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Many-electron radial and angular integrals in the unitary-group approach
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An extension of work by Drake [Phys. Rev. A 18, 820 (1978)] to the treatment of radial and angular
integrals occurring in ¹lectron systems is presented. It is shown that the essential results pertaining to
two-electron systems adapted to Hylleraas coordinates also apply to many electrons when pairs of elec-
trons are chosen to interact with each other in a spin-adapted basis set. These results are derived using
graphical-analysis techniques in the context of the unitary-group approach.
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I. INTRODUCTION

The unitary-group approach (UGA} has been shown

[I—4] to be particularly useful in a number of application
areas, including configuration-interaction (CI} calcula-
tions [5], NMR [6], and SU(n) ba-sed [7] treatments of
many-particle problems. For such applications one must
evaluate radial and angular integrals in the permutation
symmetry-adapted (SN ) many-electron basis. The U(n)
basis, expressed alternatively in terms of Weyl-Young [3]
(WYT) or Paldus [2] (ABC) tableaux, or Shavitt's [5] dis-
tinct row table (DRT), provides for considerable
simplification of both spin-independent and spin-
dependent operators and methods for evaluating their
matrix elements.

In this paper we describe an approach to obtaining ra-
dial integral relations by reducing matrix elements of ten-
sor operators that depend on the interparticle coordinates
to finite sums of radial integrals for spin-adapted states of
arbitrary angular momentum. This work is a natural ex-
tension of results obtained by Drake [8] for the two-
electron cases and reduces to his results in that limit.

The organization of the paper is as follows. In Sec. II
we briefly review the two-electron theory. In Sec. III we
deal with the cases of W electrons where the system of
particles is subdivided into two particles plus the remain-
ing coupled system of X —2 electrons.
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coupled products of spherical harmonics (unit irreducible
tensor operators) of the forms
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81~82

(3)
and R =R (r, , rz, r) denotes the correlated radial part of
the wave function. The volume element is expressed in
the form dr]drz=r]dr]rzdrzr drsin8]d8]dg]dg where
8] and ((]] are the polar angles of the vector r], and g is
the angle of rotation of the rigid triangle formed by r, , r2,
and r about the r, direction.

The independent variables in the problem are r„r2, r,
8], ((t], and y. Using the rotation matrix relation, the
spherical harmonic can be expressed as

Y] '(8z, yz)= yD ' (y], 8],y)'Y], (8,]t]), (4)

II. T%0-ELECTRON SYSTEMS

Drake [8] has shown that for two-electron systems de-
scribed by Hylleraas coordinates r&, rz, and r&z=r& —r2
(r = ~r]z~), and whose wave functions are vector-coupled
eigenfunctions of the total angular momentum operator
L=/&+12, it is possible to derive a number of recurrence
relations for the associated radial integrals. Further, by
correlating the spins using the total spin operator
S=s, +sz (basically, applying Pauli s principle), addition-
al restrictions are placed on the allowed values of I-,
thereby simplifying the radial integral expressions even
more.

The general problem can be stated in terms of evaluat-
ing integrals of the form

where 8 and P are the polar angles of rz relative to r].
This leads to the fundamental integral relation

I(l, m„lzmz;RR')=2tro 5, ] I, (R'R ), (5)

where

oo oo rl +r2
It(R 'R) = r]dr] f rzdrz f r dr R 'RP] (cos8},

(6)

and where P, (cos8) is a Legendre polynomial and cos8 is
a (radial) function defined by

cos8=(r ] +rz r) l2r] rz .—

The full integral (l) can be expressed using standard
angular momentum coupling techniques; hence
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where I„(R'R } is expressed using (6) and the X and D factors are
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and
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2 1

k, k2 K
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L'
(10)

We use the standard
=(2a + 1)(2b+1). . . in Eq. (9).

The above formulas allow for (1) to be expressed in the
form

I= g Cl, Il, (R'R ),
where the Cz are the angular coefficients

C„= QC22
A 1)X2

(ab, . . ).

(12)

and
L' K L1)™M~ g

(13)

The importance of the above analysis lies in the fact that
the matrix elements for a wide variety of operators are re-
duced to sums of radial integrals of the form (6). For
these integrals, recursion relations may be employed to
further reduce the amount of computation.

