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We examine the issue of determining an acceptable minimum embedding dimension by looking at the
behavior of near neighbors under changes in the embedding dimension from d ~d+1. When the num-

ber of nearest neighbors arising through projection is zero in dimension dE, the attractor has been un-

folded in this dimension. The precise determination of dz is clouded by "noise, " and we examine the

manner in which noise changes the determination of dE. Our criterion also indicates the error one
makes by choosing an embedding dimension smaller than dE. This knowledge may be useful in the prac-
tical analysis of observed time series.

PACS number(s): 05.45.+b, 02.40.+m

I. INTRODUCTION

It has become quite familiar in the analysis of observed
time series from nonlinear systems to make a time-delay
reconstruction of a phase space in which to view
the dynamics. This is accomplished by utilizing time-
delayed versions of an observed scalar quantity:
x(to+nest)=x(n) as coordinates for the phase space
[1,2]. From the set of observations, multivariate vectors
in d-dimensional space

y(n) =(x(n), x(n + T), . . . , x(n +(d —1)T))

are used to trace out the orbit of the system. Time evolu-
tion of the y's is given by y(n) +y(n +1). In —practice,
the natural questions of what time delay T and what
embedding dimension d to use in this reconstruction have
had a variety of answers. In this paper we provide a
clean, direct answer to the question: What is the ap-
propriate value of d to use as the embedding dimension?
We do so by directly addressing the topological issue
raised by the embedding process. Our procedure
identifies the number of "false nearest neighbors, " points
that appear to be nearest neighbors because the embed-
ding space is too small, of every point on the attractor as-
sociated with the orbit y(n), n =1,2, . . . , N. When the
number of false nearest neighbors drops to zero, we have
unfolded or embedded the attractor in I, a d-
dimensional Euclidian space.

The observations, x (n), are a projection of the mul-
tivariate state space of the system onto the one-

dimensional axis of the x(n)'s. The purpose of time-
delay (or any other [3]) embedding is to unfold the projec-
tion back to a multivariate state space that is representa-
tive of the original system. The general topological result
of Mane and Takens [4,5] states that when the attractor
has dimension d„, all self-crossings of the orbit (which is
the attractor) will be eliminated when one chooses
d & 2d„[6]. These self-crossings of the orbit are a result
of the projection, and the embedding process seeks to
undo that. The Mane and Takens result is only a
sufficient condition as can be noted by recalling that the
familiar Lorenz [7] attractor, d„=2.06, can be embedded

by the time-delay method in d=3. This is in contrast to
the theorem, which only informs us that d=5 will surely
do the job. The open question is, given a scalar time
series, what is the appropriate value for the minimum
embedding dimension dz? From the point of view of the
mathematics of the embedding process it does not matter
whether one uses the minimum embedding dimension dE
or any d~dz, since once the attractor is unfolded, the
theorem s work is done. For a physicist the story is quite
different. Working in any dimension larger than the
minimum required by the data leads to excessive compu-
tation when investigating any subsequent question
(Lyapunov exponents, prediction, etc. ) one wishes to ask.
It also enhances the problem of contamination by round-
off or instrumental error since this "noise" will populate
and dominate the additional d —dE dimensions of the
embedding space where no dynamics is operating.

The usual method of choosing the minirnurn embed-
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FIG. 1. The R' and R' embeddings of the x coordinate of
the Henon map of the plane. It is known that for this map
d~ =2. The points A and B are false neighbors while the points
A and C are true neighbors.

ding dimension dE is to compute some invariant on the
attractor. By increasing the embedding dimension used
for the computation one notes when the value of the in-
variant stops changing. Since these in variants are
geometric properties of the attractor, they become in-
dependent of d for d ~ dE (i.e., after the geometry is un-
folded). The problem with this approach is that it is
often very data intensive and is certainly subjective.
Furthermore, the analysis does not indicate the penalty
one pays for choosing too low an embedding dimension.
We have already discussed the penalty for choosing too
large an embedding dimension.

