking. Their method includes important nonsequential
features but does not include a criterion for the stability
of the packing, and hence cannot be used, directly, to fol-
low the changes in volume fraction or particle coordina-
tions that occur as a result of applied vibrations. In a
three-dimensional simulation, Soppe [25] produced non-
sequential consolidated packings by combining a Monte
Carlo compression with ballistic deposition. This method
also omits an explicit stability criterion, but, by using a
particular prescription for annealing the packing, it leads
to unstable beds of particles with volume fractions
P=—0.60. Stable packings that contain features due to
nonsequential reorganization were used by Duke, Barker,
and Mehta [4] to study the steady relaxation of the slope
of a two-dimensional pile of hard particles that is caused
by vertical vibrations. These simulations reproduced
qualitative features of the relaxation and indicated that
collective particle motions, over length scales comparable
with the nonsequential structural components, were im-
portant. This method forms an integral part of the shak-
ing simulations presented below.

Granular-dynamics simulations are usually performed
in one of two distinct regimes. First there is a grain-
inertial regime [21,22], in which instantaneous, inelastic
two-particle collisions dominate the motion. These simu-
lations model powders under highly energetic (kinetic)
flow conditions, and they are most efficient at moderate
particle densities of P—=0.3 —0.4. In may ways, the im-
plementation of granular dynamics in the grain-inertial
regime follows the standard methods established for the
molecular dynamics of complex fluids using collections of
rough hard spheres. However, one important distinction
arises because the collisions between particles, unlike
those between molecules, are inelastic. The second
granular-dynamics regime, called the quasistatic regime,
is used to model [26] the slow, collective motion of close-
packed ($~0.55) collections of particles. In this case,
the contact forces between two particles are most impor-
tant, and the organization of computer simulations re-
volves around the efficient solution of many simultaneous
equations of motion for interacting particles. For most
real materials, the precise nature of the contact forces is
unclear —the so-caIied principles of limiting friction and
indeterminacy of stress [2], which are familiar to chemi-
cal engineers [27], say that the internal stress in a granu-
lar assembly is indeterminate, because the friction be-
tween two grains in contact can lie anywhere between
zero and a limiting value. Therefore the applications of
granular dynamics in the quasistatic regime [26] are re-

stricted by (ad hoc) estimates of contact forces usually
constructed from viscous and harmonic elements. Most
shaking processes take place in a series of regimes that
traverse the spectrum from grain inertial to quasistatic,
and therefore "shaking" is difficult to simulate with a
continuously tuned granular-dynamics prescription.
Thus, during a cycle of a shaking process, the grains may
experience local particle densities that vary from
P=—0.3 —0.6 and may go through periods of rapid motion
as well as through periods of slow relaxation. We hope to
report granular-dynamics simulations of shaking else-
where, but here we shall introduce a hybrid technique.

Before describing the details of our method, we would
like to comment on a few other approaches. Cellular au-
tomata [28] are being used increasingly to model granular
flow; while these are powerful tools, both because of their
flexibility and their relative speed, they are limited by
their lattice-based formulation. They are thus good for
qualitative descriptions of powder flow, but cannot probe
detailed particulate structure during and after flow. The
kinetic-theory-type approaches of Haff [29] and Jenkins
and Savage [30] and the hydrodynamic approaches of
Jackson [31] are appropriate for the situation of rapid
shear, where the grains are in constant motion, and the
assembly is assigned a "granular temperature" deter-
mined by the average mean-square velocity of the grains.
These methods are, ho~ever, inappropriate for the situa-
tion where the grains are in slow, or no, motion with
respect to each other —the continuum approach fails, be-
cause the discreteness of the grains and the effects of fric-
tion and restitution at individual collisions become in-

creasingly important. Our method [9], on the other
hand, is able to probe details of particulate structure; in
addition, we do not assume a continuum basis or a single
granular temperature, and are therefore able to cope
better with the quasistatic regime of slow shear.

III. DETAILS OF OUR
SIMULATION TECHNIQUE

In our simulations we have a bed (Fig. 1) of mono-
disperse, hard spheres above a hard, impenetrable, plane

FIG. 1. Schematic diagram of the geometry of the simula-
tion. Hard particles form a periodic bed above an impenetrable
base: the diagram shows the primary simulation cell, which is
repeated in two perpendicular directions.
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base that is at z =0. The particle bed is periodic, with a
repeat distance of I. sphere diameters, in two perpendicu-
lar directions, x and y, in the plane. Each primary simu-
lation cell contains N spheres. A unidirectional gravita-
tional field acts downwards, i.e., along the negative-z
direction.

