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Stochastic dynamics of individual quantum systems: Stationary rate equations
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An open quantum system is usually characterized by a reduced ensemble density matrix, the dynamics
of which is governed by a generalized Master equation. Transforming this equation of motion into the
instantaneous diagonal basis of the corresponding reduced density matrix, we can separate the coherent
and incoherent part of the dynamics: The coherent dynamics is incorporated in the time development of
the diagonal basis states, while the coupling to the reservoirs leads to simple rate equations. Interpreting
these rate equations as a stochastic point process allows one to simulate the stochastic time evolution
(random telegraph signals, "quantum jumps") of single-quantum systems. The diagonal representation
can be considered as a generalization of the dressed-state picture of open quantum systems. Numerical
simulations ("quantum Monte Carlo" ) allow one to derive various dynamical properties (including corre-
lation functions) of single-quantum systems. This concept is applied to different two- and three-level

scenarios (A. and v configuration), and its limitations are discussed.

PACS number(s): 42.50.—p 03.65.—w

I. INTRODUCTION

In recent years it has become possible to prepare and
investigate individual quantum systems within various
subfields of physics. Most strikingly, this has been real-
ized in atomic physics by capturing single electrons [1]or
ions [2—4] in an electromagnetic trap while reducing
their motion by laser cooling [5]. When the resonantly
scattered light is in the visible range, it is even possible to
observe a single ion with the naked eye. Still earlier, indi-
vidual atoms or ions have been investigated by selecting
subensembles which, on average, consist of only one sin-

gle system. This condition can be achieved either in di-
lute atomic beams [6] or in correlation experiments [7].
A similar method has been applied in molecular physics:
here, individual molecules can be observed in the energy
tail of an inhomogeneously broadened absorption line

[8—10]. Even in solid state physi-cs effects of individual
quantum system can be observed: Examples are (two-
state) current fluctuations [11] or single-electron tunnel-

ing ("Coulomb blockade" ) [12,13]. In both cases relevant
dimensions are reduced so much that individual systems
(defects or electrons, respectively) do influence the mac-
roscopic response. Considering the enormous progress in
the preparation of one-dimensional ("quantum wells" )

[14], two-dimensional ("quantum wires") [15],and three-
dimensional ("quantum dots") [16—18] semiconductor
heterostructures, it should be only a matter of time before
it becomes feasible to investigate individual quantum sys-
tems also in artificially structured semiconductors. These
would provide intriguing new possibilities regarding sta-
bility and tailoring of properties of individual quantum
systems [19].

The general feature, common to all these experiments
dealing with individual quantum systems, is the stochas-
tic nature of the time development. This can be seen
most strikingly when a macroscopic parameter, such as

the time-integrated resonance fluorescence or the electric
current, can take on only a few discrete states. In this
case the system jumps stochastically between these states
("quantum jumps") and the respective output resembles a
random telegraph signal. Other single-particle properties
include such correlation effects as spectral correlations
[7], photon (anti)bunching [6,20], and sub- or super-
Poisson statistics [21—23] of resonantly scattered fluores-
cence photons.

Coherence effects, on the other hand, have played an
important role in resonance fluorescence for a long time
[24]: e.g., Rabi oscillations of strongly driven atoms [25],
self-induced transparency [26], and the dynamical Stark
effect as expressed in the Mollow triplet [27,28] of the
resonance fluorescence spectrum of a two-level atom or
the- Autler-Townes splitting [29] in pump-and-probe
scenarios of three-level systems. Another important
coherence effect is the occurrence of trapping states
[30,31] in double-resonance-fluorescence experiments.

The experimental verification of quantum jumps [2—4]
has led to a large number of theoretical contributions
[32—45] trying to reconcile these discontinuous state
changes in single-quantum systems with the continuous
time evolution of an ensemble density-matrix description.
This is commonly achieved by considering the time evo-
lution not of the ensemble density matrix (which de-

scribes only one-time averages), but of the correlation
properties of the system [46]. The second-order correla-
tion function [42] G'2'(t, r) gives the conditional probabil-
ity that a photon will be emitted at time t+~, provided a
photon had been emitted at time t. In this sense, a suben-
semble of all systems having emitted a photon at time t
has been selected. Alternatively, "next-photon equa-
tions" [33,41,45] (waiting time distributions [47]) can be

used, which describe the time development of a single-
quantum system between two successive photon emission
events. In general, these approaches do not allow one to
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explicitly construct the process which describes the sto-
chastic time evolution of a single-quantum system, but
rather infer the statistical properties of this process. It is
only for some special cases that stochastic processes have
been constructed to reproduce the required correlation
properties [32,35,45].