In this paper we present calculations based on the idea
that in the passage from dimension d to dimension d+ 1

one can differentiate between points on the orbit y(n)
that are "true" neighbors and points on the orbit y(n)
which are "false" neighbors. A false neighbor is a point
in the data set that is a neighbor solely because we are
viewing the orbit (the attractor) in too small an embed-
ding space (d &dE). When we have achieved a large
enough embedding space (d ~ dz ), all neighbors of every
orbit point in the multivariate phase space will be true
neighbors. A simple example of this behavior is found in
the Henon map [8] of the plane to itself. In Fig. 1 we
show the attractor for the Henon map as a projection
onto a d= 1 dimensional phase space (the x axis) as well
as in a d =dE=2 dimensional embedding space. The
points A and B appear to be neighbors in the projection
onto the x axis. However, they are neighbors solely be-
cause we are viewing the orbit of the attractor in too
small an embedding space. When viewed in a d=2 di-
mensional embedding space they are no longer neighbors.
Points A and B are examples of false neighbors. In con-
trast points A and C are true neighbors. This follows be-
cause they are neighbors in d= 1 dimension (x-axis) as
we11 as d =dE =2 and all higher embedding dimensions.
We will return to and fully develop this point in Sec. II.

In the process of writing this paper we found an article
by Liebert, Pawelzik, and Schuster (LPS) [9] which re-
ports on the same basic idea but implements it in quite a
different fashion. We find rather distinct results from
these authors. We have several comments on their obser-
vations and conclusions. Their method appears to be
somewhat more time consuming, but only by a constant
factor. Furthermore, their method does not yield one of
the desirable features of the present work. Namely, we
provide an estimate of the error encountered in using too
small an embedding dimension.

We also found an older paper by Bumeliene, Lasiene,
Pyragas, and Cenys [10] (BLPC) which cites an even ear-
lier paper by Pyragas and Cenys [11] that has the essen-
tial geometric idea of seeking false neighbors, and again
implements it in another fashion. We will comment on
these papers as well.

The question of what time delay T to use in the embed-
ding is logically independent of the topological question
of how large the space must be to eliminate false neigh-
bors. The determination of the time lag T requires infor-
mation which is independent of the topological argu-
ments of Mane and Takens. This can be understood
since their argument works in principle for any lag T, and
so must be independent of considerations about T. The
issue of the time lag is dynamical, not geometric. For the
purpose of determining T we use the information theoret-
ic techniques of Fraser and Swinney [12,13].

II. THE METHOD OF FALSE NEIGHBORS

One of the important features of an attractor is that it
is often a compact object in phase space. Hence, points
of an orbit on the attractor acquire neighbors in this
phase space. The utility of these neighbors, among other
things, is that they allow the information on how phase-
space neighborhoods evolve to be used to generate equa-
tions for the prediction of the time evolution of new
points on or near the attractor [14]. They also allow ac-
curate computations of the Lyapunov exponents of the
system [15,16].

In an embedding dimension that is too small to unfold
the attractor, not all points that lie close to one another
will be neighbors because of the dynamics. Some will ac-
tually be far from each other and simply appear as neigh-
bors because the geometric structure of the attractor has
been projected down onto a smaller space (cf. Sec. I). If
we are in d dimensions and we denote the rth nearest
neighbor of y(n) by y'"'(n), then from Eq. (1), the square
of the Euclidian distance between the point y(n) and this
neighbor is

d —1

Rd(n, r) = g [x (n +kT) —x'"'(n +kT)]
k=0

In going from dimension d to dimension d +1 by time-
delay embedding we add a (d + 1)th coordinate onto each
of the vectors y(n). This new coordinate is just
x (n + Td). We now ask what is the Euclidean distance,
as measured in dimension d+1, between y(n) and the
same rth neighbor as determined in dimension d? After
the addition of the new (d +1)th coordinate the distance



45 DETERMINING EMBEDDING DIMENSION FOR PHASE-SPACE. . . 3405

between y(n) and the same rth nearest neighbor we deter-
mine in d dimensions is

Rd+, (n, r) =Rd(n, r)+ [x (n +dT) —x'"'(n +dT)]2 .