Initially, the spheres are placed in the cell using a
sequential random-close-packing procedure [32]. The
spheres are introduced, one at a time, from large z and at
random lateral positions, and follow complex paths,
which are composed of vertical line segments and circu-
lar arcs, until they reach stable positions in contact either
with three other spheres or with the hard base. These
sphere trajectories correspond to rolling motions separat-
ed by periods of free fall. In this sequential deposition,
the moving sphere rolls over spheres that are already lo-
cated in stable positions; that is, incoming spheres cannot
disrupt the stable packing, and they cannot interfere with
other aggregating particles. In this sense, the aggregation
is slow, and the gravitational field is strong. Many au-
thors have analyzed the sequential, close-packed arrange-
ments of spheres [15,23,33] that are obtained using this
procedure. For monodisperse spheres there are boundary
layers that extend for approximately five sphere diame-
ters both above the hard base and below the free surface.
These layers contain quasiordered arrangements of
spheres. Apart from this, the packing is homogeneous
with a mean volume fraction $0=0.581+.001 and a
mean sphere coordination co =6.00+0.02 [34]. These
values are not altered substantially by introducing a small
amount (-5%) of polydispersity, and they adequately
describe the packings that are used as initial
configurations for our shaking simulations.

In our simulations, the packing is subject to a series of
nonsequential, X-particle reorganizations. Each reorgan-
ization is performed in three distinct parts: first, a verti-
cal expansion or dilation: second, a Monte Carlo consoli-
dation; and finally a nonsequential close-packing pro-
cedure. We shall call each full reorganization a shake cy-
cle or, simply, a shake. The duration of our model shak-

ing processes and the lengths of other time intervals are
conveniently measured in units of the shake cycle.

The first part of the shake cycle [4,9] is a uniform verti-
cal expansion of the sphere packing, accompanied by ran-
dom, horizontal shifts of the sphere positions. Sphere i,
at height z, , is raised to a new height z,'=(I+a)z, . For
each sphere, new lateral coordinates are assigned, accord-
ing to the transformation x'=x +g„,y'=y +g, provid-

ing they do not lead to an overlapping sphere
configuration; here g„and g are Gaussian random vari-
ables with zero mean and variance e . The expansion in-
troduces a free volume of size e between the spheres and
facilitates their cooperative rearrangement during phases
2 and 3 of the shake cycle. This expansion is uirtual: we
seek merely to introduce a free volume, not to model a
physical expansion. The parameter e is a measure of the
intensity of vibration; although we do not know the exact
functional relationship between these two quantities, we
expect them to vary monotonically for reasonably small
e. We have assumed that the freedom of motion of the
particles in the interior of the packing increases with the

intensity of the applied vibrations.
In the second phase of the cycle, the whole system is

compressed by a series of displacements of individual
spheres. Spheres are chose at random and displaced ac-
cording to a very-low-temperature, hard-sphere, Monte
Carlo algorithm. A trial position for sphere i is given by
r,

' =r, +ad, where a is a random vector with components
—1 a,a, a, ~1, and d defines the size of a neighbor-
hood for the spheres. The move is accepted if it reduces
the height of sphere i without causing any overlaps. All
the successful moves reduce the overall potential energy
of the system. The process continues until the efficiency
with which moves are accepted, measured by batch sam-
pling, falls below a threshold value e. Here d and e are
free parameters that are chosen to optimize the computa-
tional method. It is shown below that there is a regime in
which the static results are not strongly dependent on
this choice.

Finally, the sphere packing is stabilized using an exten-
sion of the random-close-packing method described
above. The spheres are chosen in order of increasing
height and, in turn, are allowed to roll and fall into stable
positions. In this part of the shake cycle spheres may roll
over, and rest on, any other sphere in the assembly. This
includes those spheres that are still to be stabilized and
that may, in turn, undergo further rolls and falls. In this
way, touching particles can be continually moved until
no further rolling is possible. This procedure allows the
formation of complex, stable, structural components, like
bridges and arches, which cannot be constructed by pure-
ly sequential processes [4,9].

The outcome of a shake cycle is to replace one stable
close-packed configuration by another. In these
configurations, each particle occupies a cluster that is
formed by its neighbors, and a "shake" is thus a reorgani-
zation scheme for a set of clusters. The role of the indivi-
dual parts of the shake cycle is clear. Expansion
represents a challenge of variable degree to the integrity
of the clusters. The Monte Carlo compression reinstates
those clusters that were deformed and, when necessary,
creates new clusters where the previous ones were des-
troyed. Finally, the stabilization phase positions the par-
ticles inside the set of clusters established in phase 2. In
phase 2, the Monte Carlo procedure generates a time-
ordered sequence of states that culminates with a state
that has an isolated potential well for each particle. Al-
though this does not replicate at every instant the actual
dynamical processes that lead to the static configuration
of spheres, and the dynamical information that it con-
tains will depend on the choices for d and e, it seems
reasonable that the set of clusters that is produced is not
too sensitive to these details.

