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Global dynamics underlying sharp basin erosion in nonlinear driven oscillators
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For periodically driven damped oscillators with the ability to escape from a potential well, the erosion
of the nonescaping basin of attraction begins at the homoclinic tangency of the stable and unstable mani-

folds of the hilltop saddle cycle. The consequent rate of erosion, however, is intrinsically dependent
upon the manifold organization, which to a large extent is determined by the heteroclinic events follow-

ing the homoclinic tangency. In this paper we outline how, under small parameter changes, there can
exist a rapid erosion of the nonescaping basin.

PACS number(s): 05.45.+b

I. INTRODUCTION

In typical dynamical systems several attractors can
coexist, each embedded in its own basin of attraction.
Under the variation of a control parameter, as attractors
move and bifurcate, the basins also undergo changes and
metamorphoses; new basins are created, old basins are
destroyed, and existing basins evolve [1]. Furthermore,
basins of attraction can have highly intertwined or even
fractal boundaries which can result in a (substantial) re-
gion of phase space having an infinitely textured homo-
clinic structure [2,3]. In such circumstances, with the in-
herent uncertainties in the specification of the initial con-
ditions, experienced by all dynamical systems to some de-
gree, long-term predictability can be lost [4]. Thus, from
both a practical and a theoretical point of view, there has
been much study concerning the qualitative and quantita-
tive reorganization of basin structure as parameters pass
through certain critical values.

Recent studies have identified and quantified how un-
der small parameter changes, there can exist a rapid ero-
sion and stratification of a basin, as a result of the homo-
clinic tangency of the stable and unstable manifolds of a
regular saddle, which can have severe consequences for
the integrity of an operating dynamical system [5,6]. In
this paper the mechanism by which such a situation can
arise is discussed. As homoclinic and heteroclinic
tangencies of regular saddles play an important role in
basin structure, we describe the major events that can in-
duce conditions that lead to a sharp drop in basin area.
It is shown that the erosion begins at a homoclinic
tangency, but the consequent rate of erosion is largely
dependant upon the manifold organization. We estimate,
for a typical driven damped oscillator, parameter values
that trigger this rapid erosion, and at which control
values such behavior is most pronounced.

As an illustrative example, we shall consider the prob-
lem of the sinusoidally forced motions of a particle in a
single potential well, V= —,'x —

—,'x [7], with the govern-
ing equation of motion

x+Px+x x=F sincot, —

where x is the dependant variable and a dot denotes
differentiation with respect to time t. We define x —=y and
when considering Poincare mapping, we focus attention
throughout on phase /=180'. The positive coeScient P
represents the magnitude of damping, and the oscillator
is driven by the sinusoidal force of magnitude F and cir-
cular frequency co. As a specific case, chosen to illustrate
the main features of basin erosion, we fix m=0. 83 and
P=O. 1. This value of P corresponds to damping ratio of
(=0.05 which is typical of many mechanical and physi-
cal systems.

The initial conditions will determine whether the sys-
tem "escapes" to the attractor at infinity, x~00 as
t~co, or settles to a bounded oscillation as t~00. In
this study we consider how coexisting basins evolve as the
forcing is increased through certain critical values, pay-
ing particular attention to the process of the incursive
erosion by the basin of attraction of infinity (escaping
basin) into the safe or bounded basin (the union of the
basins of the nonescaping attractors). It has been shown
that the dominant individual bounded basins of attrac-
tion belong to those attractors originating from the fun-
damental F=x =y =0 equilibrium state. So, generally,
except during a region of resonant hysteresis, the bound-
ed basin will be for practical purposes that of a single at-
tractor. There are, of course, many coexisting attractors
(usually with very small basins), born at saddle-node bi-
furcations, but these are usually observed over a small
range of Fbefore they are destroyed at a boundary crisis.

II. OVERVIEW

Before proceeding in more detail, we give a brief and
simplified overview of the mechanism of basin erosion, as
shown schematically in Fig. 1, that would be common to
all periodically driven nonlinear damped oscillators with
the ability to escape from a potential well. The first large
portrait (from the top) at low forcing F shows, in the
space of the starting conditions [x(0), y(0)], the gray
nonescaping basin whose boundary is formed by the
stable manifold (inset) of the hilltop saddle cycle, Dh.
The stroboscopic Poincare mapping point of the unique
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nonresonant attractor, S„,is shown lying in its gray basin
of attraction. The constant negative divergence of flow, a
consequence of the constant positive damping coefticient,
implies that the basin must have infinite basin area in the
full Poincare section, with a finite area in any finite win-
dow of interest.