(3)

A natural criterion for catching embedding errors is
that the increase in distance between y(n) and y'"'(n) is
large when going from dimension d to dimension d +1.
The increase in distance can be stated quite simply from
Eqs. (2) and (3). We state this criterion by designating as
a false neighbor any neighbor for which

Rd + $ (n, r) Rg(—n, r)2 2 1/2

Rd(n, r)

R~x ( n + Td ) x'"'(—n + Td ) ~

Rd(n, r)

where R„& is some threshold. We will investigate the
sensitivity of our criterion to R„, in our numerical work
below, and we will find that for R„&~ 10 the false neigh-
bors are clearly identified. It is sufficient to consider only
nearest neighbors (r=l) and interrogate every point on
the orbit (n =1,2, . . . , N) to establish how many of the
X nearest neighbors are false. We record the results of
the computations as the proportion of all orbit points
which have a false nearest neighbor.

Before we report on these computations we remark
that this criterion, by itself, is not sufficient for determin-
ing a proper embedding dimension. To illustrate this we
note that when we used this criterion to examine the
embedding dimension for white "noise, " the criterion er-
roneously reported that this noise could be embedded in a
quite small dimensional space. (By "noise" we mean
very-high-dimensional attractors associated with compu-
terized random number generators. ) The problem turns
out to be that even though y" '(n ) is the nearest neighbor
to y(n}, it is not necessarily close to y(n) Indeed. , as we
moved up in embedding dimension, with finite data from
a noise signal, the actual values of Rd(n)= Rd(n, r=1)—
were comparable with the size of the attractor R„.Thus
the nearest neighbor to y(n} is not close to y(n) This be-.

havior follows from the fact that trying to uniformly pop-
ulate an object in d dimensions with a fixed number of
points means that the points must move further and fur-
ther apart as d increases. We note that as we increased
the number of data points in the noise signal the embed-
ding dimension (that dimension where the number of
false neighbors drops to nearly zero) systematically in-
creased. In the limit of an infinite amount of data we
would find that the embedding dimension d also diverged
to infinity. This is in contrast to the low-dimensional at-
tractor common to many dynamical systems. For a low-
dimensional dynamical system increasing the number of
data points on the attractor will not change dE.

However, in practical settings the number of data
points is often not terribly large. We have implemented
the following criterion to handle the issue of limited data
set size: If the nearest neighbor to y(n) is not close
[Rd (n ) =R z ] and it is a false neighbor, then the distance

where

N
x=— x n

Other choices for R„, such as the absolute deviation
about x, did not change our results. The reader may
choose whatever estimate of the attractor size which ap-
peals to her or him.

In Fig. 2 we show the result of applying the first cri-
terion alone, of applying the second criterion alone, and
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FIG. 2. The percentage of false nearest neighbors for 24000
data points from the Lorenz-II equations. The data were output
at At=0.05 during the integration. A time lag T =11ht=0.55,
which is the location of the first minimum in the average mutual
information for this system, was used in forming the time-
delayed vectors. Three different criteria are compared for
detecting false nearest neighbors. First is the change in distance
of the nearest neighbors in d dimensions when the component
x(n+Td} is added to the vectors, Eq. (4). These points are
marked with squares. Second is the criterion which compares
Rd+, to the size of the attractor R„, Eq. (5). These points are
marked with triangles. The third criterion applies both of these
to the data. These points are marked with circles. In this last
case a point which fails either test is declared false.

Rd+, (n) resulting from adding on a (d+1)th com-
ponents to the data vectors will be Rd+, (n) =2R „.That
is, even distant but nearest neighbors will be stretched to
the extremities of the attractor when they are unfolded
from each other, if they are false nearest neighbors.

