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Theoretical analysis of velocity-selective Raman transitions
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This paper analyzes the use of Raman transitions to select a narrow velocity distribution of atoms.
We determine the evolution of the atomic wave function comprised of both the internal state and the
external momentum of the atom in the presence of two counterpropagating laser beams. The effects of a
single m pulse, two separated Ramsey ~/2 pulses, and a sequence of four m/2 pulses are analyzed.

PACS number(s): 32.80.Pj, 42.50.Vk

I. IlV'l'RODUCTION

Laser cooling of atoms relies on repeated cycles of
stimulated absorption and spontaneous emission to dissi-
pate atomic energy. When an atom of mass M spontane-
ously emits a photon of wave number k, it acquires a ran-
domly oriented recoil velocity v+=5k/M. Because of
this heating process, the recoil velocity is a potential limit
to the velocity spreads that may be reached with laser
cooling. For instance, optical molasses can cool atoms to
a few times the recoil limit [1].

It is natural to consider how one might cool below the
recoil limit. One way is to bind the atom to a massive ob-
ject, such as an ion trap, which absorbs the recoil
momentum of the photon. The "sideband cooling" of
ions in an ion trap [2] circumvents the recoil limit in this
way, but is not feasible for neutral atoms at present.
Another possibility is the coherent-population-trapping
technique of Aspect et al. [3], which can cool atoms with
a J=1 to J=1 transition far below the recoil limit.

In this paper, we will analyze a method of selecting an
ensemble of atoms with a very well-defined velocity. This
type of velocity selection does not increase the number of
atoms with a given velocity, and is therefore not a cooling
technique. The method uses a stimulated Raman transi-
tion with the two laser beams counterpropagating, so
that the transition is Doppler sensitive. To understand
how stimulated Raman transitions are used for velocity
selection, consider an atom with an optical transition and
a ground-state hyperfine splitting. After being optically
pumped into a single hyperfine level i 1 ), the atom is irra-
diated with two counterpropagating "velocity selection"
beams of frequencies co&L and co2L. If an atom has a ve-
locity component v„parallel to the laser beams such that
m, L

—
co2L is Doppler shifted so as to be in resonance with

the hyperfine splitting of the ground state, it will be
driven from state il) to state i2). The velocity spread
hv„of the excited atoms is related to the Raman
linewidth boo by the Doppler-shift formula,
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Under certain conditions, the linewidth of the Raman
transition will be measurement-time limited; Ezekiel and
co-workers have demonstrated a 1.3-kHz measurement-

time limited Raman linewidth [4]. This linewidth can be
further reduced using the longer measurement times
available with laser cooling. We have previously shown
that a 5-cm-high fountain of laser-cooled atoms with a
measurement time of 0.25 s gives a 2-Hz linewidth [5].
Such narrow linewidths permit velocity selection far
below the recoil limit. For a velocity-sensitive Raman
transition with 589-nm light, a linewidth of 100 Hz corre-
sponds to a velocity width of 29 pm/s. For comparison,
the recoil velocity of sodium is 3 cm/s.

Raman velocity selection of sodium atoms has been
demonstrated with a full width at half maximum
(FWHM} of 25 Hz, corresponding to a velocity width of
7 pm/s [6]. In that work, we also showed how the Ra-
man velocity selection can be used to measure ultralow
temperatures when ballistic methods fail. We present
here a theoretical treatment of the velocity-sensitive Ra-
man transition, and consider some of the limits to the ve-
locity resolution. Because of the large uncertainty in the
position of an atom with such a well-defined velocity, the
atom's center-of-mass coordinates cannot be treated clas-
sically. The full quantum-mechanical treatment present-
ed here uses the method of closed-momentum families, as
developed by Aspect et al. , to analyze coherent popula-
tion trapping [7].

In Sec. II, we determine the evolution of the atomic
wave function in the presence of the velocity-selection
beams. We use this evolution to discuss some of the uses
of velocity-selective Raman transitions in Sec. III.