The relevant bifurcational events are illustrated by the
small portraits, and the first one encountered under in-
creasing F is the saddle-node fold B, which creates a reso-
nant saddle D„and an adjacent resonant attracting node
S„.The negative divergence implies that S„is born with
a "residual" basin of (in)finite area.

The basin structure after the fold B is illustrated in the
second large portrait. The total nonescaping basin, still
bounded by the stable manifold of Dz, is now divided in
two by the stable manifold of the resonant saddle, D, .
The basin of S„is shown in black. Because the stable
manifold of D„is born heteroclinically tangled with the
unstable manifold of D&, the two bounded coexisting
basins accumulate onto D&. But the boundaries are still
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smooth and as yet there is no fractal structure.
This changes at the global bifurcation M predicted ac-

curately by a Melnikov perturbation analysis, at which
the stable and unstable manifolds of D& have a homoclin-
ic tangency. The ensuing homoclinic tangle generates a
fractal basin boundary. This situation shortly after the
Melnikov tangency is shown in the third large portrait
where large incursive fractal fingers are starting to
penetrate into the black resonant basin. However, they
have not yet crossed the white line representing the un-
stable manifold of D, directed towards S„andthe rate of
erosion of the safe basin, comprising the union of the
basins of S„andS„,is still relatively low.

However, when there is a heteroclinic tangency H at
which the stable manifold of Dz touches the unstable
manifold of D„,there is a triggering of a major fractal in-
cursion in which the escaping fractal fingers flash
through the unstable manifold of D, and accumulate on
the stable manifold of D, . This generates the rapid rate
of erosion of the safe area, under increasing F, at fixed
value of co.

Since its creation with S„atfold B, the resonant saddle
D„hasbeen moving steadily across the portrait towards
S„,and at fold 3 we witness their collision and annihilaoo

tion. This marks the end of the hysteresis regime involveo

ing the two major coexisting harmonic attractors, S„and
S„.At this fold A, the (in)finite residual basin of S„is in-

stantaneously infinitely striated. Under further increase
of F, these fine striations thicken out, so that in the final
portrait the whole of the black basin of S„is heavily erod-
ed by relatively thick fingers. The erosion process contin-
ues as a sequence of basin implosions associated with
short-lived subharmonic cascades at the extremities of
the major incursive fingers and related changes in accessi-
ble saddle orbits.

Meanwhile, the resonant harmonic attractor, S„
period-doubles to a chaotic attractor which is annihilated
in a final collision with the current accessible orbit. This
boundary crisis, E, marks the end of the main sequence of
attractors after which there is no (major) attractor avail-
able to the system and (almost) all the transients lead to
escape. There may indeed be small regimes of F contain-
ing bounded attractors but these usually have very small
basins of attraction.

~ oeo
~ ~ ~

oe A~ ~ ~

FIG. 1. Schematic representation of the mechanism of basin
erosion generating a sharp loss of basin area.

III. CONDITIONS LEADING TO A DRAMATIC
EROSION OF THE BASIN OF ATTRACTION

Having briefly described the main events concerning
the basin-erosion process, we now look in more detail at
the role of the stable and unstable manifolds of the main
regular saddles, which to a large extent, determine the
properties of basins of attraction. For systems with the
ability to escape out of a potential we11, the hilltop saddle
cycle Dz, which originates from the unstable equilibrium
[I'=y=0, x = I I, plays a key role. It is the stable mani-
fold W'(D„),of Dh, which consists of two components ei-

ther side of the saddle, that defines the boundary between
the escaping and nonescaping (safe) basins. For relatively
sma11 forcing levels, the basin boundary is smooth; initial
points starting outside this boundary map under forward
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time to the attractor at infinity, whereas points within it
map to a small stable n =1 oscillation S„,which origi-
nates from the stable equilibrium position
[F=x=y =0]. The unstable manifold of Di„W"(Dz),
also has two components. The left-hand interior (within
the potential well) branch, W„"(Dz ) lies completely
within the basin of S„,with points on it mapping to S„as
t~ ao. The right-hand exterior branch Wii(DI, ) lies
completely outside the safe basin, points on it mapping
towards the attractor at infinity.

As the forcing is increased, the system approaches a
saddle-node bifurcation (at F = 0.0488), which will re-
sult in a new saddle-node pair D„andS„(rfor resonant, n

for nonresonant). Accordingly, although there is no
change in topological structure before F, there is consid-
erable underlying manifold reorganization associated
with the impending accumulations; most significant is the
increased distortion of W„(Di,) in the neighborhood of
the imminent saddle-node creation of an S„basin [8).