In practice, during phase one of the nth shake cycle,
the mean volume fraction of the assembly falls from P„
to P„,/( I+a). In phase 2 the volume fraction steadily
increases to P„—=P„,, and in phase 3 it remains approxi-
mately constant. In contrast, the mean coordination
number is reduced from c„&to zero in the expansion
phase of the nth shake and remains zero throughout the
Monte Carlo compression, but, during stabilization, it in-

creases steadily to c„=—c„
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IV. SOME COMMENTS ON THE TRANSIENT
REGIME, AND STEADY-STATE RESULTS

The continuous evolution of particle positions and ve-

locities that occurs during a physical shaking process is
replaced, in our simulations, by a time-ordered, discrete
set of static N-particle configurations. The members of
each set are the nonsequentially reorganized close pack-
ings that are obtained after integral numbers t of comp-
leted shake cycles starting from a sequential random
close packing. Each set of configurations may be labeled

by three parameters e, d, and e. For each member of
these sets we have evaluated "material" properties, such
as the volume fraction and the mean coordination num-

ber, from the central portion of the packing in order to
minimize the surface effects. In all cases, this volume
contains more than 50% of the spheres in the simulation
cell.

A. Volume fractions and coordination numbers

Figure 2 shows the variation of the volume fraction P
with the number of shakes t for two different shaking in-
tensities e=0 05 and. 0.5. In both cases e =d =0.01,
N =1300, and L =8 particle diameters. At low intensity,
the volume fraction increases slowly for t & 50 and Quctu-
ates around a steady value, /=0. 598+.003, at larger
times. This corresponds to a slow compaction towards a
vibrational steady state. In this state nonsequential reor-
ganizations of.intensity a=0.05 leave the volume fraction
of the packing substantially unaltered. The steady state
does not depend on the particular choice of starting
configuration or on particular sets of pseudorandom
numbers used during the shake cycles. For @=0.5, the
evolution of the volume fraction of the packing is more
complicated. The first two shake cycles significantly
reduce the volume fraction of the packing from that of
the sequential deposit to /=0. 562+0.002. Following
this there is another transient period, t (30, in which the
volume fraction partially recovers. Finally, for t )40
another vibrational steady state is achieved, with

0=0.569+0.002.
Thus, over a range of shaking intensity, repeated non-

sequential reorganization leads to packings with bulk
properties that are insensitive to further vibrations. The
properties of the vibrational steady states will be dis-
cussed, in detail, below. Results have been obtained by
taking averages from sets of m consecutive configurations
in the steady-state shaking regime with m =—50.
Throughout, we have used simulations with N =-1300 and
L = 8 particle diameters, for which the mean depth of the
packing is approximately 20 particle diameters. For shal-
lower packings, the measured volume fractions are too
large. This is because the hard base at z =0 causes some
ordered, denser regions to occur in the lowest layers of
the packing. These layers are unimportant when measur-
ing the volume fractions of packings with depths greater
than ten particle diameters. We have also tested the
dependence of the volume fraction on the cell size L for
fixed bed depths, and conclude that serious size depen-
dence is absent for L ~ 8.

Monte Carlo consolidation is, structurally, the most
influential, and computationally the most intensive part
of each shake cycle. The duration of this phase, which
can be measured in terms of the number of Monte Carlo
steps per particle NMc/N, can be increased either by de-

creasing e (the terminating efficiency of the Monte Carlo
sequence) or by decreasing d (the maximum size of each
Monte Carlo step). However, the results of hybrid simu-
lations are not related trivially to the details of the Monte
Carlo component alone. In Fig. 3 we have plotted, for
several values of d, the steady-state volume fraction P
against the length of the Monte Carlo consolidation.
Each data point in Fig. 3 has been obtained from a
separate simulation, with @=0.5, N—= 1300, and L =8
particle diameters, by averaging the volume fraction over
20 consecutive steady-state shaking configurations. Most
importantly, for long Monte Carlo consolidations, i.e.,
for sufficiently small values of e, the volume fraction data
collapses onto a single, constant value that is independent
of d.

Figure 3 shows that, in the absence of the Monte Carlo
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FIG. 2. Volume fraction of monodisperse hard spheres plot-
ted against the number of cycles t, of a computer-simulated
shaking process. The initial sta~e is a sequential random close
packing, with volume fraction 0.581, and the shaking intensity
is a=0.05 (~ ) and 0.5 (+).