II. MOMENTUM-DEPENDENT EVOLUTION
OF THE SYSTEM

A. Statement of the problem

Consider an atom that has the level scheme shown in
Fig. 1, with a ground-state hyperfine interval cuz& and an
optical interval cu3&. The atom is irradiated with counter-
propagating laser beams of frequencies co&L and m2L.
The states are labeled by both their internal quantum
numbers and their mornenta parallel to the laser beams.
Thus the notation il,p —Rk, L ) indicate that the atom
has momentum p —haik, z parallel to the laser beams and
that it is in internal state il ). For a transition from an
initial state

i l,p haik, L ) to a final—state i2,p +A'kzL ), the
intermediate state is i3,p ) as shown in Fig. I.
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e —+'" = p p+fik dp

2L

I2,p+&kzL )

into Eq. (7) shows that absorption or emission of a pho-
ton of wave number k changes the atom's total mornen-
tum by an amount haik. Thus the velocity-selection beams
only induce transitions within a closed-momentum fami-

ly, as described above. The time evolution of the
coefficients C, (p, t), i = 1,2, 3, is determined by the Hamil-
tonian

I1,p-TikiL)
(p fiktL —

)

2M
AQ, e' "'

We consider the time evolution of the wave function
describing a single momentum family

I
e ( t ) }=C, (p, t ) I I,p —fik, L }+C (p, t ) I 2,p +A'k }

+C3(p, t)I3,p }, (2)

with the normalization (P (t)IQ~(t)}=1, in the limit

where spontaneous emission can be ignored. In this lim-

it, the states
I l,p —irtk, t }, I2,p +fikiL },and I3,p }form

a closed-momentum family labeled by p.

FIG. 1. A stimulated Raman transition within a momentum

family p. For counterpropa gating photons, 5 is strongly

momentum dependent.

(p +A'kiL )
+Ace AQ e21 2

SQ*e AQ*e
2

+ 'flCO 31

(9)

This equation is similar to the Hamiltonian derived by
Aspect et al. , to treat coherent population trapping [7].
In fact, for co,L =co~L, to, &=0, and proper choice of the
angular momenta of the lasers and the ground state, Eq.
(9) is equivalent to the Hamiltonian derived in Sec. 38 of
Ref. [7].

We define 8;, i =1,2, 3, as

p2
~+~ I3}(3I+~

2M
(3)

B. The equations of motion

Before quantizing the external momentum, the Hamil-
tonian is H =H~ +H;„,. The atomic Hamiltonian is

(p fikiL )—
Bi(p, t)=Ci(p, t)exp i

2M%

(p +iiikzL )
2

Bi(p, t)=Cz(p, t)exp i
2M%

+CO21 t

(loa)

(lob)

and the interaction Hamiltonian is

H;„,= dE(x—, t), (4)
83(p, t)=C&(p, t)exp i +co3i tp (10c)

where d is the electric dipole moment operator. The elec-
tric field is two traveling waves E1 and E2 counterpro-
pagating along x. The total field is

7 2 2e

(5)

n =1,2

We assume that E, only couples states Il } and I3}
while Ez only couples states I2} and I3}. This assump-
tion can be rigorously true for some atomic-level
configurations and photon polarizations, and is a good
approximation if the hyperfine splitting is much larger
than the detunings from the optical transitions. Defining
the Rabi frequencies Q, and Q2 as

&nld E„l»Q„=—
2fi

(6)

The detuning 5 of co,L
—

cozL from the transition

I l,p —i)'ikit }~I2,p+iiik~~ } is

(p —haik, L ) (p +fik2t )

1 (~it. ~iL, )

p (k, L +k2t ) (haik iL )

M 2M

(i)i'k2L )

2M

(1 la)

This definition includes the laser frequencies, the Doppler
shift, and the recoil energies. The detuning 6 of co,I
from the transition

I l,p —A'k, L }~ I3,p } is defined as

(p —irtk iL )

2M% 2M%

the interaction Hamiltonian is

a,„,=en*, e' "" ""I3}(1I
pk1L

M
Ak, L

2M
+~31 (1 lb)

Substituting the relation

I3}(2I+cc The detuning of ~2L from the transition
I2,p+fik2L }~ I3,p } is given by 6+5. With these
definitions, the equations of motion are
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dB1 = —iQe ' 'B
dt

dB2 —i (h, +5)tB
dt 3 7

dB3
~ go ihtB ) feei (LE+5)tB;e,—

I, 2e 2

(12a)

(12b)

(12c)

coefficients for 5%0, when the atoms are Doppler shifted
out of resonance.