In this paper, we take a different approach and derive
the stochastic process which governs the time evolution
of an individual quantum system [44]. Of course, all
correlation properties can then be deduced from this pro-
cess. Our starting point is the ensemble description of an
(open) quantum system [48,49]: The ensemble is charac-
terized by a reduced density matrix, and its dynamics is
supposed to be given by a generalized Master equation.
For the ensemble, the density-matrix formalism is most
suitable to treat coherence effects and relaxation phenom-
ena at the same time. Transforming the equation of
motion into the instantaneous diagonal representation re-
sults in a separation of the coherent and incoherent dy-
namics of the system. The incoherent part leads to a
Pauli-Master equation which allows a simple and intui-
tive interpretation for individual systems: At any instant
of time a single-quantum system occupies one of the basis
states defined by the instantaneous diagonal representa-
tion. The incoherent dynamics of a single-quantum sys-
tem is then described by a stochastic point process [47]
on the state space defined by the instantaneous diagonal
representation. The coherent dynamics, on the other
hand, is contained in the time evolution of the basis states
of the diagonal representation with respect to the original
(fixed) basis. Given the generalized Master equation
which governs the time evolution of the ensemble density
matrix and its solution, the stochastic point process
which represents the dynamics of an individual system
can easily be constructed and simulated numerically
("quantum Monte Carlo" scheme). This description will
be shown to be much closer to physical reality, allowing
one to investigate and visualize features which, for vari-
ous reasons, cannot be resolved in an actual experiment.
Examples are possible variations of time scales and the
ideal "detection efficiencies" in a simulation.

The "philosophy" of the diagonal representation is to
find the basis where the reduced density matrix of the
(open) quantum system is diagonal. This is in close anal-
ogy to the dressed-state approach in atomic [50—52] and
in solid-state physics (e.g. , the polariton and polaron pic-
ture [53]): Here the goal is to diagonalize the Hamiltoni-
an of the (complete) system. However, this is only possi-
ble for closed systems. The diagonal representation can
therefore be considered as a generalization of the
dressed-state approach to open quantum systems: The
instantaneous diagonal basis contains not only the "dress-
ing" due to, e.g., coherent driving fields, but also due to
the coupling to the reservoirs. The semiclassical
dressed-state approach [54) is contained in the diagonal
representation as a limiting case.

In this paper we limit ourselves to steady-state applica-
tions, i.e., the ensemble density matrix is assumed con-
stant in time. This leads to stationary rate equations in
the diagonal representation. In the second part of our
work [55] we will apply this formalism to more general

time-dependent scenarios (i.e., transient phenomena,
transitions between incompatible properties [44], etc.)

which lead to nonstationary rate equations. The paper is
organized as follows. In Sec. II we develop the general
framework of the instantaneous diagonal representation
which is then applied to various two-level scenarios in
Sec. III. Resonance and double-resonance-fluorescence
scenarios in three-level systems (A, and v configurations)
are the subject of Sec. IV. Finally, in Sec. V we give a
short summary of our results.

II. INSTANTANEOUS DIAGONAL REPRESENTATION

A. Assumptions

The basis for the following considerations is the ensem-
ble description of a dissipative quantum system, i.e., a
quantum system which is coupled to an (unobserved)
large reservoir ("heat" bath). Specifically, we use the
density-matrix formalism [48,49], which allows us to
treat and interpret coherence effects and relaxation phe-
nomena in a simple way. The open quantum system is
characterized by a reduced density matrix p (i.e., the ir-
relevant degrees of freedom of the reservoir are traced
out) and its dynamics is described by a generalized Mas-
ter equation.

Starting from the Liouville equation for the density
matrix of the (closed) total system (composed of the quan-
tum system and the reservoir), the generalized Master
equation is derived in a standard way [49], using the fol-
lowing approximations.

Bath approximation. Due to its large size, the reservoir
stays in a thermodynamic equilibrium state; the state of
the reservoir is not changed by the interaction with the
(small) system. Any correlation between system and
reservoir which is induced by the interaction is small and
can be neglected. System and reservoir remain uncorre-
lated. This is the essential assumption which introduces
irreversibility into the equation of motion.

The notion of an infinitely large reservoir is an idealiza-
tion which provides a model for an irreversible boundary
condition for the open quantum system [56]. It implies
that an irreversible act (e.g., the spontaneous emission of
a photon) is completed when, e.g., the photon has van-
ished at infinity. In practice, however, the irreversible
act is completed with the absorption of a photon by a
photon detector (allowing one to gather information
about the system) or by a "black wall" (bolt of the vacu-
um chamber, etc.). Thus the reservoir is finite in general,
but at the same time is monitored continuously by its en-
vironment. It is assumed that this does not change the ir-
reversible boundary condition appreciably. In some
cases, however, details of the reservoir do have a pro-
nounced inhuence on the dynamics of the system. A
striking example is the manipulation of the spontaneous
decay of an excited atom in a high-quality cavity which
allows only a few resonant field modes [57].

