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We describe a simple approximate nonperturbative method for treating time-dependent problems
that works well in the intermediate regime far from both the sudden and the adiabatic limits. The
method consists of applying the Magnus expansion after transforming to the adiabatic basis defined

by the eigenstates of the instantaneous Hamiltonian.
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Problems involving time-dependent Hamiltonians oc-
cur in many different areas of physics and are usually
treated by perturbation methods. An exact treatment
is, however, possible for a very large class of such Hamil-
tonians in the infinitely fast (sudden) or infinitely slow
(adiabatic) limit. The latter has been extensively in-
vestigated after Berry [1] and Simon [2] uncovered the
remarkable geometric properties of the additional phase
present in the formulation of the quantum-adiabatic the-
orem [3,4] and to which nobody paid attention to before.
Many significant contributions reporting on various man-
ifestations of the geometrical phase can be found in Ref.
[5]-
The adiabatic theorem provides solid ground for accu-
rately calculating small effects due to the finite slowness
met in actual physical processes by some approximate
method such as perturbation theory [6-8], unitary itera-
tion [9,10], WKB [11,12], or analytic continuation in the
complex ¢ plane [13-15]. Rapidly changing Hamiltonians
which are close to the sudden limit are also easily handled
by several methods. In particular, an efficient nonper-
turbative approach is provided by the so-called Magnus
expansion [16,17]. By contrast, no reliable approxima-
tion method seems to be available yet in the intermedi-
ate regime far from both extreme situations mentioned
above. In this Brief Report we adopt a pragmatic point
of view and explore the outcome of a simple procedure
which consists in applying the Magnus approach in the
adiabatic basis set. The results obtained so far seem most
promising. While the sudden limit now is out of reach,
the procedure appears to be extremely efficient in both
the adiabatic and intermediate regimes.

Before proceeding with this program it is useful to
briefly recall the Magnus expansion in its usual setting.
Let us consider a finite-dimensional complex vector space
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referred to a fixed basis set {|n)}, and a Hermitian Hamil-
ton operator depending smoothly on time through the
variable s = t/T', where T determines the time scale. The
time development of the system is globally contained in
the unitary evolution operator U(s) = U(s,0) [occasion-
ally U(s) = U(s,—00) is better suited]. The Schrodinger
equation satisfied by U(s) reads

Us) = A(s)U(s),  U(0) =1, (1)

where the dot means the derivative with respect to s and
H = (T/ik)H is a dimensionless anti-Hermitian opera-
tor. Magnus [16] has derived a true exponential solution
(i-e., without chronological ordering) U(s) = exp[Q(s)] of
Eq. (1) where the anti-Hermitian operator Q(s) is given
by an infinite nested commutator expansion. The first
two terms in this expansion Q(s) = Y_,, Qm(s) are

Qi(s) = Cas ()
1 /" (2)

Qs(s) = % /0 " s /0 i ds"[H(s"), H(s")] .

Higher terms can be generated recursively [18] but in
some special cases the expansion actually stops after a
few terms. Since the general term is of order 7™ one
expects the Magnus method to work well near the sudden
limit (T — 0) and very badly in the adiabatic regime
(T — o0). On the other side, unitarity is always trivially
satisfied at any order of truncation in the expansion.

In order to render the Magnus expansion effective in a
nonsudden regime we first transform to the “adiabatic”
picture by changing from the fixed basis to that de-
fined by the eigenvectors |n(s)) of the instantaneous total
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Hamiltonian H(s). For simplicity we assume the energy
spectrum of H(s) to be free from any accidental or sys-
tematic, symmetry induced, degeneracies. We can always
arrange for the transformation from the fixed basis to
the adiabatic one to be generated by a smoothly varying
unitary operator G(s) such that |n(s)) = 3. Gmn(s)|m)
[hence Gmn(s) = (mn(s))]. This is in the spirit of the
adiabatic theorem. We therefore have G'(s)H (s)G(s) =
E(s)= diag[E1(s), E2(s),...] and

U(s) = G(s)Ua(s)G(0). (3)
The equation satisfied by Ug(s) reads
Us(s) = Ha(s)Ual(s), (4)
where
Hg(s) = E(s) - G'(5)G(s) (5)

and E(s) is a diagonal matrix with elements TE,,(s)/ih.
Let us now split up the new Hamiltonian into its diagonal
and off-diagonal parts, viz.