FIG. 3. Steady-state volume fraction of monodisperse hard
spheres plotted against the length of Monte Carlo consolidation
(measured in Monte Carlo steps per particle NMc/N). The
Monte Carlo consolidation is the second phase of a three-phase
computer-simulated shaking process with shaking intensity
@=0.5. The maximum Monte Carlo step lengths are d =0.004
(~ ), 0.01(+),0.05 (o), and 0.2 (X).
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FIG. 4. Steady-state volume fraction of monodisperse hard

spheres plotted against the shaking intensity.

phase, the steady-state volume fraction, for shaking in-
tensity @=0.5, is /=0. 589+0.001. This is greater than
the volume fraction for a sequential deposition process,
which itself could be viewed as a shaking process,
without a Monte Carlo phase, of intensity e= ao. For the
smallest values of d, the Monte Carlo consolidation has
little effect for NMC/N & 10 . This indicates that, in the
first part of the Monte Carlo dynamics, the particles ex-
perience a period of free diffusion. For longer consolida-
tions, and for larger values of d, the downward motion of
the particles is a collective process. The regions of Fig. 3
in which P decreases with NMc/N correspond to in-

creased numbers of cooperative features that are trapped
into the stable, close-packed structure by extending the
period of Monte Carlo consolidation. The minima in Fig.
3 indicate that premature termination of the Monte Carlo
consolidation can cause too many large bridges and voids
to be trapped in the stable packing. The mean coordina-
tion number of the spheres e remains weakly dependent
on d for long Monte Carlo consolidations, but, in tests
with e =0.05 and 0.5, the values of e obtained by extrapo-
lation to d =0 do not differ substantially from those ob-
tained with d =0.01.

After the above comments on the transient regime, we
now discuss the steady state: the results presented in the
following are mean values taken from m -=50 consecutive
cycles in the steady-state regime of the shaking process.
Figure 4 shows the variation of the steady-state volume
fraction P with the intensity of vibration e For e). 1.0,
the volume fraction is only weakly dependent on e with
P—=0.550+0.003. However, P rises sharply as e is re-
duced below a=1.0 and, for e 0.2, the shaken assembly
adopts configurations that are more compact than those
for sequentially deposited spheres. This is a clear mani-
festation of the collective nature of the structures that are
introduced by a shaking process.

Figure 5 shows the variation of the steady-state mean
coordination number of the spheres c with the intensity
of vibration e. For e 0.25, the mean coordination de-
creases as e increases, and it is approximately constant at
c —=4.48+0.03 for larger intensities. The mean coordina-
tion number in a shaken assembly is substantially below
that for a sequential deposit (c =—6.0) refiecting the pres-
ence of bridges and other void-generating structures.
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Also shown in Fig. 5 are the mean fractions, P(n) for
n =3—9, of spheres that are n-fold coordinated in pack-
ings subjected to steady-state shaking vibrations at inten-
sities @=0.05 and 0.5. Most spheres touch four or five of
their neighbors. For larger values of e, the proportion of
fourfold-coordinated spheres is increased, largely at the
expense of sixfold-coordinated spheres; i.e., the peak of
the distribution moves towards lower coordination num-
bers.

From Figs. 4 and 5 we note that for 0.25 ~ e~ 1.0, the
steady-state volume fraction steadily decreases with e,
while the mean coordination number remains constant.
This is consistent with the interpretation that, on the one
hand, the density of bridges is independent of e, but that,
on the other, the shapes of the bridges become in general
more eccentric (and therefore more wasteful of space) as
e is increased.

B. Network analysis

Each stable configuration of spheres has associated
with it a network, called the contact network, which can
be formed by drawing line segments between the centers
of all pairs of touching spheres. We have studied the evo-
lution of the contact network in order to follow local
sphere correlations during shaking. For each sphere i at
time t we define an (N —1)-dimensional vector b;(t), such
that the jth element of b;(t) is unity if sphere i is touch-

ing sphere j at time t, and zero otherwise. Figure 6 shows
the variation with time of the average autocorrelation
function

z(t) = (b, (t').b, (t +t') lib, (t')i ib;(t +t')i ),
for spheres in the interior of the packing, at two shaking
intensities @=0.05 and 0.5. In both instances the initial
rate of breaking of contacts is greatest, and for larger
times t ~10 the rate becomes approximately constant.
The main conclusion from the figure is that contact
correlations disappear relatively slowly for low intensities
of vibration: more quantitatively, we find that a single
nonsequential reorganization with e =0.5 is approximate-

Shake Intensity

FIG. 5. Mean coordination number of monodisperse hard
spheres plotted against the shaking intensity. The inset shows
the mean fractions P(n) of spheres that are n-fold coordinated
in the steady-state regime of the shaking process that has shak-

ing intensity @=0.05 (solid lines) and 0.5 (dashed lines).



45 VIBRATED POWDERS: STRUCTURE, CORRELATIONS, AND. . . 3441

1.0

0.8—

0.6—

0.4—

~ ~ ~ ~
~ ~ ~ ~ ~ ~ y ~ 0 ~ ~ ~ ~ ~ ~, ,

+
+

++++++
++

+++++++m
++g

0.2 I

10
I

20 30

FIG. 6. Autocorrelation function z(t) of the contact network

plotted against the number of shake cycles t for rnonodisperse
hard spheres in the steady-state regime. The shaking intensity
is a=0.05 (~ ) and 0.5 (+).

gains a new one, sphere G. In this case, the overall im-

pression is one of network disruption. The network con-
nectivity is altered significantly in this case, and a com-
parison of Figs. 7(b) and 7(d) shows many examples of
bond creation and annihilation.