At the saddle-node bifuraction at F, there is the in-
stantaneous creation of a basin for S„within the safe
nonescaping basin still bounded by W'(Dz ). It follows
from the continuous contraction of phase area, and the
corresponding increase of area under negative time, that
the basin is born with infinite area in the full Poincare
section. Within a finite window of this section, it will be
born with a finite nonzero area, implying an instantane-
ous equal and opposite decrease in the area of the basin of
S„.

Figure 2(a) shows the invariant manifolds [9], shortly
after the saddle-node bifurcation, where the node has
moved away from the saddle into the interior of its basin.
The boundary between the S„andS„basins is W'(D„),
both branches of which tend to x=+00, y= —00, as
t~ —ao. Both branches are born heteroclinically tan-
gled with W„"(Ds ) so that simultaneously with the saddle
node at F, we have the two heteroclinic conditions,
het(1); Wz (Di, ) Cl W'„(D„)%8,and het(2); W„"(Dl, )

A Ws(D„)%8.
It follows firstly that W„"(Dz) is accumulated on either

side of W"(D„)—:W„"(D„)U Wz(D„), the unstable mani-
fold of D„,so that W"(D„)is contained within the closure
of W„(Dz); this results in the manifold exhibiting a
banded structure in this region. Secondly, W„*(D„)and
Ws(D„)are accumulated on the "inside" of the global
basin boundary formed by W'(Dz), so that W'(DI, ) is
c Aotainpd swithin the r 1neiirs nF LV ( A l The s-p ic thllc

crossing the unstable manifold will, under negative time,
be drawn towards the saddle and contract in width by ap-
proximately 1/A z =0.000 88, and be stretched by
I/As=2440, i.e. Uery fast stretching and contraction
occurs near the saddle. This explains why "tails" of the
S„basinaccumulating onto the stable manifold of D& are
not visible near Dz. On the other hand, at these parame-
ter values, the eigenvalues of the resonant saddle, D„,are
A+=0. 351 and AU=1. 337, implying that, here the con-
traction and stretching actions are less pronounced as ob-
served by the accumulation of W„"(DI, ) onto W"(D„).

As the forcing is further increased, a continuous reor-
ganization between the two competing bounded basins
takes place and W'„(Di,) approaches W„"(D&) until they
touch at a homoclinic tangency at F =0.0623, which
has been predicted accurately for the cu values of current
interest, by a Melnikov analysis [7,10]. One tangency of
the manifolds implies an infinite number of tangencies,
and at F we shall observe W'„(D )Iaccumulating on

Ws(D& ) and W„"(DI, ) accumulating on itself. An infinite
number of fingers of the unsafe basin bounded by
Wz (D& ) will thus be lined up roughly parallel to
Ws(D„),all fingers touching W„"(Dz ) at F

The homoclinic tangling can be written as horn(1):
W„"(Dz ) A W„'(DI,) =8, after the tangency W'„(Di,) ac-
cumulates on both W„'(DI,) and Ws(D& ). The infinite
series of progressively longer and thinner fingers now ac-
cumulate on the inside of the stable manifold W'(D&),
giving the well-known fractal basin boundary [2]. In the
terminology of Grebogi et al. [11],the hilltop saddle cy-
cle D& is now inaccessible from the finite attractor but is
still accessible from the attractor at infinity. The infinity
of fingers of the fractal boundary is a manifestation of es-
caping chaotic transients, of arbitrary duration, associat-
ed with the mapping from one finger to the next.

Figure 2(b) illustrates, at a forcing level above that of
the homoclinic tangency, the initial development of the
tangling process. Here the tip of the main finger, area
R, maps to the smaller area R' under one forcing
period, which in turn maps to smaller and smaller fingers
RR, ., . . accumulating along Ws(D& ); however, due to
earlier considerations concerning the dynamics close to
D&, we may say most points mapping from area R tend
very quickly to large +x and +y. Here it must be noted
that although the eigenvalues of the hilltop and resonant
saddles have, of course, changed, their orders of magni-
tvaAe ram&in rnnebhr the e~m~
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relative contraction and stretching actions in different
parts of the phase space, R ' has very thin "tail" passing
very close to the left of D& following the initial path of
W„(D„),but has a more visible "head" due to the ac-
tions of the resonant saddle. The earlier fingerR,R, . . . are not visible, but constitute progressive1y
longer and thinner fingers which wrap around the shorter
fatter fingers. However, at this stage, this highly in-
tertwined fractal structure is confined as a thin layer
which is highly compressed against the outer edge of the
basin boundary.