We write this second criterion as

Rd+ ~(n )

R
& 4-- tol

A

In our work we advocate using this pair of criteria jointly
by declaring a nearest neighbor (as seen in dimension d)
as false if either test fails.

As a measure of R A we chose the value

N

R„=—g [x(n) —x]
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then applying them jointly when a data set from the
three-dimensional model of Lorenz [17]

x = —y —z —a(x F—},
y =xy —bxz —y +6,
Z =6Xy +XZ Z

is used to generate the data. We use the values a=0.25,
b=4.0, F=8.0, and G=1.0 where Lorenz points out ir-
regular behavior is encountered. The attractor has a di-
mension, dz, slightly greater than 2.5. We produced the
data used in this figure with a variable order Adams
integrator with output at Et=0.05. The first minimum
of the average mutual information occurs at
T=0.85=17Lt. This is the time delay T, we used in
reconstructing the phase-space vectors y(n) from samples
of x(n)=x(to+nest}. In Fig. 2 a total of 25000 data
points were used. It is clear that the joint criterion [Eqs.
(4) and (5)] as well as each of the individual criteria [Eqs.
(4) or (5)] mentioned above yield an embedding dimension
of dE =6 for this attractor. In this case the result is actu-
ally the same as the d &2d„sufficient bound of Mane
and Takens. For this computation we used the values

R„&=15.0 and A„,=2.0. We will report on the depen-
dence of the method on the number of data points N and
on the value of R„& in Sec. III.

The results are quite different for noise. In Fig. 3 we
show a similar comparison of false-nearest-neighbor cri-
teria for noise uniformly distributed in x (n) between —1

and 1. We used a time delay T= 1, and again N =25 000.
Here we see that the first criterion, Eq. (4), fails to indi-
cate the need for a high embedding dimension. However,
the second criterion, Eq. (5}, yields the expected answer.

Of course, the joint criterion also works and, as one
would expect tracks the second criterion as d increases.
This striking difference between low-dimensional chaos
and high-dimensional chaos was seen in all examples we
tried. Henceforth, we quote only the result of applying
our criteria jointly: a nearest neighbor which fails either
test is declared false.

It is important to note that in each case we are able to
determine the quality of the embedding because the per-
centage of false neighbors is reported. For example, in
the case of the Lorenz 84 attractor noted above, if we
chose to use an embedding dimension of d= 5 rather than
d=6, there would have been 0.18%%uo false neighbors
remaining. It is likely that this is an acceptably small
number for many purposes. A physicist might well chose
to accept this error to make more e%cient any further
computations performed on the data from this system.
Actually the error in choosing only d=4 is not substan-
tia1 since the percentage of false neighbors is only 0.59%.
One may even interpret these neighborhoods as isolated
instances of very large local Lyapunov exponents. A very
high rate of instability growth may cause Rd+, /Rd to be
very large, even if the embedding is correct. In other in-
vestigations [18],we have found that for short-time inter-
vals, the distribution in the finite-time Lyapunov ex-
ponents may be very broad. The implication for the
present situation is that there may be a few neighbor-
hoods, whose largest local Lyapunov exponent falls in the
high extreme of the distribution, for which the false-
neighbor criterion (and any other similar type of mea-
sure} will fail due to inherent dynamical reasons. Care-
fully disentangling false neighbors from high local ex-
ponents is still an unresolved issue, but the problem does
not appear to be terribly severe.

III. NUMERICAL RESULTS FOR SEVERAL
EXAMPLES
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FIG. 3. The same as Fig. 2 but the data come from a random
set of numbers uniformly distributed in the interval [ —1.0,1.0].
The comparison between Fig. 2 and this figure is quite striking
and points out clearly the difference between a low-dimensional
chaotic signal and noise (a high-dimensional chaotic signal).