In order to suppress spontaneous emission, the detun-
ing from the optical transition 5 is made large. With the
conditions

(14)

C. Solution of the equations

(po ~klL } (po+~k2L )

2L 1L 2~g 21 (13)

Because 5 is sensitive to the first-order Doppler shift of
twice an optical-photon frequency and the linewidth of
the Raman transition is narrow, only a narrow class of
momentum families is resonant with the stimulated Ra-
man transition. If the momentum family p =po satisfies
the Raman resonance condition, i.e.,

dB, in, i Q, Q2=i B,+i B2e' ',
dt

(15a}

the three-level equations [Eqs. (12)] may be reduced to
analytically soluble two-level equations. We assume, and
verify by the solutions, that the coeScients B, and B2 os-
cillate much more slowly than the detuning b, . Equation
(12c) may be integrated directly by ignoring the time
dependence of B1 and B2, making errors of order
Tn /b, and order rn 5/5 . The result is substituted
into (12a) and (12b). Terms that oscillate at frequency 6
are neglected, since they quickly average out to give a
negligible contribution to B, and B2. The resulting
efFective two-level equations are

then the detuning for an arbitrary momentum family p is
5= —(p —po)(k, L +kzL )/M. Equation (12) may be
solved exactly, following Brewer and Hahn [8], for the
special case 5=0. However, we are also interested in the

dB, n'n, , in i'
=i B,e ' '+i B2 .

r

The solutions to these equations are [9]

(15b)

B,(p, to+t)=exp i 5+ +
2

in, i'
X cos +—

2 N

Qjt—5 sin

T

, 2n, n2
B~(p, to)+ — sin e B2(p, to) (16a)

i 2nfn2 .
Bz(p, to+t)=exp i —5+ + — — sin

2
e

—i5to'Bi(p, to)

cot+ cos
in, i'

Q)

—5 sin B2(p, tc )

(16b)

where III. APPLICATIONS OF THE SOLUTIONS

in, i' —5 +4
Q2

(17)

The second term in Eq. (17) is the square of the two-
photon Rabi frequency. The first term contains the
momentum-dependent detuning 5, as well as the ac Stark
shifts in, i /b, and i Q2i /lL, to zeroth order in 5/b, .

The approximate validity of these solutions is verified
by substitution back into the original three-level equa-
tions. We have also solved Eq. (12) numerically, and find
a good agreement with Eqs. (16) and (17) when Eq. (14) is
satisfied.

A. Velocity-selective m pulse

Consider a wave packet that is a superposition of
momentum families,

Iq'(&)) =fg(p)ly, (t))dp, (18)

where

ig (r)) =C, (p, )ilr, p haik, ~ )+C,(p, r)i2—,p+&k, I. )

as in Eq. (2}, and ig(p)i is the probability of finding the
atom in the momentum family p, i.e., in either the state
i l,p —Rk, L ) or the state i2,p+A'k2L ). The distribution
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g (p) is normalized separately from I g (r ) ) so that

g p 'p=l
Since there is negligible redistribution between momen-
tum families under our conditions, g (p) is time indepen-
dent.