Heg(s) = Ho(s) + Hi(s), (6)
where
Hy=E—(G'G)a, H)=—(G'G)na. (7)

At this stage we introduce the generalized Dirac (in-
teraction) picture by writing

Ug(s) = exp (/ ds'f[o(s')> Ug)(s). (8)
0
The Schrodinger equation for Ug) reads

U (s) = HG (UG (s),
with

A (s) = exp <— /0 | ds'ﬁo(s'))

« 1 (5) exp (/O ds'ﬁo(s')> . (10)

U0 =1, 9)

Equivalently Ug) may be obtained by solving the integral
equation

S
UP(s) =T+ / ds' HP s\ UL (s"). (11)
0

(I

The new Hamiltonian Hg ' is of course nondiagonal, like
fIl, but in addition its matrix elements contain some
phases increasing linearly with T that arise from the diag-
onal part Hg. In analogy with the well-known Riemann-
Lebesgue lemmas [19] this eventually leads to the vanish-
ing of the integral in Eq. (11) when T" — oo, i.e., to the
adiabatic theorem (notice the close connection with the
semiclassical limit A — 0).

The operator U((;I)(s) is all one needs for calculat-
ing transition probabilities between instantaneous eigen-
states. Iteration of Eq. (11) generates the adiabatic per-
turbation expansion which gives good results when T is
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large for the reason stated above. To first order one has
simply

S
U((;I)(s):l+/0 ds' AD(s). (12)

Alternatively we can integrate Eq. (9) by using the
Magnus expansion which has the advantage of preserv-
ing unitarity to each order (in this respect Fer’s infinite
product expansion offers another interesting possibility
[20]). The first order approximation then reads

Ug)(s) ~ exp (/03 ds’f{g)(s’)) . (13)

Notice that the second term H in the right-hand side
of Eq. (6) is of purely geometric origin, whereas Hy con-
tains both a dynamical part (E’) and a geometrical part.
This corresponds to the now familiar splitting of the
phase acquired by a system evolving adiabatically from
an eigenstate of the instantaneous Hamiltonian. However
the geometrical character here is not related to a param-
eter space, but rather to the Hilbert space of states (as
in the Aharonov-Anandan [21] analysis) and is manifest
in the fact that H; does not depend on the time scale
T'. It is obvious that the two characters (geometrical and
dynamical) are completely mixed up in the adiabatic in-

teraction Hamiltonian flg) and hence in Ug). This in-
termingling is responsible, in particular, for Berry’s geo-
metrical factors in the amplitudes of inelastic transitions
[15]. Finally we remark that the evolution operator Ué[)
automatically takes into account the specific properties
of the basis as a function of time. It furnishes the correct
answer irrespective of such conditions as parallel trans-
port or being single valued. Since the diagonal elements
of G'G are just the scalar products (n(s)|n(s)), this is
simply a matter of transferring the geometrical phase
from Hy to the eigenvectors of the adiabatic basis, or
vice versa.

We now specialize the above formalism for the two-
state case described by the Hamiltonian

H(s) = a(s)o, (14)

where a(s) is a real time-dependent vector and 0,0y,0;
are the Pauli matrices. A simple choice for the diagonal-
izing operator is G(s) = b(s)o, with the unit vector b
pointing in the direction of b = 4+k (k is the unit vector
along the 2z axis). Further one finds

He(s) = (T/ik)ac, —i(h x b, (15)

where the first term represents the diagonalized Hamil-
tonian F and the second term the complete geometrical
contribution. Denoting the polar angles of a by 8, ¢, the
two pieces of Hg defined in Eq. (6) read

ﬁl = i(l‘xo'.r + liya'y):
(16)

ﬁﬂ = [(T/ih)a + in:)os,

where the vector ;1 = p(s) has components
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pio = (¢/2) cos ¢sin 0 + (0/2) sin ¢,
ty = (¢/2) sin ¢sin — (6/2) cos ¢, 17)
= —(6/2)(1 — cos 0) = —¢sin?(6/2).

Thus if ¢ is constant there is no geometrical contribution
to Hp and therefore no Berry phase.

More specifically we consider a spin one-half system
in a rotating magnetic field that makes an angle 6 with
the z axis. Equation (14) then holds with a = (R/2)yB
yielding the dimensionless Hamiltonian

H(s) = —(ivT/2)B(s)o. (18)

Here 7 1s the gyromagnetic ratio, T = 27 /w is the period
of rotation and

B(s) = B(sin 8 cos 27s,sin 0 sin 2ws, cos 6). (19)

The exact solution of Eq. (1) is readily worked out by
substituting U = exp(—imso,)Ur. As aresult the system
1s referred to a rotating frame in which the magnetic field
and hence the Hamiltonian are constant, so that Ug may
be written at once [22]. From Ug(s) one obtains the
spin-flip probability

Pex = (YBT/2)? sin® @ sin® As/A?, (20)

where A2 = (yBT/2)? — nyBT cos + w2. This refers to
the spin projection on the z axis and the corresponding
states are not eigenvectors of the Hamiltonian. Notice
that such transitions occur even in the adiabatic regime,
defined by the condition BT > 1.