A notable insight to be gained from Figs. 7(b)—7(d) is
that bridge collapse occurs more frequently for large vi-

brations. In Fig. 7(b), spheres H and I rest on, and sup-

port, each other and therefore form part of a bridge; this
feature is retained in Fig. 7(c) (contact network after
small vibrations), but not in Fig. 7(d) (contact network
after large vibrations), where sphere H gains additional
support by contacting sphere A from above. We see from
a comparison of Figs. 7(b) and 7(d) that the bridge incor-
porating spheres H and I has collapsed after a single
(large-intensity) shake.

C. Correlation functions

ly twice as eScient at disrupting the contact network as
one with @=0.05.

The behavior of z(t) is consistent with snapshot obser-
vations of consecutive contact network configurations.
Figure 7 highlights the responses of a smal1 group of
neighboring spheres, which are in the interior of a much
larger packing, to vibrations of two different intensities.
Figure 7(a) shows the spheres that are instantaneously
within a spherical capture volume, and Fig. 7(b) shows
the contacts between them. We note that contacts be-
tween spheres at the periphery of the capture volume and
spheres that are outside it are not represented in Fig. 7.
The capture volume is centered on sphere A and has a ra-
dius of approximately two sphere diameters. In Figs.
7(b) —7(d) small balls mark the positions of centers of the
close-packed spheres, and rods represent the sphere con-
tacts. The initial configuration of packed spheres, which
is a configuration obtained at the end of one particular
shake cycle in the steady-state shaking regime with
a=0.05, is shown in Fig. 7(a), and its associated contact
network is shown in Fig. 7(b). Figures 7(c) and 7(d) are
the contact networks for configurations that are obtained
after the application of one further complete shake cycle,
with intensity a=0.05 and 0.5, respectively.

In the initial configuration sphere A rests on spheres B,
C, and D, and is touched by one other sphere, labeled E,
which rests on it. After an additional shake cycle with
a=0.05, the sphere A remains stabilized in the same way
but has gained a further contact, with sphere F, from
above. There are many differences between the networks
in Figs. 7(b) and 7(c) but they are mainly small changes,
of the sphere positions and the rod orientations, which do
not grossly alter the network connectivity. During the
extra shake cycle, one sphere has left the capture volume
and another has entered it, so that the numbers of centers
in Figs. 7(b) and 7(c) are identical. The overall impres-
sion is one of network deformation.

In contrast, the network in Fig. 7(d) does not closely
resemble the one in Fig. 7(b). There is a net loss of two
spheres from the capture volume during the additional
shake cycle with a=0.5. After this extra shake, sphere A
retains only two of its original supporting neighbors and

The pair distribution functions of particle positions,
It (r) for separations in a horizontal plane and g(z) for
separations in the vertical direction, are illustrated in Fig.
8 for @=0.05 and 0.5. The data sets for these functions
were collected, over m =-25 cycles, from horizontal slabs
with a thickness of one sphere diameter and from vertical
cylinders with cross sections equal to that of one sphere.
In both directions, the structure is similar to that expect-
ed for dense, hard-sphere fluids. The short-range order is
most pronounced in the horizontal direction, while the
pair distribution function in the z direction, g (z), is rela-
tively insensitive to variations of the shaking intensity.
Both functions indicate the presence of a second shell of
neighbors at a separation of approximately two particle
diameters: we conclude from these figures that the
short-range order decreases with increasing intensity of
vibration, in accord with intuition.

During a shake cycle, each particle i is shifted in posi-
tion by Ar;=Ax;i+Ay;j+hz, k, where i, j, and k are
unit vectors in the x, y, and z directions. We have plot-
ted, in Fig. 9, correlation functions of the vertical com-
ponents of displacement hz; for e=0 05 and 0.5.. H(r)
measures the correlations in a horizontal plane and G(z)
measure the correlations in the vertical direction accord-
ing to

