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Bistable spheroidal optical solitons
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The possible forms the intensity dependence of the nonlinear refractive index would have to take for

bistable light bullets to exist are examined. Bistable light bullets are propagating spheroidal optical soli-

tons characterized by different sizes and intensity profiles but with the same energy.

PACS number(s): 42.65.Pc, 42.50.Rh

iE, +
2 (E»+E„r+ETT)+f( IE I')E =0 (2)

Spherically symmetric solutions of the form E(Z, R)
=exp(i5Z}U(R) are sought with R =X + Y +T2 and

5 a real, positive constant. Equation (2) then reduces to

U„n+(d —1)U„/R+2U[f (U ) 5]=0, — (3)

Recently, the possible existence of a so-called "light
bullet" has been suggested [1] which could arise when a
three-dimensional optical pulse is able to propagate
without change in space or time because the natural ten-
dency to spread due to diffraction and anomalous disper-
sion is balanced by the self-focusing due to an appropri-
ately chosen nonlinear refractive index. In this paper we
would like to point out that bistable light bullets are pos-
sible for certain classes of intensity-dependent refractive
indices. Bistable light bullets are propagating spheroidal
optical solitons characterized by different sizes and inten-
sity pro61es but with the same energy.

Assuming a refractive index of the form
n =no+ n~F(~P~ ), where no and n2 are real and positive,

P is the electric field, and F is an arbitrary function, and

making the usual slowly-varying-envelope approximation
in the direction of propagation z&, Maxwell's wave equa-
tion yields (subscripts denoting partial derivatives)

2ik($, +vs 'P, ) +P„„+P kDP«—
+2k (nz/no)F(lfl )4=0 .

Here k is the wave number, v the group velocity, t the
time, x, and y &

the transverse spatial directions,
D = —(Bv IBco)lv the group-velocity dispersion (GVD).
Assuming anomalous GVD, D &0. Then using the stan-
dard Mollenauer-Stolen-Gordon [2] scaling, viz. ,
T=~'(t —zi Iv—s), Z:r~D ~zi, X—:r'(k ~D [)' zx—

&,

Y=—r '(kIDI)'"yi, E=r(kn2/IDlno}—'"P, and f(IEI')
=(kn2r /)D ) n)Fo()(b) },where r is a temporal scale fac-

tor, Eq. (1) takes on the normalized dimensionless form

eralize the guidelines for "building" bistable solutions
which were used [4,5] for d =1, we utilize an argument
due to Zakharov and Synakh [7] and apply it to the d-
dimensional form (3). The energy (first conserved quanti-

ty) of a localized solution to Eq. (3) is given by
P= fz" lE~ R 'dR = fo U R 'dR. We consider

f(U )=U "=I", where I is the intensity, and assume
a solution to (3) of the form U(R ) =5 V(5'R ). On
substitution into (3), we find that c =

—,', b = 1/Zn,

so that on setting g—:5' R we obtain
P =5' " f o" V (g)g 'dg. Thus, if P is plotted

versus the parameter 5, the slope dP/d5 is positive for
n (2/d, zero for n =2/d, and negative for n )2/d. In
d = 1,2, 3 dimensions the critical (zero) slope value of n is

2, 1, and —'„respectively.
Bistability (more generally, multistability) occurs when

two or more values of 5 are possible for a given value of
P Solitary .waves corresponding to different values of 5
will in general have different U(R) (or intensity) profiles
and sizes. Of particular interest are those ranges of 5 for
which the solitary waves are "robust" (solitonlike). For
d =1, Enns et al. [4—6] have studied the stability of soli-

tary waves corresponding to various f (I) through nu-

merical collision and switching simulations as well as
through an analytic Painleve analysis [8]. Clearly the
model f=I",corresponding to an n-photon process, does
not allow for the possibility of bistability for any d. Bi-
stability is possible, however, if f(I) is dominated by

different n values, corresponding to the onset of different

processes, in diferent ranges of I. Of particular impor-

tance are "steplike" f (I), a simple example of which is

f(I)=0 for I~Io and 5(1 BIO/I ) for I~I—o. A U-

shaped P (5) curve will result for any d because f (I) rises

very rapidly initially (negative slope) and eventually satu-
rates (positive slope). This may be verified for d= 1, 2,
and 3 by analytically integrating Eq. (3) and then calcu-
lating P. For example, for d=3, setting p—=5/b. , one
6nds that

with the dimension d=3 here. Bistable solitary-wave
solutions to Eq. (3), having their maximum value at R =0
and with Uz, Uz+~0 as R~~, have been extensively
investigated by Kaplan [3] and Enns et al. [4—6] for
d = 1. Kaplan has also briefly discussed the d =2 case.
In this paper we are interested in what form f ( U ) must
take for bistable solitary waves to exist for d =3. To gen-