A. Clean data and "noise"

We have implemented the method just described on a
variety of simple models. Let us begin with the Lorenz-II
model previously discussed. Using the same time delay,
T = 17ht, we examined the dependence of our method on
the tolerance R„& and the length of the data set N. In
Fig. 4 we show the false-neighbor percentage in d=1 as a
function of these two variables. It is clear that except for
very small amounts of data N =100 and large values of
R„&, the method of false neighbors ~ould not indicate
d= 1 as a good embedding dimension. The same depen-
dence, false-nearest-neighbor percentage as a function of
R„& and N, is shown in Fig. 5 for d=5. It is clear that
when the number of data points N is sufhcient to fill out
an attractor in d= 5 dimensions, and the tolerance level is
R„&~15, we can with confidence select d=5 as the
embedding dimension. As noted above one could just as
well choose d=6, where the percentage of false nearest
neighbors drops to exactly zero. However, the error as-
sociated with d=5 is so small (approximately 0.18%) one
might as well use d=5. We have examined this system
for d=1,2, . . . , 10.
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FIG. 13. Data from the Lorenz-I model which have been
contaminated with uniformly distributed noise in the interval

[ L,L] —41000 .points from the attractor are used here. The
percentage of false nearest neighbors is shown for L/R„=O.O,

0.005, 0.01, 0.05, 0.1, 0.5, and 1.0. For this system R„=12.7.
Even with L/R& =10%, the error in choosing d=4 as the
embedding dimension is only 0.27%. The false-nearest-
neighbor method is rather robust against noise contamination.
The result for L/R„=O is marked with an open star; for
L/R„=0.005, it is marked with a square; for L/R„=0.01,
with a circle; for L/R„=0.05, with a triangle; for L/R „=0.1,
with a diamond; for L/R„=0.5, with a filled star; and for
L /R &

= 1.0, with an open cross.

x =cr(y —x),
y = —xz +rx —y,
z =xy —bz,

and we use parameter values 0.=16, b=4, and r=45.92.
The data were generated by a variable order Adams code
with output at At =0.02. For this system the first
minimum of the average mutual information is at
T=0.1=5ht, and we used tolerance values of R„&=15.0
and A„&=2.0. The orbits have been contaminated with
noise uniformly distributed in the interval [ L,L] with—
L/R„=O, O, 0.005, 0.01, 0.05, 0.1, and 0.5. The last
noise level corresponds to a signal-to-noise ratio
[20 log&o(R& /L ) ] of about 6 dB in power; namely, a very
low signal-to-noise ratio. The increase in embedding di-
mension for this attractor in the presence of noise is real-
ly quite slow, and only for the last, very contaminated,
case does it fail. (When the signal-to-noise ratio falls to 0
dB, the false-nearest-neighbor criterion fails, and we find
the Lorenz-I signal contaminated at that level to be indis-
tinguishable from noise. ) In the case where
I-/R~ =10%, and d=3, we have 7.8% false nearest
neighbors. For d=4 this number drops to 2.5% and pla-
teaus for higher embedding dimensions.

Figure 13 illustrates our approach to embedding di-
rnensions. The practical issue, to say it again, is what
embedding dimension should one use to capture the

features of the data observed. We would surely choose
d=4 as an effective embedding dimension and interpret
the plateau at 2.5% as a noise effect. Indeed, one of the
first tasks one would perform with noise observed data is
to apply one of the several methods of noise reduction, or
separation, that have been recently suggested [24—28].
The techniques we have presented will give an accurate
starting point by choosing an exnbedding dimension in
which to perform the noise reduction. After separating
the signal from the contamination, one can easily go back
to the false-nearest-neighbor method to determine anoth-
er (probably smaller) embedding dimension to use in
analyzing the signal. Actually since two of the methods
require either knowing the dynamics [24—26] or observ-
ing a clean trajectory of the dynamics [27], it is only in
the case where no knowledge of the "clean" system is re-
quired [28] that these remarks might come into play. In
the probabilistic method [27] where only a clean trajecto-
ry has been observed, the present false-nearest-neighbor
technique will give a direct, useful answer about the
embedding dimension in which to clean subsequent noise
data.

