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In this paper, the order-a contributions of the self-energy and outer-vertex graphs to the decay rate of
orthopositronium in the Fried-Yennie gauge are obtained in analytic form.
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This Brief Report describes the analytic calculation of
the self-energy and outer-vertex contributions to the de-
cay rate of orthopositroniurn in the Fried-Yennie gauge.
These graphs contribute to the rate at order (a/n)I Lo,
where

= 2I Lo= (n 9)ma
9m

is the lowest-order rate [1,2]. These are the first results in
a study of the orthopositronium decay rate in the Fried-
Yennie gauge. All previous numerical [3—7] and analyti-
cal [8—12] work on radiative corrections to orthoposi-
troniurn decay has been done in the Feynman and
Coulomb gauges.

The Fried-Yennie gauge seems optimal for higher-
order calculations of positronium decay rates. The
Fried- Yennie gauge propagator

k"k'
Dgv(k) = g)"+2

is covariant and is only slightly more complicated than
the Feynman gauge propagator —g)'"/k~. The Fried-
Yennie gauge has agreeable infrared properties [13]. The
Coulomb gauge shares this good behavior in the infrared,
but has a noncovariant propagator which complicates the
evaluation of multiloop graphs. The other covariant
gauges are poorly behaved in the infrared. Since good in-
frared behavior and a relatively simple covariant propa-
gator seem essential for multiloop bound-state calcula-

tions, we believe that the Fried- Yennie gauge is the only
viable gauge for use in calculating the order-a 1+Q
corrections to the decay rates. Calculation of the ortho-
positronium decay rate to order a I zQ is needed to un-

derstand the implications of recent high-precision mea-
surements of this rate [14,15].

The orthopositronium decay rate can be written as [7]

1'2'3 m

(3)

where x; =co;/m is the normalized energy of photon 1, e,.
is the polarization vector of photon i, and e is the
orthopositronium spin vector. Energy conservation con-
strains the normalized photon energies by
x

& +xz+x3 =2. The invariant matrix element

JR =JRLo+2J$fsE+2JRo,v+ ' ' ' (4)

has contributions from each of the graphs in Fig. 1. The
two self-energy graphs contribute equally, as do the two
outer-vertex graphs.

The self-energy and outer-vertex graphs differ from the
lowest-order graph by radiative corrections on or adja-
cent to one of the outer vertices. Thus the self-energy
and outer-vertex matrix elements can be obtained from
the lowest-order matrix element by the replacement of
one of the outer-vertex factors (a y matrix) by a more
complicated factor. The lowest-order matri~ element is

0 cr.e
3 +~(2)

JRLo= isa tr ye (3)( yR (3)+1)ye' (p)(yR ())+1)y& (1) 0eS X1X2X3 0

where the sum is over the 3f permutations of the
final photons and the R's are the dimensionless mo-
mentum vectors R, =N K; with N=(1,0) a—nd
K; = (cd; /m, k;/m). The self-energy and outer-vertex ma-
trix elements are obtained by the replacement

A~(x, )= f y f(x, )+(yR, —1)y"g(x;)
4m

+(yR; —1)N"h(x; )+N j(x;)], (7)

where

y~rr(1) A(xrr(1) )~o(1) (6)

for "vertex correction" matrices A that are functions of
the single variable x ~, ]. These "vertex correction" ma-
trices have the form

fsE(x) = ln(2x)+12x 6x
(1—2x) 1 —2x

6x 3
gsE(x) = ln(2x)+

(1—2x) 1 —2x

(8a)

(8b)
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k) ——(0)), k)), Ei ~ and the outer-vertex correction I &v by the replacement

~—k2 = (K2, k2), Ep ~~ P, c
l~l ~2X2Re[(JR„o)'Afoy] . (12)

k3 (0)3 k3) E3

(a)

Since the phase space and Jkzo are symmetric under pho-
ton interchange, there is no need to symmetrize in ALsE

and sRov as we11. Thus the "vertex correction" can be
taken to act on photon 1 only. On performing the polar-
ization sums, the spin sum, the resulting trace [17], and
the x2 integration, one obtains

I sE= 2 J dx i [Pf(x)fsE(x)+P~(x)( —2x)gsE(x)
6~ o x

(b)

+Pi, (x )( —2x )h sE(x )

+P (x)jsE(x)] (13)

(where x =x, ) for the self-energy correction and a similar
form for the outer-vertex correction. The P factors are
[10]

(c)

Pf(x) = —8 +12—5x+x ln(1 —x)+ Sx —3x
2 X

(14a)

FIG. 1. Contributions to the decay rate of orthopositronium:
(a) the lowest-order graph, {b) the self-energy graphs, and (c) the
outer-vertex graphs.