H(r) =(bz;bz, 5(It;, I

—r)8(lz;, I

—
—,') & I& Ihz; I &

G( )=(&;&,&(I;, I

—)8(It;, I

—
—,') &/(I&;I &',

where t, =(x, —x ) +(y, —"y ), z,"=z;—z, and 8(x) is
the complement of the Heaviside step function. The
averages are taken over all pairs of spheres i and j and
over m =—25 shake cycles. We note that, over the range
of shaking intensities we have studied, the mean size of
vertical displacements during a shake cycle, ( Ib,z, I &, is a
monotonic, increasing function of the intensity. Figure
9(a) shows that H(r) decreases rapidly to zero with in-
creasing r, and that there is a small decrease in the mag-
nitude of the longitudinal displacement correlations,
measured in the transverse direction, as the shaking in-
tensity is increased. The data in Fig. 9(a) give an esti-
mate for the horizontal range over which the spheres
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FI~. 7. (a) Three-dimensional representation of a cluster of 35 spheres. The cluster is part of a large assembly of spheres that have
been subjected to shaking vibrations with intensity a=0.05. (b) The contact network that corresponds to the cluster of spheres
shown in (a). Small balls represent the centers of the packed spheres and rods represent the contacts between them. The centers of
the spheres B, C, D, and E, which contact the central sphere A, have been colored red. Contacts with the spheres that are outside of
the cluster have not been shown. (c) The contact network that corresponds to the cluster of spheres that is obtained after the cluster
in (a) is subjected to a further shake cycle with intensity a=0.05. (d) The contact network that corresponds to the cluster of spheres
that is obtained after the cluster in (a) is subjected to a further shake cycle with intensity a=0.5.
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1.5 1.5 model [3], which says that collective (independent-
particle) motions predominate for lower (higher) intensi-
ties of vibration.
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FIG. 8. Pair distribution functions of particle positions h (r)
and g (z) for monodisperse hard spheres in the steady-state re-
gime plotted against horizontal displacement r and vertical dis-
placement z. The shaking intensity is @=0.05 (~ ) and 0.5 (+ ).
The peak heights, which are not shown, have been estimated as
h (1)=6.35(6.20) and g (1)=4.40(4.25) for a=0.05(0.5).
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FIG. 9. Correlation functions H(r) and G(z) for the vertical
displacements of spheres during a single cycle of the steady-
state shaking process plotted against horizontal displacement r,
and vertical displacement z. The shaking intensity is a=0.05
(~ ) 0.5 (+).

move collectively during a shake cycle, and thus provide
a measure of the typical "cluster size" in the transverse
direction.

Clearly, during vertical shaking, the motion of a parti-
cle is more sensitive to the positions and the motion of
those neighbors that are above or below than it is to those
that are alongside. Figure 9(b) shows that the correla-
tions of the longitudinal displacements measured in the
longitudinal direction are stronger than those measured
in the transverse direction, that is, G(z) has a large first
peak and, at large displacements, it decreases more slow-
ly than 8 (r). Also, G (z) depends strongly on the intensi-
ty of the vibrations, and, for small e, it has a distinct
(negative) minimum at approximately z =1.3 sphere di-
ameters. This implies that at these separations, which
are typical of vertical particle separations in shallow
bridges, many sphere displacements are not strongly
correlated, and several of them move in opposite direc-
tions; hence this feature is consistent with the slow
compression or collapse of shallow bridges. The correla-
tion functions of the transverse components of the sphere
displacements are negative at small separations, which is
consistent with spheres sliding past each other as they are
displaced in the x and y directions.

We conclude from all the above that the size of a typi-
cal dynamical cluster, in both longitudinal and transverse
directions, decreases with increasing intensity of vibra-
tion. This verifies the predictions of the microscopic

D. The "hole" space

We have concentrated on the static properties and the
pair correlations of spheres that form a random-close-
packed structure. Equally fundamental, and intimately
related, problems concern the nature of the continuous
network of empty space, consisting of pores, necks, and
voids, etc. , which complement the physical structure. In
order to investigate the pore space of shaken packings,
we have constructed the complex structures formed from
overlapping holes. For a close-packed bed of spheres, the
overlapping holes are another species of spheres, each of
which touches four of the packed spheres. The holes may
overlap each other but cannot intersect any of the packed
spheres. For a monodisperse close packing, the max-
imum hole size is approximately the same as the sphere
size, and the minimum hole diameter is 0.224 times that
of the spheres, corresponding to the hole at the center of
a regular tetrahedron formed from four spheres.

Figure 10 shows a small section of the overlapping hole
structures for vibrated packings with a=0.05, 0.5, and
1.5, and Fig. 11 shows the corresponding distribution
functions for the hole radii. From Fig. 11, it is clear that
small-intensity shaking is an efficient method of removing
larger holes from the overlapping hole structure, and,
therefore, a method for removing large voids from a
packing without producing a regular structure. We also
note, from Fig. 10, that low-intensity shaking leads to
large numbers of isolated holes, and isolated hole pairs,
whereas the larger-intensity vibrations create clearly
defined strings of connected, overlapping holes. This im-
portant feature has clear implications for the transport
properties of vibrated beds of particles, and we hope to
report on these in more detail at a later date.