IV. CONCLUSIONS AND COMMENTS

We begin this section by commenting on the relation-
ship between this paper and that of LPS [9] and the paper
of BLPC [10]. It should be mentioned that the general
ideas behind all of these methods have been around for
some time, for example, see Fig. 3 in Ref. [29], and in fact
are just generalizations to the realm of nonlinear dynam-
ics of questions dealt with in state-space formulations of
linear control systems.

Both the LPS paper and this one provide an implemen-
tation of the same basic idea. We each use time-delay
coordinates and attribute the disappearance of false
neighbors as an indication of a minimum embedding di-
mension for the data. From this point forward our ap-
proaches are different. The LPS technique uses small
neighborhoods whereas we use individual neighbors.
They then compute two distances, Dd+&(n;r, d) and
Dd+&(n;r, d+1). Dd+, (n;r, d) is the distance between
y(n) and its rth neighbor. For this case the calculation
that determines which is a near neighbor is performed in
d dimensions, while the calculation of the distance be-
tween neighbors is performed in (d+1) dimensions.
Dd+, (n;r, d+1) is also the distance between y(n) and its
rth neighbor. However, for this case both the
calculation that determines which is a near neighbor and
the calculation of the distance to that near neighbor are
performed in (d+1) dimensions. The ratio
Dd+, (n;r, d)/Dd+, (n;r, d+1):—Q, defines their quanti-
ty Qi.

LPS then go on to define Qz via Qq
=Dd(n;r, d)/Dd(n;r, d+1). In this case the calcula-
tions for distances between neighbors are performed in d
dimensions. The calculation used to identify the rth
nearest neighbor is performed in d dimensions for the
numerator and (d+1) dimensions for the denominator.
LPS then examine the geometric mean of the product

Q, Qz over a neighborhood (in their reported case the
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first ten nearest neighbors). Our first criterion, Eq. (4),
can be seen as the ratio of part of their Q, to part of their
Qz. LPS's statistic, called W, is the logarithm of the ar-
ithmetical average over neighborhoods of the individual
geometric means.

For the purposes of finding a minimum embedding di-
mension our method and that of LPS use the same under-
lying principle; however, the statistic and interpretation
in our case are simpler. The proportion of false neigh-
bors is on an absolute scale, always bounded between 0
and 1, whereas with LPS it is not immediately clear what
constitutes a sufficiently small statistic unless the conver-
gence is sharp. If one sees a plateau of 0.1% false neigh-
bors with increasing embedding dimension, in contrast to
perhaps a plateau at 10%, one could be rather confident
that a good reconstruction of a clean chaotic attractor
has been accomplished. LPS did not examine the effect
of noise on their algorithm, but in a brief comparision we
found that on pure uniform noise, their statistic contin-
ued to decrease with larger embedding dimension,
whereas ours plateaued at a comparatively high level.
This is not surprising as their statistic uses the same in-
formation as ours, but without the additional criterion
that we found necessary to guard against pure noise. For
moderate noise levels (10%) added to the Lorenz-II at-
tractor, the LPS statistic did not have a definite plateau
with increasing embedding dimension as did the false-
neighbors criterion, and so we found the identification of
minimum embedding dimension easier to make in the
latter case.

LPS also use their statistic to choose the time lag for
embedding They . define a new quantity W= WlT and
search for a minimum in 8'as a function of T. We admit
to not fully understanding the motivation behind the
division by T. The 8'quantity alone gives the general be-
havior that we intuitively expect, and also observe with
the false-neighbors statistic. For large T, the proportion
of false neighbors and also the 8' statistic increase, be-
cause the attractor looks more like noise, as the elements
of the state-space vector become more decorrelated due
to the positive Lyapunov exponent. For sufficiently small
time lags, the attractor eventually collapses onto a one-
dimensional object, and so the estimated embedding di-
mension will be spuriously low. The division by T ap-
pears to be a way of ameliorating the latter problem, if
one then ignores new minima in 8'created at large T by
the division.