As an example, consider an ensemble of atoms optical-
ly pumped into the I 1 ) state, C, (p, 0)=1, with a Gauss-
ian distribution of momenta

0
CL

g(p)=m '"o, '"exp—(p —po)'

2(7p
(20)

1
exp

&no,
(p —po)'

2
O'P

X cos +Q)7 1

where po is the center of the momentum family distribu-
tion and o is its width. Since the ensemble is in state
I

1 ), its center velocity is (po —Ak &z )/M. After a time r,
the momentum-dependent probabilities P, (p) and Pz(p)
of occupying the internal states I 1 ) and I2), respectively,
are

P~(p) = Ig(p)C&(p, r)I'

0 2 4

FIG. 2. A velocity-selective Raman n. pulse, with

cd~=3 6mvq. /~2, v=10/kv„, and Q, Q, /6=0. 16kvz. (a) Ini-
tial momentum distribution in state I

1 ). {b) Final momentum
distribution. The sold line represents state I 1 ) and the dashed
line represents state I2).

16In, I'In, I'
ICz(p, T+2 )rI

= sinz
co 6

N'T
sin (21a)

co~ 5T 1
X cos cos +—

2 2 co

Pq(p) = Ig (p)cz(p, ~) I'

41flgI'I&pI'
exp

~7TOCO 6'
P

(p —po)'
2

CTP

2 co7
sin

(2 lb)

C07 . 5T
X sin sin (22)

Equations (21a) and (21b) are plotted in Fig. 2 for a m

pulse. Note that a net momentum of twice the one-
photon recoil momentum is imparted to the state I2) in
completing the hyperfine transition.

B. Ramsey-Raman velocity selection

If a narrow velocity slice is selected out of the initial
velocity distribution, most of the atoms would not con-
tribute to the counting rate of an experiment. However,
for a number of experiments, such as the search for a
small charge imbalance on an atom, a collection of many
narrow velocity slices selected out of the original distri-
bution may be used [10]. One way to select a number of
narro~ velocity classes is to impose several frequency
sidebands on one of the laser beams. This method has
the practical disadvantage of increasing the probability of
spontaneous-emission events. Another way to create
many peaks of velocity-selected atoms is to use Ramsey's
method of separated oscillatory fields [10,11). After be-
ing pumped into level I 1 ), the atoms are given two n /2
pulses of length ~ separated by a time T. The probability
of transition to level I2) is

P, (p)= Ig(p)C, (p, t)I' and P, (p)= Ig(p)C, (p, r)I' are
shown in Fig. 3, with g (p) given by Eq. (20). Each veloci-
ty selected group has a width A, /4T, where A, is the wave-
length of the light, and the width of the envelope is A, /2r.

Ramsey-Raman velocity selection is particularly useful
for experiments in which the effect being studied induces
an identical velocity change for all velocity groups. The
velocity change would be measured by using two separat-
ed pairs of n/2 pulses. Consider an ensemble of atoms
beginning in the I 1 ) state. After the application of the
first set of m/2 pulses, a Ramsey fringe pattern will be es-
tablished in U„velocity space as shown in Fig. 3. Assume
there is a perturbation that shifts all U velocities by an
amount Lu„before the application of the second a/2
pulse sequence. The number of atoms that can be found
in the I

1 ) state as a function of hu„ is plotted in Fig. 4.
In the calculation of Fig. 4, we have assumed that the
m/2 pulse duration ~ is sufficiently short that the Ramsey
velocity structure (the velocity "picket fence") shown in
Fig. 3 extends over the entire initial velocity distribution.
%'e have also assumed that the pulse duration ~ wi11 be
the same for all atoms (implemented by pulsing the laser
beams).

For velocity selection in a continuous atomic beam, ~
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(b)

(c)

a/4 A I

—2 0 2 4

V/VR

FIG. 3. A velocity-selective Ramsey-Raman transition, with
Ir~ =3.6IIIva /v 2, r=2 5/ku„, .T =10/kva, and QIQz/5
=0.16kva. (a) Initial momentum distribution in state ~1). (b)
Final momentum distribution in state

~
I ). (c) Final momentum

distribution in state ~2).

and T are determined by the axial velocity u, of the
atoms as they traverse the laser beams. When averaged
over the axial velocity spread 5v„ the Ramsey pattern
will be smoothed as shown in Fig. 5. Contrast is lost (in
the limit where r « Q because atoms with different ve-
locities have different Ramsey fringe spacings. The num-
ber of fringes that can be created is approximately
U, /5U, . For cesium in an atomic fountain with polariza-
tion gradient cooling, v, = 1 m/s and 5U, can be as low as
a few times the recoil velocity 0.3 cm/s, so that
U, /5U, = 100.