E. The surface

In addition to furnishing data on the bulk properties,
our simulations can be used to obtain information about
the surface of shaken particulate assemblies. Surface mea-
surements are subject to larger uncertainties than bulk
measurements because they involve only a fraction of the
particles contained in the simulation cell, and also be-
cause they are generally more susceptible to system size
dependence. For simulations with L =8 particle diame-
ters and N=-1300, we have measured the mean-square
surface width o =L g, (z; —zo) defined by the spheres
i, which have heights z, and which are the highest
spheres in each L vertical columns that have cross sec-
tions of one square-sphere diameter. zo is the mean
height of the bed. All the surfaces that we have exam-
ined are smoother than the surface of a sequentially de-
posited aggregate that has o. =0.44+0.02. For e &0.5
the surface width is approximately independent of e and
o. =—0. 16+0.02. For larger shaking intensity, cr in-
creases with e, and for @=1.5, o- -=0.23+0.02. This is in
keeping with the qualitative predictions I3] of our model,
which state that greater surface roughening arises as a
consequence of violent vibrations. We have not been able
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to establish the scaling properties of o. ,
' however, we

have confirmed that these trends are followed by other
measures of the surface irregularity. Most notably we
have used a Monte Carlo method to investigate the reac-
tion surface for ballistic aggregation with small test parti-
cles, which have a diameter of 0.001 sphere diameters-
in this case as well, the mean-square width of the reac-
tion surface follows the behavior outlined above.

Other studies of surface roughening I35 —37] have con-
centrated on the scaling regime appropriate to sequential
deposition in the presence of noise. Since our current ap-
proach is restricted to sizes below the scaling regime, be-
cause we incorporate complex and nonsequential reor-
ganization processes, we are unable to compare our re-
sults on surfaces with those presented in Refs. I35 —37].
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FIG. 11. Distribution functions I'(r) for the radii r of the
overlapping holes presented in Fig. 10. The shaking intensity is
@=0.05 (~ ), @=0.5 (+), and @=1.5 (0).
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However, the results we have presented do provide a
quantification of surface roughening in cooperatively res-
tructured packings. We hope to report further on the sur-
face properties of shaken particulate assemblies, as well
as the surface-penetration effects, at a later stage.

V. DISCUSSION

(c)
T p»»

* P

'd
d»d

FIG. 10. Sections of the overlapping hole structures that are

topologically complementary to the structures formed by the

spheres. The shaking intensity is (a) @=0.05, (b) @=0.5, and (c)
@=1.5.

In the preceding sections we have shown that our
simulations provide direct and meaningful microscopic
observations of nonsequentially reorganized granular
structures. The simulation technique allows us to ob-
serve the packing both internally and nondestructively
(which is outside the scope of current experimental tech-
niques), and it therefore provides a unique opportunity to
learn about the bulk behavior and the transient responses
of granular solids subjected to vibration by focusing on
the relaxation mechanisms at the particulate level. Thus
our simulation method provides a description that is su-

perior to a continuum description and that provides the
basis for a fundamental understanding of realistic (nonse-
quential) particle dynamics.

The hybrid Monte Carlo method used above allows us
to construct, both efficiently and consistently, nonsequen-
tial reorganizations of random close packings, but, in so
doing, it sacrifices detailed knowledge of the granular dy-
namics and is unable to look at the effects of the quality
and the frequency of the applied vibrations. In this sense,
we have not built a model of one particular shaking pro-
cess from which quantitative data will result, but have
designed a working tool to study the qualitative features
of shaking and nonsequential processes, in general.

All our simulations have been performed using rnono-
disperse collections of spheres in open systems. It is un-

likely that the introduction of a small amount of po-
lydispersity, in either the sizes or the shapes of the parti-
cles, would seriously alter our conclusions. However, it is
certain that, ultimately, the introduction of variations in
the sizes and the shapes of the particles would cause new
shaking-induced effects, such as size segregation and the
appearance of particularly favorable close packings, to in-
teract with, and probably cloud, the effects that we have
observed. Also, we have employed periodic boundary
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conditions throughout in order to compensate, at least in
part, for the size restrictions that are imposed by our
computational limits. It must be emphasized that
confining walls and the particle wall interactions play a
major role in most powder-handling applications. The
extension of our scheme to include the effects of po-
lydispersity, confining walls, as well as other interparticle
interactions, represents a primary goal of our future
work.

We note that the algorithm, as employed here, does not
ensure the homogeneity of bridge nucleation. This is be-
cause, in the ordered consolidation in phase 3 of our
shake cycle, the packing gradually produces a gap be-
tween consolidated and unconsolidated particles. The
size of our simulations makes this effect relatively unim-
portant, but, in larger simulations, the effect can be over-
come by incorporating into the consolidation phase a
three-dimensional extension of the local shifts that were
introduced by Duke et al. [4] to ensure homogeneous
distribution of bridges in a two-dimensional shaken pile.