III. MANY-ELECTRON SYSTEMS

As stated in the Introduction, our treatment amounts

to viewing the system of N electrons as made up of a pair
of electrons interacting with all the rest. The need to re-

move two electrons at a time, rather than one, arises from
an enumeration of the independent variables in the prob-
lem. Consider, for example, a three-electron system
and take r 23

=
I r2 —r3 ~

as an independent variable.

The volume element is then d r,d r2d r3

=dr, r2dr2r3dr3r23dr23sin82d82dp2dX If r2 is tho. ught

of as independent, then r3 is partially determined by the
values of r23 and y. The coordinate r23 now plays the

I

l,'+l,'+r+A

I

role of r in Sec. II. Each state adapted to total angular
momentum L is constructed by adapting to total spin S,
following the UGA (see Ref. [3]},by coupling successive
particles, lkmk, k=1, . . . , N, in a manner consistent
with the spin coupling.

The matrix elements of the tensor operator
TPk z(r, , r ) in the N-electron system is determined by

1 2

decoupling the ith and jth electrons and recoupling the
remaining I)l —2 electrons into a new system (quasiparti-
cle) with total angular momentum L The .ith and jth
electrons are coupled to a two-electron state with angular
momentum 1 . Equations (1), (2), and (3) are consequent-

ly to be modified by replacing l, , m „l2, m 2, L and M by

l;, m;, lJ, ml, I', and M (and similarly for primed labels).
The issue that remains, therefore, is to transform the
original ¹1ectron coupled state into the decoupled sys-
tern consisting of a pair of electrons plus the N —2 elec-
tron subsystem; these are subsequently recoupled to a
resultant state of total L and to the tensor operator.

The process of decoupling and recoupling is accom-
plished using the techniques of group subduction [9], in

general. However, since we need only consider paired
states it is fully equivalent to vector coupling. For the ith
and jth electrons in the bra state interacting with the rth
and tth electron in the ket state, the equivalent expression
to (8) now becomes

I(l;,m;, ll, m, l„'m„', l,', m,')

r' sr
—M' Q M

I

where R =R(r&, . . . , rz) and R'=R'(r, , . . . , rz) re-

place the previous correlated radial parts of the wave

function. The factor X'2 z ~ is expressed as

l. k] A $ l A] A /) k2 A.2 lt k2 A

0 0 0 0 0 0 0 0 0 0 0 0

The factor 52 z A is represented by the angular momentum coupling graph shown in Fig 1. This gr. aph can be decom-

posed by separating across sets of three lines [10],thereby expanding the subduction coeScients for bra and ket states in

terms of 6—j coefficients as shown in Fig. 2, to arrive at the expression
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FICx. l. Angular momentum coupling graph from Eq. (16)

representing the Bk z „coefficient. All unmarked lines are la-

beled with the appropriate single-particle angular momentum,
LI„LI'„ ll„ lI'„LI„or LI, accordingly, and aI1 angular momenta
are assumed to be integers.

Flax. 2. Decomposition of the Dz z „coefficient in terms of

the product of the Dz q A coeScient and subduction

coeScients for recoupled bra and ket. The lines labeled by I
and I" represent paired-state angular momenta produced by the
decoupling of the (N —2)-electron systems from the parent N-
electron systems.
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In particular, the last product of 6-j and 9-j symbols
derives from the top graph in Fig. 2 and corresponds to
Fig. 1 of Ref. [8]. In the limit of N=2 electrons, the
above results reduce to those of Drake.

In this case, as in the two-electron case, spin correla-
tion, as provided for by the UGA [11,12], greatly restricts
the allowed L and A values. Further, since the angular
integration performed over all coordinates except i, j, r,
and t does not involve the action of the tensor operator, it
follows that Lk =Lk for all k=1, . . . , N —2. The ap-
proach outlined above obviates the need to explicitly L
adapt linear combinations of WYT, as shown, for in-
stance, in Ref. [13].

ing so we have employed the interpretation of the X-
particle system as a composite of a pair of electrons and
an (N —2)-particle subsystem. Starting from the
particle U(n) basis we first transformed to a decoupled
pair plus an (N —2)-electron system requiring evaluation
of subduction coefficients and then recoupled all angular
momenta to the interaction tensor angular momenta.
Since the basis states are spin adapted, the resultant fac-
tors are relatively simple to calculate and are few in num-
ber. We are currently engaged in obtaining more detailed
results regarding recursion relations for various forms of
tensor operators and plan to report on this in due course.
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