Changing for the adiabatic basis via the operator

G(s) = b(s)o with b= B + k leads to
Hg(s) = ipo, + imsin0(o, cos 27s + o, sin 27s),  (21)
where

¢ =—yBT/2—7(1 - cosb). (22)

With regard to the time structure, the new Hamiltonian
is quite similar to the original one: its diagonal part Hy =
1o, does not depend on time, while the off-diagonal part
H; displays the same periodicity. The essential difference
lies in the relative magnitude of these two terms: in H
they were both large (of order BT); in Hg the first is
still of order BT, whereas the second does not depend on
B and T any more. _ _

Because of the similarity between Hg and H the
Schrodinger equation for Ug can also be solved exactly by
transforming the system to a rotating frame as explained
above. The analytical expression obtained in this way
reads

Ug(s) = exp(—inso,)exp{i[fo, + (wsinf)o;]s}, (23)

where # = ¢ + m. From the matrix form of the second
exponential operator one further obtains the transition
probability

P (s) = m%sin® O sin? As/\?, (24)

where A is the same as in Eq. (20). This formula was
first derived by Rabi [23] and Schwinger [24]. It refers to
transitions between the two eigenstates of the Hamilto-

nian that belong, respectively, to spin projections +1/2
along the rotating magnetic field B(s). Accordingly, the
probability P/, vanishes in the adiabatic limit.

In order to apply our approximation procedures, we
start by integrating the diagonal part Hy of H. To zero
order, we substitute Ug) ~ I in Eq. (8) and get the di-
agonal evolution operator of the adiabatic approximation
(no transitions):

Ucg(s) =~ exp (ipsa,). (25)
For s = 1 (one period) this gives
Ug(l) ~ exp{—i[yBT/2 + 7(1 — cos 0)]o. }, (26)

where the usual expressions for the dynamical and geo-
metrical (Berry) phases are clearly recognized.
The next move is to build up the adiabatic interaction
Hamiltonian of Eq. (10), which results in
Flg)(s) = iwsin (o, cos 203s + o, sin 23s). (27)

With this form, time integration is easily performed even
in the higher orders of perturbation theory or of the Mag-
nus expansion @ = 3" Q, . Thus, up to third order, the
perturbative approach leads to transition probabilities

Py =Pp=qi, Pi=qi[l+(xsin0/8)%g(s)
(28)

where ¢, = wsinf@sin 8s/8 and

g(s) = -;—(ﬂs cot Bs — 1). (29)

Trans. Probability
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FIG. 1. Transition probability for a spin one-half system
in a rotating magnetic field after one period as a function
of vBT for § = «/6 (in the adiabatic picture). Solid line is
the exact result; dash-dotted line denotes first-order Magnus
approximation; dashed line denotes third-order Magnus ap-
proximation; dotted line denotes first-order perturbation the-
ory; dash-double dotted line denotes third-order perturbation
theory.
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Similarly, the Magnus expansion to third order reads
Q4+ Qo + Q3 = iqo, (30)
where g = q(s) has components
¢z = (msin0/B)sin Bscos Bs[1 + (wsin 0/8)* f(s)],
¢, = (wsin6/B)sin® Bs[1 + (wsin6/8)°f(s)},  (31)
. = (wsin8/B)*(Bs — sin Bs cos fs)/2,
and f(s) = g(s) + & sin® Bs. The corresponding approxi-
mate evolution operator is
U§(s) = explig(s)a). (32)

This further yields for the transition probabilities to first
and third order the following expressions:

Pa(s) = (¢2 + ¢2)sin® q/q*,  (33)

where ¢% = ¢2+¢2+¢? and ¢, ¢z, ¢y, 4. have been defined
above.

In Fig. 1 we compare all these approximations with the
exact result of Eq. (24) for s = 1 (one complete rotation
of the field) and § = =/6. The rapid numerical con-

Pjs(s) = sin?qy,
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vergence of the Magnus expansion is quite remarkable.
By contrast, it may be seen that with high-order per-
turbation theory, improvement is achieved only for the
very small transition probabilities, in particular in the
adiabatic regime. A similar situation prevails for other
exactly solvable models [25].

We conclude with the hope that the arguments pre-
sented in this Brief Report offer sufficiently convinc-
ing evidence of the power of the Magnus expansion
as a tool for approximately solving the time-dependent
Schrodinger equation even farther away from the sudden
limit.
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