In contrast to the case for embedding dimension, the
theorems do not define a "correct" time delay to use,
rather one must choose a condition that simply gives
reasonable results given a finite amount of data at a cer-
tain sampling rate, and the LPS criterion is another one
to do so. Our method, as it is attuned specifically to the
gross errors created by an improper embedding, appears
in practice to be less sensitive to time delay than LPS s
method. This fact may be either a virtue or a vice, de-
pending on one's outlook.

Our example of the Ikeda map also demonstrates that
the choice of embedding dimension does very little to
eliminate the problem of spurious Lyapunov exponents as
LPS suggest it might. With time delay embedding di-

mensions larger than that of the "true" dynamics, one
must still identify, by dynamical means, the Lyapunov
exponents which describe the system and not the artifacts
of time-delay embedding by Euclidian coordinates [15].

The BLPC paper is closer in spirit to ours than
the LPS work. BLPC identify a quantity od(e) which
is the average over the attractor of the value of
[x (n +dT) —x(m +dT)] for all pairs of points (labeled
by n and m) with y(n) and y(m) having all components
within a distance e of each other divided by the number
of such points on the orbit. This is essentially the average
over the attractor of what we have called
Rz+, (nr) Rd—(n, r) for all neighbors within a sphere of
radius e&d of the data point y(n). They then display
0'd(E)for v'arious dimensions d with various selections of
the neighborhood size e and the noise level as added to
the equations of evolution of the system. When there is a
sharp break in the curve of this quantity versus dimen-
sion, they argue this dimension should be chosen as the
embedding dimension. For dimensions above this break,
the value of crd(e) should be of order e . They also state
that this minimum embedding dimension dE is related to
the fractal dimension of the attractor d ~ by
dE = 1+[integer part of ( d „)].

In general idea this is quite close to what we have done.
BLPC must choose a neighborhood size, of course, and as
far as we can see from their work they did not systemati-
cally investigate the effect this size has on their results.
They also always work with 4096 data points, and we
suspect this is likely to be sufficient for the data they in-
vestigated. We must choose a value for the tolerance lev-
els we use in our criteria for false nearest neighbors, but
we have demonstrated the independence of this choice
over a very wide range of values. By choosing a neigh-
borhood size, apparently in a fashion unrelated to the size
of the attractor, BLPC in effect determine how many
neighbors will be included as they move around the at-
tractor. This number will vary as one moves about the
attractor since the neighborhood size is fixed and the den-
sity on the attractor is inhomogeneous. One can see from
the data of BLPC that the value of o d(E) does not reach
down to e above dE since they are, in some fashion,
counting points with true neighbors within a ball of
radius ev'd more than once. This is not severe really,
but the estimate of when one has reached dE could be
spoofed by this when there is noise in the data. Also we
comment that the example of the Ikeda map we present
here shows that their suggested connection between dE
and d„ is not correct in general. Choosing neighborhood
sizes and asking when points stop moving out of those
neighborhoods, and this is the essence of the BLPC algo-
rithm, entails additional work and computing cost over
our procedure using nearest neighbors only. This is be-
cause points are likely to appear in many neighborhoods,
especially when the neighborhood size is not small, as is
the case in several of the BLPC examples.

Finally the simplicity of the computations required for
our implementation of the false-neighbor idea coupled
with the ability to estimate (quantitatively and directly)
the error implied by various choices of embedding dimen-
sions should allow the use of our procedures in a large
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variety of settings. Indeed, we have successfully applied
this method to experimental data [30] from several
sources, and we have been able to determine, with no
trouble and quite efficiently, minimum embedding dimen-
sions even in the presence of contamination by noise.
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