=Pb, I =[g l[2 P' (1—P) ]]
X [3Pg ]P2g + ]Pl/2g2+ sP1/2

+ &P3/2g2+ i
( 1 P)2g2]

with 00 obtained from the transcendental equation

(4)
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cot[&(1—P)8 ]—[P&(1—P)8 ] '=&(1—P)/P . (5)

Equation (4) is plotted on a doubly logarithmic scale in
Fig. 1, the minimum or critical value p„=38.9 at
P„=0.08. What about stability? According to Infeld
and Rowlands [9], and as we previously confirmed for
d =1, negative sIop-e solitary waves are always unstable for
any d. From the work of Vakhitov and Kolokolov [10]
and Laedke and Spatschek [11]on saturating nonlineari-
ties in plasma physics, the positive-slope solitary waves
for d =3 are stable against small perturbations.

To create two (or more) stable branches we can build
on the basic U shape by allowing f(I) to have further in-
tensity dependence in different ranges of I. Two simple
examples illustrate the approach. The first possibility is
to "splice" a positive slope leg onto the U to form an N-

shaped P(5) curve. From our guidelines this requires
that f (I) be sublinear (with slope less than —', to be pre-
cise} at small I. Since Zakharov and Kuznetsov [12]have
already demonstrated that three-dimensional solitary
wave solutions to (3) are stable for f= U=I'~, we con-
sider the "sublinear plus smooth step" (SLSS) tnodel, viz. ,

bp(I/Io), I + Io
f(I)= '

6[1—(1 ij, )QIo/I, —I ~ Io

that for b, I,„»IO and the numerically calculated ener-

gy curve is close to the analytic U-shaped curve. As
P—+1, the upper branch becomes more dominant and the
two curves should (and do) coalesce. It should also be
noted that the sudden drop at P=0.012 is an artifact of
the discontinuity in slope of our model. Models can be
readily created which smooth out this feature.

Whether materials can be found with the requisite sub-
linear response at low I is an open question. However, it
should be pointed out that type-8 BaTi03 has been re-
ported to display an I' behavior [13,14] at low intensi-
ties in its photoinduced absorption (which would corre-
spond to the imaginary part of n2) and to respond on a
picosecond time scale [15].

Our second example is based on the fact that many ma-
terials (e.g., silica, Rb vapor etc.) have a Kerr behavior
[f(I)~I] at low intensities From. our guidelines a satur-
able [f(I)—constant at large I] Kerr model will also
yield a U-shaped energy curve If,. as I is further in-
creased, f(I) undergoes a "jump" (e.g., due to a phase
transition) and then saturates at a still higher level, a W-
shaped (two U's back to back) energy curve should be
possible with two negative- and two positive-slope
branches. To test this idea, we have numerically integrat-
ed Eq. (3) for the "double saturable Kerr" (DSK) model,
viz. ,

with 6, p, and Io positive parameters and 0 &p & 1. For
p=0, this reduces to our previous model. We have
solved Eq. (3) numerically for the SLSS model and then
calculated the normalized energy p= Ph ~ /Io, —with the
result being shown in Fig. 1 for @=0.05. The inset
shows the solitary-wave profiles corresponding to the en-
ergetically degenerate points a (P, =0.005) and b
(Ps=0.4) on the stable lower and upper positive-slope
branches. Profile b is considerably narrower than a with
a maximum intensity I „over 200 times that of a. Note

1 —exp( I), I ~ I—o

2—exp( Io)—exp[—b(I Io—)], I ~—Io
f(I}= '

taking, e g , b =.2 .and In=2, 5, and 8. The shape of f (I)
is shown in Fig. 2, as well as, for comparison purposes,
the SLSS model for @=0.05, 5=2. Again, models with
similar behavior can be readily created which smooth out
the discontinuity in slope. The energy curves for the
DSK model are shown in Fig. 3.

For I&=2, a distorted U-shaped energy curve is ob-
tained. Referring to Fig. 2 and recalling our guidelines,
this result is easily understood. The "jump" at I/Io= 1

occurs before sufficient saturation has taken place, thus
wiping out the possibility of a lower positive-slope leg.
When Io is increased to 5, f (I) has flattened (see Fig. 2)
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FIG. 1. Normalized solitary-wave energy p vs parameter P.
Dashed curve, for model f(I)=0, I~Io and b,(1—V Io/I ),
I ~ Io; solid curve, for SLSS model. Inset: solitary-wave
profiles corresponding to points a and b in main figure.