The loss of fringe contrast due to the different fringe
spacings shown in Fig. 5 does not set a limit to the num-
ber of atoms within the velocity distribution that can be
used in an experiment that measures small velocity
changes. Consider an ensemble of atoms with a given v,
but with the full distribution of velocities v„. The first set
of n /2 pulses "writes" a Ramsey fringe pattern in the U„
velocity space of the atoms with a spacing between Ram-
sey fringes of A. /2T. When the second set of m. /2 pulses
is used to read out the fringes, the "readout spacing" is
still A, /2T. A set of atoms with different velocity U,

'
will

have a different Ramsey spacing A, /2 T', but the
"readout" spacing will always match the "written" spac-
ing for each group of atoms. Thus the experimental con-
trast (e.g. , the variation in the number of atoms in the 2 )
state) is not degraded by the difference in the times T and
T'.

There will be a slight loss in contrast because atoms
moving slower (or faster) than the average velocity will
experience pulses greater (or less) than n /2 as they pass
through the laser beams. If an atom of velocity ( U, ) ex-
periences a rr/2 pulse, an atom with velocity ( v, ) —5U,

1.0

0.8—

)hII

0.6
C3
U

O 0.4
CL

C3
U

0
CL

(b)

U

0.2-

0.0
—0.2

I

0.0

Av/vR

I

0. 1 0.2 t.o
I

2.0

V/VR

I

2.5 3.0

FIG. 4. The total probability, summed over all velocity
classes, for an atom to be in the initial state after four m/2
pulses when a velocity change Lv is induced before the second
pair of m. /2 pulses. The parameters chosen are ~=0.26/kv&
and T=2(h, and the initial transverse velocity distribution is
narrow enough that all transverse velocity classes are in the ex-
citation envelope.

FIG. 5. Ramsey-Raman velocity selection on the transverse
velocity in an atomic beam, averaged over the longitudinal ve-

locity. For this figure, Q&Q&/6=0. 30kv&. ~=2.5/ku~ and
T =40/kuz for the center of the longitudinal velocity distribu-
tion. The quantity shown is ~C~(p)~, averaged over v„ for (a)

u, /0. (v, ) =20, and (b) u, /o. (u, ) =5.
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experiences a pulse n/2 e—, where e/(n/'2)=5u, /(u, ).
The loss of contrast is therefore not signi6cant as long as
Bu, is not a significant fraction of (u, ).

C. Spatial wave functions and interferometry

The spatial wave function of the atom is given by the
Fourier transform of the momentum wave function. As-
suming that the atom is in a wave packet of the form of
Eq. (18), the external spatial wave functions P, (x, t) and

$2, (x, t) associated with the internal states ~1) and ~2),
respectively, are given by

P, (x, t) = I'"g(p)C, (p, r)e'" """'"'"dp,

(23a)

+~ i (p+Ak2& )x/A
$2(x, r)= — g(p)C2(p, t)e '~

dp .
&2W

(23b)

As a test case, we assumed a g(p) that describes a
Gaussian wave packet [see Eq. (20)] that was initially lim-
ited by the uncertainty principle. We followed its evolu-
tion through a n pulse, two n/2 pulses, and a n/2, n.,
n. /2 pulse sequence. Unlike our calculation of the veloci-
ty distribution, the calculation of the spatial wave func-
tions depends on the phase relationship of the different
momentum components. The center of mass of the
state-~1) population moved with velocity (po —A'k, L )/M,
and the state-~1) population's spatial width increased at
a rate of o /M from the original width. Similarly, the
state-~2) population moved with a center velocity of
(pc+A'k2L )/M. The spreading of the state-~2) popula-
tion was determined by the selected velocity width.
Furthermore, when a narrow velocity group of atoms
with width b,u„was transferred to state

~
2 ), a spatial

hole in the state-~1) population became visible after
enough time had passed that hv„t was larger than the ini-
tial spatial width.