As the forcing is further increased, the erosion contin-

ues; Fig. 2(c) shows the development of the tangle. The
main finger R makes further intersections with

Wz (Dz ), corresponding to important changes in Birkhoff
signature [12,13]. All forward and backward images R',
make corresponding synchronized further intersection,
with more fingers moving up into the bounded basin.
Such behavior can clearly be seen in this figure where
three preimages of R are clearly visible.

Additional homoclinic and heteroclinic connections
occur, which have significance for both the basin struc-
ture and the forthcoming saddle-node annihilation of S„
and D„[8].Firstly, there is a homoclinic tangling of
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FIG. 2. (a) Manifold organization at F=0.05; just after the saddle-node creation, there is an accumulation of W&(Dh) onto
W"(D, ) and an accumulation of W'(D„)onto W'(DI, ). Also the "knee" of W&(Dz ) moves towards W& (Dz ) as a homoclinic tangen-

cy is approached. (b) Manifold organization at F=0.065; after the homoclinic tangency, at F =0.0623, the basin boundary has be-

come fractal, resulting in the incursion of the safe basin by fingerlike projections. (c) Manifold organization at F=0.070; here we

can see the imminent homoclinic tangling of Wz(D„)with W~ (D„).(d) Manifold organization at F=0.071; the manifolds and basins
after het(3) are shown, clearly illustrating the accumulation of the escaping fingers, from the right-hand side of the saddle D„onto
the stable manifold W'(D„).
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Ws(D„}with W„'(D„),horn(2): Ws(D„}I1W„'(D„)AS,
which is closely followed by horn(3):
Ws(D, ) A WIi(D, )%8, resulting in fingers of W'(D„)ac-
cumulating around D„.

More important, however, is the heteroclinic event
het(3): Ws(D„)AWz(Ds)AP which involves the basin

boundary of the attractor at infinity. As this heteroclinic
tangency is approached, fingers 8 ' of W'„(Di,) approach
Ws(D„),onto which is accumulated W~(Ds ), resulting
in a rapid cascade of Birkhoff signature changes associat-
ed with higher-order crossings of W„'(Di,) and W„"(Di,).
At the heteroclinic tangency, there will be an infinite
number of escaping fingers lined up along Ws(D, ) and
after the tangency, W'„(Ds) accumulates on both

W„'(D„)and Ws(D„)[Fig. 2(d)].
Unlike the smooth-fraetal transition at horn(1), where

the penetration of the escaping fingers was limited to the
periphery of the bounded basin, here the event is truly in-
cursive. The relatively slow mappings in the central re-
gion of phase space, as well as the action of the resonant
saddle, have important geometrical implications for the
basin structure. As preimages of R increase in area un-
der negative interation by e ~ "=AsAU, a small in-
crease of forcing, which results in a small increase in area
of R, can induce a relatively large increase in the areas
of R ',R,R, . . . in the region considered. More
and more visible escaping fingers, under a relatively small
change in F, can quickly grow in size, then penetrate and
disintegrate the bounded basin. This is clearly seen in
Fig. 3, where fingers accumulate firstly on D&, grow in
size, wrap around D„, and then again are quickly
stretched near D&. Longer thinner fingers which wrap
around the shorter fatter fingers repeat this scenario over
and over.

Integrity measures, which quantify how the basins of
attraction change in size in both the local and the global
sense, may be used to assess such behavior [5,14]. Figure
4 shows the variation of basin area (global integrity),
within a given window of initial conditions, plotted
against F. Here it can clearly be seen that there is no
significant change of tota1 basin area up to F, where
upon there is a finite jump in area of the S, basin, which
results in an equal and opposite drop in area of the S„
basin. As the forcing is increased, there is no macroscop-
ic change in the total area but there is a natural inter-
change between the two competing basins. This process
continues up to the Melnikov tangency at F, resulting
in the initial incursion by the escaping fingers and hence a
small decrease in area; at F, these fingers then become
truly incursive and invade the center of the basin, giving
the cliNike reduction in area. The basin continues to be
eroded, at various rates, as new basins are born (e.g., S
basin at F=0.079) and old basins die (e.g., S„basin at
E=0.08). The e8'ects of the resonant saddle, with its as-
sociated accumulations, still remain after its destruction
at a saddle-node annihilation. The erosion continues un-
til the final escape at a boundary crisis at F =0.095. It
can be seen that there are metastable transient basins
after this event, associated with the folding in phase
space [15]. These results show that although the homo-

clinic tangency horn(1) triggers the beginning of the in-
cursive erosion of the bounded basins, it is the heteroclin-
ie event het(3), or its virtual derivatives, that signifies the
dramatic erosion of basin area.