Ip

FIG. 2. f(I) discussed in text. Dashed curve, SLSS model
for p=0.05 and 6=2; solid curves, DSK model for b =2 and
ID=2, 5, and 8.
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FIG. 3. Solitary-wave energy curves for DSK model for b =2
and ID =2, 5 and 8.

W/ =usb, t =u (2W),
k(n2F„, )

(8a)

sufficiently before the jurnp at I=ID so that we indeed
obtain a (lopsided) W-shaped energy curve. A further in-
crease of Io to 8 deepens the "dips" in the W. From sta-
bility studies in plasma physics [9,11] on the single satur-
able Kerr model, the two positive- (negative-) slope
branches for Io=5 and 8 are stable (unstable) against
small perturbations. The robustness (established, e.g.,
through collision studies) of the positive-slope solitary
waves for this and the other models discussed remains to
be established.

Before continuing it should be emphasized that the two
models presented here are for illustrative purposes only,
to show how bistable three-dimensional solitary waves
can be created by applying the guidelines to model f (I).
Which material will yield a given f (I) is beyond the
scope of this paper. Referring to Fig. 2 it can be seen
that even though di8'erently shaped energy curves result,
the f (I) profiles needed to create a three-dimensional
bistable solitary wave with two stable branches are quali-
tatively similar, i.e., two saturable jumps are required. In
the one-dimensional case, only one jump was necessary
[4—6]. The jumps could arise due to the onset of higher-
order photon processes or phase transitions.

%hat would the solitary-wave profiles a and b in Fig.
1, e.g., look like in laboratory coordinates? The solitary
waves are spherical in terms of the dimensionless coordi-
nates X, Y, T so the widths AT=~=hY. Thus in labo-
ratory coordinates if the pulse duration is ht, the width
at half maximum in Fig. 1 is W, and E„, is the saturation
value of F ( ~ P~ ) when f= b, , then the longitudinal (in the
direction of propagation) and transverse widths, WL and

WT, respectively, are given by
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FIG. 4. 8'L and 8'T for solitary waves a and b in Fig. 1 as a
function of ~D~ for n2F„, =10 ' (solid lines) and 10 (dashed
lines). T, stands for the transverse width of a, etc. S labels the
value of ~D~ for which WL = Wr and the solitary waves are
spherical. The dot (cross) labels WT {8'L}for silica.

no

k (n2F„, )

1//2

(2W) . (8b)

Not surprisingly WL involves the ratio of the GVD to the
strength of the nonlinearity whereas WT is independent
of the GVD. To have spherical solitary waves or light
bullets in laboratory coordinates requires that the medi-
um parameters satisfy the relation kus tD

~

=1. For many
materials, the anomalous GVD regime is roughly
=1 —10 p,m. For no=1.5, A. =1 JMm, e.g. , this mould re-
quire ~D~=2. 7X10 s /m (indicated by S in Fig. 4).
In general the light bullets will be spheroidal, i.e., "Aat-
tened" spheres. For silica, e.g., which is Kerr-like and
therefore cannot disp/ay bistability, ~D

~

= 1.8 X 10
s /m. For, say, At=1 ps, WL =0.2 mm and WT=3 mm.
In this case the sphere is highly squashed in the direction
of propagation. Since P(5) has only negative slope for
the Kerr case this solitary wave is not stable, as already
noted in Ref. [1].

In Fig. 1 for solitary pulses a and b, W, = 13, Wb ——2.2.
For silica, n2=1.2X10 m/V, so for ~P~-10 —10
V/m, nzF(~$~ )=nz)P~ —10 —10 . In the absence of
known material parameters, in Fig. 4 we have taken
nzE„, =10 and 10, no=15, A, = 1 pm (for
A, =10 JLtm, multiply WL, Wr by &10) and plotted WL
and WT (in mm) as a function of ~D ~

for solitary pulses a
and b. To the left of the point S, WT & WL, while to the
right, WT( WL. The 8'L and 8'T values for silica are
shown for reference purposes. The bottom axis in Fig. 4
for which WL =0. 1 mm corresponds to At =0.5 ps. For
shorter pulse durations and therefore smaller widths Eq.
(1) becomes inadequate and other contributions (higher-
order dispersion, finite response time, self-steepening)
must be included [16].

In conclusion we have shown that bistable light bullets
may be possible if materials with appropriate f (I) can be
found or fabricated.
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