P (x}=
(2—x)

4x +
2 x

18 + 10+x ln(1 —x)
2 x

(14b)

hsE(x)=0,

jsE(x)=0,
for the renormalized self-energy correction, and

(8c)

(Sd) Ph(x) = —4 6

(2—x)2 2 —x

2

+3x +
2 x 2

3x
2

ln(1 —x)

(14c)

1 2 —6x —4x 4x
fop(x) = g(x)+ ln(2x)

X (1—2x) 1 —2x '

—4x 2
go~(x) = ln(2x )—

(1—2x)

(9a)

(9b)

P~(x) = —8 14+ —8x+2x ln(1 —x)
(2—x) 2 —x

4x +7x —3x 2

2 x
(14d)

1 1
}

2 10x +Sx
1 (2 )

2( 1 x)
( 1 —2x)~ 1 —2x

Integration of Eq (13) yie. lds the final results

—4x 2
ov(x)=,ln(2x)—

(1—2x) 1 —2x

(9c}

(9d)

for the renormalized outer-vertex correction. The
function

q(x) =g(2) —Liz(1 —2x)

lA, l
~2X2Re[(JKio)*JKsE]

contains a dilogarithm [16]. The fact that the hoi and

jov functions are the same in the Fried-Yennie gauge as
in the Feynman gauge [10] is a consequence of gauge in-

variance.
The order-a corrections to the decay rate come from

cross terms in the square of A, . The self-energy correc-
tion I"sE comes from Eq. (3) by the replacement

and

——", ln(2)+ —', ]

7

(
—0.007 132 904)

~2

= I ~o
—( —0.036 911 113)

I o~= [——", g(3}—+''g(2} ln(2)+ 49 g(2)

+ —", ln(2) —2 —
—,'R ]

(0.732 986 380)
~2

=I „o—( 3.793 033 599} .

(15)
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The outer-vertex result contains the degree-four [18]
quantity

0 2 x

= —l.743 033 833 7( 3 ), (17)

which has not been evaluated analytically [19].
The self-energy and outer-vertex graphs are the first

orthopositronium decay graphs to be evaluated in the
Fried- Yennie gauge. A numerical evaluation of the

remaining order-. u graphs in the Fried-Yennie gauge is in
progress. When this work is completed, we will have a
new and independent result for the orthopositronium de-
cay rate to order a. This result wi11 be of use in higher-
order calculations of the decay rate using the Fried-
Yennie gauge.

We gratefully acknowledge the support of the NSF
through Grant No. PHY90-OS449 and of Franklin and
Marshall College through the Hackman Scholars Pro-
gram.

[1]A. Ore and J. L. Powell, Phys. Rev. 75, 1696 (1949).
[2] The conventions and natural units [h =c = I,

a=e~/4m=(137) '] of J. D. Bjorken and S. D. Drell,
Relativistic Quantum Mechanics (McGraw-Hill, New
York, 1964), are used throughout. The symbol m
represents the electron mass, m =0.511 MeV.

[3] P. Pascual and E. de Rafael, Lett. Nuovo Cimento IV,
1144 (1970).

[4] M. A. Stroscio and J. M. Holt, Phys. Rev. A 10, 749
(1974}.

[5] M. A. Stroscio, Phys. Lett. 50A, 81 (1974).
[6] W. E. Caswell, G. P. Lepage, and J. Sapirstein, Phys. Rev.

Lett. 38, 488 (1977}.
[7] G. S. Adkins, Ann. Phys. (N.Y.) 146, 78 (1983).
[8] W. E. Caswell and G. P. Lepage, Phys. Rev. A 20, 36

(1979).
[9] M. A. Stroscio, Phys. Rev. Lett. 48, 571 (1982).

[10]G. S. Adkins, Phys. Rev. A 27, 530 (1983).

[11]G. S. Adkins, Phys. Rev. A 31, 1250 (1985).
[12] I. B. Khriplovich and A. S. Yelkhovsky, Phys. Lett. B 246,

520 (1990).
[13]H. M. Fried and D. R. Yennie, Phys. Rev. 112, 1391

(1958).
[14]C. I. Westbrook, D. W. Gidley, R. S. Conti, and A. Rich,

Phys. Rev. A 40, 5489 (1989).
[15]J. S. Nico, D. W. Gidley, A. Rich, and P. W. Zitzewitz,

Phys. Rev. Lett. 65, 1344 (1990).
[16]L. Lewin, Polylogarithms and Associated Functions (El-

sevier, New York, 1981).
[17]The traces were performed by REDUcE: See A. C. Hearn,

Stanford University Report No. ITP-247 (unpublished).

[18]See Appendix A of R. Barbieri, J. A. Mignaco, and E.
Remiddi, Nuovo Cimento A Ii, 824 (1972).

[19]Our outer-vertex result could be called "semianalytic" in-

stead of "analytic" for this reason.