The results we have presented establish links between
the observed changes of the material properties, which
occur as the shaking intensity varies, and the underlying
microscopic correlations of the particle positions and dis-
placements. From these results we identify competing
roles for the independent-particle and the collective re-
laxation mechanisms that occur in nonsequentially reor-
ganized random close packings —and verify earlier pre-
dictions [3] that independent-particle (collective) effects
dominate at high (low) vibration intensity. Contact net-
work measurements show that at high intensities, indivi-
dual particles are regularly ejected out of their local envi-
ronments, and, hence, one particle may sample many
different environments over a short period of time. In
contrast, at low shaking intensities, each particle experi-
ences a slow deformation of its environment during shak-
ing, and the identity of the particles that form its close
neighbors remains relatively constant; thus, at these
lower shaking intensities it is rare for a particle to make a
transition into a totally new environment.

In our packings, the particles that form parts of
cooperative structures, such as bridges and arches, are
subject to the different rates of change of their local envi-
ronment caused by different shaking intensities. This
leads to nonsequential reorganization behavior which de-
pends, qualitatively, on the shaking intensity. During
high-intensity shaking, cooperative structures form and
disappear rapidly, so that most of the bridges, etc. , that
are present in one particular configuration are only one
or two generations old. These "immature" bridges have
shapes that are those most favored at their formation,
and these are, in general, wasteful of space. Thus the
packing fraction takes a low value. In the low-intensity
regime, the cooperative structures form and then deform,
along with their local environment, over several further
cycles before they become too tenuous to survive. In this
case, a packing may contain bridges that are many gen-
erations old ("mature") and that have shapes that are
favored by their stability against disruption. This includes
shapes that have relaxed downwards and are therefore
"Batter"; the result is a higher packing fraction, i.e., a

minimization of the void space, and a shift of the hole
size distribution to smaller sizes.

According to our definition of a "bridge, " several of
the spheres that form part of the structure will have a
deficit of neighbors, particularly in the downward direc-
tion, and, therefore will have low coordination numbers.
Thus the mean coordination number of a packing will de-
pend on the density of bridge contacts, and in turn this
density will depend on the number density of the bridges
and on the mean size of a bridge (i.e., the mean number of
spheres that are required to construct one bridge). We
can determine the latter from our measurements of H(r);
these indicate the lateral extent over which the vertical
displacements of the spheres are positively correlated
during one shake cycle, and our results show (Fig. 9) that
the mean bridge width is quite insensitive to the shaking
intensity. Nonzero correlations extend over approxi-
mately 1.5 sphere diameters, indicating an average bridge
width in the region of 3.0 sphere diameters, for both large
and small intensities of vibration.

Given the observed independence of the mean coordi-
nation number on e, for @~0.25, we infer that the num-
ber density of bridges is approximately constant in this
regime. For @&0.25, the mean coordination number
rises, which indicates (since the bridge size stays approxi-
mately constant) that the mean number density of bridges
falls.

We now show the effect of the nature of the collapsed
bridges on the resultant packing. For the lowest shaking
intensities, the packing includes regions that result from
slowly collapsed, mature, and Hatter bridges, i.e., bridges
that deformed considerably before their contact network
was disrupted. We suggest that these are regions of par-
ticularly efficient random close packing and therefore
cause the mean volume fraction to rise above the value
that can be obtained by sequential packing processes.
The enhanced short-range correlations of the particle po-
sitions (cf. Fig. 8), which we observed for a=0.05, are
consistent with this interpretation. In the high-intensity
regime, it is the "immature" and angular bridges that col-
lapse, and the aftermath of such collapses is not distin-
guishable from a sequentially deposited structure, with
smaller short-range correlations in particle positions and
lower packing fractions. The above thus illustrates (via
the specific mechanism of bridge collapse) the point [3]
that, at low intensities of vibration, collective reorganiza-
tion of particles (and the consequent slow rearrangement
of particle bridges) will lead to the efficient filling of
voids, and the converse.

In conclusion, then, we have presented a detailed study
of the microscopic processes at work in the interior of a
vibrated granular pile. We have investigated the bulk
structure, by analyzing the behavior of the volume frac-
tion and the distribution of coordination numbers as a
function of the shaking intensity. We have also presented
a detailed study of the contact networks and their auto-
correlation functions before and after vibration, and have
shown that earlier predictions [3,8] regarding the roles of
independent-particle and collective relaxation mecha-
nisms are verified. The spatial correlations in the pile
after vibration have been investigated by examining the
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pair-correlation functions of particle positions, and the
distributions of voids, as a function of intensity, which
provide valuable clues to the static as well as to the trans-
port properties, with particular reference to the impor-
tant issue of bridge formation and collapse. Finally, we
have shown directly the dynamical behavior of grains
submitted to vibration, by examining the displacement
correlation functions as a function of intensity and
demonstrating that the slow motion of clusters predom-
inates at lower intensities, relative to the motion of in-

dependent particles, and the converse. We look forward
greatly to experimental verification of this rich array of
theoretical [3,4,8,9] results, which our present work in its
detail has brought within reach of current experimental
techniques [38].
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