The correlation between an atom's internal state and
its momentum state makes the construction of an atomic
interferometer possible. This has been discussed by
Borde [12] and recently demonstrated by Helmcke and
co-workers [13]. Instead of using transitions between
ground and excited states, we have proposed and demon-
strated an atomic interferometer made by interfering
different hyperfine ground states (Fig. 6) [14]. A related
standing-wave interferometer based on a Raman transi-
tion has been analyzed by Marte, Cirac, and Zoller [15].

The interferometer begins with an atom, initially in the
state ~1). The center of the spatial distribution of such
an atom is indicated by the solid line of Fig. 6. The atom
is given a n. /2 pulse, separating it into a state-~1) com-
ponent with a momentum centered about p„—Ak &I and a
state ~2) (dotted line) with a momentum centered about
p„+AkzL . After a time T, the atom evolves into two spa-
tially separated, but coherent, wave packets that are la-
beled by their internal state. A m. pulse at time T will put
the part of the atom in state

~
1) centered about p„—Ak, L

z/2

K
'~

0

z/2

FIG. 6. Schematic of an atomic interferometer with a
m/2-m-m/2 pulse sequence. The solid line indicates the center
of the state ~1) components and the dashed line indicates the
center of the state ~2) components.

into the state ~2) centered about p„+Piker, and vice ver-
sa. Thus, the two separated states of the atom will begin
to move towards each other. A final n /2 pulse is used to
complete the interferometer, and depending on the phase
of the second n/2 pulse relative to the other pulses, the
atom can be put into either the

~
1 ) or

~
2 ) state.

There are two major advantages to using a Raman
transition between ground states of an atom instead of us-
ing a single-photon transition as suggested by Horde.
First, the two frequencies v, and vz=v, +v,f used in the
Raman transition are derived from one laser and an
electro-optic modulator so that the frequency and phase
stability of the transition has the inherent stability of the
rf source used to drive the modulator. Since the frequen-
cy jitter of the laser does not affect the measurement,
radio-frequency control of the Raman transition can be
obtained with a laser of modest frequency stability while
the velocity recoil is twice the recoil resulting from an op-
tical photon. Second, since the ground states are stable
against decay, large time intervals between velocity-
changing impulses are allowed, making possible inter-
ferometers with large spatial separations.

For atomic interferometers with 1ong measurement
times (as in an atomic-fountain geometry) it is important
that the states be insensitive to perturbations in the mag-
netic 6eld. Transitions with m~=0 m~=0 have been
used in the works of the Physikalische-Technische Bun-
desanstalt [13]and Kasevich and Chu [14].

IV. CONCLUSIONS

The use of Raman transitions as a means of velocity
selection has been analyzed in the Schrodinger picture.
In this work, the combined effect on both the internal-
energy state and the correlated-external-momentum state
of an atom has been analyzed for a single m. pulse, two
m. /2 pulses, two sets of ~/2 pulses, and a m. /2-m-m. /2
pulse sequence for a distribution of atomic velocities.
Under the experimental conditions where the laser detun-
ing b is much larger than both the Rabi frequencies Q,
and Q2 of the two laser 6elds and the Doppler width of
the atomic distribution, the two-photon transition be-
tween three levels can be reduced to an easily soluble set
of two-level equations.

%'e have applied those solutions to study the e8ects of
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pulses and pulse sequences that were first used in
nuclear-magnetic-resonance studies of spin systems. Be-
cause the excitation of the transition depends on the fre-
quency and phase difference of two laser frequencies that
can be derive from a single laser, radio-frequency control
of the transition is possible. Also, since the transitions
are between hyperfine levels of the ground state, spon-
taneous emission is not a factor. Thus, we anticipate that
many of the powerful NMR techniques first developed

for two-level spin systems can be used in the mechanical
manipulation of atoms.
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