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In this paper, the order-a contributions of the self-energy and outer-vertex graphs to the decay rate of
orthopositronium in the Fried-Yennie gauge are obtained in analytic form.
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This Brief Report describes the analytic calculation of
the self-energy and outer-vertex contributions to the de-
cay rate of orthopositronium in the Fried-Yennie gauge.
These graphs contribute to the rate at order (a/7)I' g,
where

rm:%< 2 9)ma (1)

is the lowest-order rate [1,2]. These are the first results in
a study of the orthopositronium decay rate in the Fried-
Yennie gauge. All previous numerical [3-7] and analyti-
cal [8-12] work on radiative corrections to orthoposi-
tronium decay has been done in the Feynman and
Coulomb gauges.

The Fried-Yennie gauge seems optimal for higher-

order calculations of positronium decay rates. The
Fried-Yennie gauge propagator
v -1 v~ kFEY
D%Y(k)=7 gv+2 o2 (2)

is covariant and is only slightly more complicated than
the Feynman gauge propagator —g**/k?. The Fried-
Yennie gauge has agreeable infrared properties [13]. The
Coulomb gauge shares this good behavior in the infrared,
but has a noncovariant propagator which complicates the
evaluation of multiloop graphs. The other covariant
gauges are poorly behaved in the infrared. Since good in-
frared behavior and a relatively simple covariant propa-
gator seem essential for multiloop bound-state calcula-
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where the sum is over the 3! permutations of the
final photons and the R’s are the dimensionless mo-
mentum vectors R;,=N—K; with N=(1,0) and
K,=(w;/m,k;/m). The self-energy and outer-vertex ma-
trix elements are obtained by the replacement

Y€1) AX5(1))€0(1) (6)

for “vertex correction” matrices A* that are functions of
the single variable x ;). These “vertex correction” ma-
trices have the form

——tr | Y€, — YR, T DY €)Y R o) T DY €4

tions, we believe that the Fried-Yennie gauge is the only
viable gauge for use in calculating the order-a’T'jq
corrections to the decay rates. Calculation of the ortho-
positronium decay rate to order a’I";, is needed to un-
derstand the implications of recent high-precision mea-
surements of this rate [14,15].

The orthopositronium decay rate can be written as [7]

I'=

m 1 1 1
.3 J dxlflixldxze DIED> T (3)
P2 =3 m
where x; =, /m is the normalized energy of photon i, ¢,
is the polarization vector of photon i, and €,, is the
orthopositronium spin vector. Energy conservation con-
strains  the normalized photon energies by
x;+x,+x3=2. The invariant matrix element

M=My 5+ 2Mp+2Moy+ - - - (4)

has contributions from each of the graphs in Fig. 1. The
two self-energy graphs contribute equally, as do the two
outer-vertex graphs.

The self-energy and outer-vertex graphs differ from the
lowest-order graph by radiative corrections on or adja-
cent to one of the outer vertices. Thus the self-energy
and outer-vertex matrix elements can be obtained from
the lowest-order matrix element by the replacement of
one of the outer-vertex factors (a ¥ matrix) by a more
complicated factor. The lowest-order matrix element is

0 o-€,
0o 0 , (5)
—
AMx)= oYM f (e +(rR = Dy g (x;)
+(yR;,—DN*(x;)+N*j(x)], (D
where
12x? 6x
=—=— In(2x)+
fse(x) 1—2x) n(2x) T—2x ° (8a)
6x
=——1n(2x)+
gSE(x) (l—2x)2 n(2x) 1—2x ’ (8b)
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FIG. 1. Contributions to the decay rate of orthopositronium:
(a) the lowest-order graph, (b) the self-energy graphs, and (c) the
outer-vertex graphs.

hSE(X)zo y (8c)
Jse(x)=0, (84d)

for the renormalized self-energy correction, and

1 2—6x —4x? 4x
= — + —
fov(x) xn(x) 1—2x)’ In(2x) —ox ’ (9a)
—4x 2
=——1n(2x)—
gov(x) 12y n(2x)— 1o~ (9b)
11 2—10x +8x? 2(1—x)
=—— —1 -,
hgoy(x) . xn(x)+ 1= 2x? n(2x) | —2x
(9c)
—4x 2
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oV 12y 1—2x
for the renormalized outer-vertex correction. The 7
function
n(x)=§(2)—Li,(1—2x) (10)

contains a dilogarithm [16]. The fact that the Aoy and
Jjov functions are the same in the Fried-Yennie gauge as
in the Feynman gauge [10] is a consequence of gauge in-
variance.

The order-a corrections to the decay rate come from
cross terms in the square of M. The self-energy correc-
tion g comes from Eq. (3) by the replacement

|M|2—>2X2Re[(MLO)*./VlSE] (11
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and the outer-vertex correction I' gy by the replacement
| M| —2X2 Re[(Myo)* Moy ] - (12)

Since the phase space and M o are symmetric under pho-
ton interchange, there is no need to symmetrize in Mgg
and Myy as well. Thus the “vertex correction” can be
taken to act on photon 1 only. On performing the polar-
ization sums, the spin sum, the resulting trace [17], and
the x, integration, one obtains

T, 1
FSE:—’ZfZ—fo dx?[Pf(x)fSE(X)"’_Pg(X)( —2x)gse(x)

+ Py (x)(—2x)hgg(x)
+P;(x)jsg(x)] (13)

(where x =x,) for the self-energy correction and a similar
form for the outer-vertex correction. The P factors are
(10]

P(x)= 2—__—8;+12—5x+x2 In(1—x)+8x —3x?,
(14a)
8 18
= ——2+10+x |In(1—x)
Pg(x) 2 2-x x | In(1—x
.. SR (14b)
2—x
—4 6 3x
=|——+ — = |In(1—
P,(x) 2 x? T2-x 2 n(1—x)
2x x?
- +3x+— 14
> —x 3x 5 (14¢)
_8 14 2
(x)= | ——=+———8x+2x?|In(1—
P;(x) (2—x)2+2—x 8x +2x“ | In(1—x)
L SN (14d)
—X
Integration of Eq. (13) yields the final results
7
= ’"v‘;‘ [—8E4(3)+8L5(2)In(2) — 21 5(2)
—21n(2)+%]
,
=2 (—0.007 132904)
m
=rLO%(—o.036911 113) (15)
and
r =’""‘7[—ﬂ;<3>—@§(2)1n(2)+£§(2>
ov 772 54 216 18
+31n(2)—2—1LR]
,
=% (0.732 986 380)
T
=T, 6%(3.793033599) . (16)
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The outer-vertex result contains the degree-four [18]
quantity

_r1, In(1—x) oy
R= [ dx———[6(2)~Lip(1=2x)]

=—1.7430338337(3), (17)

which has not been evaluated analytically [19].

The self-energy and outer-vertex graphs are the first
orthopositronium decay graphs to be evaluated in the
Fried-Yennie gauge. A numerical evaluation of the

remaining order-a graphs in the Fried-Yennie gauge is in
progress. When this work is completed, we will have a
new and independent result for the orthopositronium de-
cay rate to order a. This result will be of use in higher-
order calculations of the decay rate using the Fried-
Yennie gauge.
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