IV. GLOBAL VIEW OF BASIN EROSION
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FIG. 3. F=0.0795; the manifolds (upper panel) and the
basins of attraction (lower panel) just before the tangled saddle-
node bifurcation at F =0.080, showing the mass erosion of the
resonant basin of attraction.

Having identified the main bifurcations and events that
can induce a sharp drop in basin area, we briefly put
these results in a wider context, as presented in the bifur-
cation diagram in (F,ra) control space, in the locality of
the primary resonance, in Fig. 5. Lines 3 and 8 are
saddle-node folds corresponding to jumps to and from
resonance. Line C is the first period-doubling flip bifur-
cation, at which the resonant harmonic attractor period-
doubles to a stable subharmonic of order 2. There is an
infinite cascade of these flip bifurcations leading to a
chaotic attractor which finally loses its stability at a crisis
at E. Line M is the locus of the homoclinic tangency of
W„'(Ds ) and W„"(Di, ). Line H is the heteroclinic tangen-

cy het(3), between W'„(Di,) and Ws(D„),which generates
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an indeterminate jump to resoance at the saddle node A
above T [8,16]. We have also extrapolated line H, as
shown by the dashed line h. Although for these parame-
ter values there is no heteroclinic event (for the simple
reason that D„does not exist to the right of arc A) we
might say that, due to dynamical continuity, there is a
"virtual" heteroclinic event, signifying the inpending
sharp drop in resonant basin area. The type of dynamical
continuity we have in mind here concerns the average
rate of flow of trajectories in a macroscopic region of
phase space, a quantity (unlike the qualitative topological
form of attractors and basins) that will be preserved
across any bifurcation boundaries in control space. %e
have also drawn contours of constant global integrity
(constant basin area) and we can see that the arc Hh-
correlates well with the top of the sharp cliff, identifiable
by the closely spaced contours. These have important
implications for systems operating in essentially transient
conditions [17].

For frequencies below co, the bounded basin will pri-
marily consist of two parts: the nonresonant S„basin
and the corresponding resonant S, basin. Under increas-
ing F, fold B signifies the birth of the S, basin, and conse-
quently the beginning of the interchange, as is usual in a
region of resonant hysteresis, of the S„basin into the S„
basin. For forcing levels just above I™,there is the ini-
tial incursion of the bounded basin by the escaping basin,
while F signifies the beginning of the mass erosion of
the S, basin. For systems where the union of the nones-
caping basins is of interest (i.e., the total bounded basin),
the nonresonant basin seems to "shore up" the bounded
basin.
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FIG. 5. Bifurcation diagram in the (F,cu) control space at
@=0.10. The dotted line indicates the heteroclinic tangency H
between the unstable manifold Wz(D„)of the resonant saddle
and the stable manifold W& (D& ) of the hilltop saddle; the extra-
polation h of this line is indicated by the dashed line. The inter-
section of line H with line 3 corresponds to point T. The inter-
section of line E with line /t corresponds to point Q. Also
shown are contours of constant integrity (constant basin area).

FIG. 4. The normalized (with respect to the safe basin area at F=0) area of the safe basin, 6, within the window of initial condi-
tions —1.2 & x & 0.8, —1.0 &y & 1.0, is plotted against the forcing magnitude F. Here co is fixed at 0.83. The solid line represents the
total basin area; the dashed line represents the basin area of the nonresonant attractor; and the dotted line represents the basin area of
the resonant attractor. F is forcing level in which there is a homoclinic tangling, horn(1), and F is where there is a heteroclinic
tangling het(3).
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FIG. 6. Same details as Fig. 4, but here co is fixed at 0.85. F" represents the forcing level at which there is a "virtual" heteroclinic
tangling, het(3).

For frequencies above co, a similar erosion process
takes place, but here most of excursive interchanges be-
tween the resonant and nonresonant basins will have tak-
en place before h. This implies that for these parameter
values the mass erosion of the basins, predicted by h, will
seem more pronounced, as the erosion will take place
throughout the whole of the bounded basin, rather than
just part of it. This is clearly seen in Fig. 6 at co=0.85.
These results, as the contours of constant integrity
confirm, imply that co is a critical frequency for this non-
linear dynamical system, as it corresponds to the value at
which the basin area is likely to be eroded most rapidly
under increased forcing.

In conclusion basin erosion has been shown to be a typ-

ical feature of a wide class of nonlinear oscillators preced-
ding optimal or near-optimal escape [5,17,18]. We de-
scribed the mechanism of basin erosion and identified the
main basin bifurcations involved in this process. This
gives us a greater understanding when defining a criterion
of integrity for a physical system operating in a noisy or
ill-defined environment [6].
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