MarkoU approximation. The dynamics of the system
depends only on its present state. The system has no
memory of its history. This assumption rests on a finite
correlation time ~„„ofthe reservoir and limits the appli-
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cation of the Master equation to a coarse-grained time
scale (finite temporal resolution At &r„„)

Secular approximation. The secular approximation is
equivalent to the rotating-wave approximation (RWA)
and amounts to neglecting virtual processes which violate

energy conservation. This is justified for a time scale
larger than the period of free motion of the system.

In order to reconcile the experimentally observed
discontinuous time development of single-quantum sys-

tems [2—4] with the smooth time evolution of the ensem-

ble density matrix, the density-matrix formalism has to
be supplemented by additional requirements and inter-

pretations [44].
(l) The time evolution of the total density matrix p™

of M identical single-quantum systems must approach the
conventional ensemble description in the limit M~(x)
(ensemble limit)

(2) A complete (zero-entropy) description of a single-
quantum system S is possible, i.e., we can ascribe a state
vector (wave function) to the system S at any instant of
time: The individual quantum system is always in a pure
state.

(3) The time development of a single dissipative quan-
tum system can be divided into the dynamical evolution
of the pure states, and discrete quantum jumps between
the (instantaneous) pure states (stochastic point process)

(4) The instantaneous diagonal representation of the re-
duced ensemble density matrix defines the possible pure
states (generalized dressed states) of an individual quan-
tum system S.

Discussion of (l). Since the individual system S jumps
between various discrete states, quantum fluctuations ap-
pear most pronounced in the limit M =1. With increas-
ing ensemble size M, the fluctuations are washed out
more and more, until eventually the smooth time evolu-
tion of the reduced ensemble density matrix is recovered.

Discussion of (2). A complete description of the
single-quantum system implies that the system can be
separated from its environment, i.e., that all correlations
to other (quantum) systems can be neglected. If the sys-
tem is strongly correlated to a second system [as is the
case for all Einstein-Podolsky-Rosen- (EPR) like
scenarios], no state vector can be assigned in general, and
the system must be described by an improper mixture
[48]. In order to apply the above interpretation for indi-

vidual quantum systems in this case, the system would
have to be extended so as to include the strongly correlat-
ed part of the (unobserved) environment.

Discussion of (3). Any coherent part of the dynamics is
incorporated in the time evolution of the pure states.
The couplings to the reservoirs do, in general, also con-
tribute to the time evolution of the pure states (not con-
tained in the conventional dressed-state picture), but, in

addition, give rise to quantum jumps between these (in-

stantaneous) pure states. This sudden change of state
during a quantum jump is due to the coarse-grained time
scale. On a time scale much smaller than the finite tern-

poral resolution (i.e., the bath correlation time ~,'„„)of
the Master equation, the time evolution is continuous and
the quantum jumps disappear. Note that the correlation
time ~,'„,~ ~,"„,for a single system S can be more restric-

tive than ~„„for a macroscopic ensemble.
Discussion of (4). We want to interpret the instantane-

ous diagonal representation ~P, ) (Greek letters and a tilde
are used to indicate the basis states of the diagonal repre-
sentation throughout this paper) of the reduced ensemble
density matrix as the relevant physical basis of the indivi-
dual quantum system. This is motivated by the fact that
it is the only distinguished basis of the system and allows
for a simple interpretation in terms of probabilities [44]:
The ensemble density-matrix element in the diagonal rep-
resentation p„„(t)=(p, ~p~p, ) gives the probability for the
single-quantum object to be in state ~p). This assures
that a large collection of identically prepared quantum
systems approaches the correct ensemble limit [cf. point
(I)]. By definition, all off-diagonal elements vanish in the
diagonal representation. So in some sense, the diagonal
representation is the basis where the properties of the sys-
tem become classical. Furthermore, this interpretation
assures that the possible states a single-quantum system S
can occupy at any instant of time are mutually orthogo-
nal, respectively, the corresponding pure density matrices
commute. In any other decomposition of the ensemble
density matrix into pure (nonorthogonal) states, the ques-
tion of which state is occupied by an individual quantum
object at some instant of time poses a fundamental prob-
lem, since noncommuting operators cannot be measured
simultaneously.

The instantaneous diagonal representation can be
viewed as a generalization of the (semiclassical) dressed-
state picture [54]. In the conventional dressed-state ap-
proach [50—52,58] the state space is rotated, so that the
Hamiltonian which describes the coherent part of the dy-
namics becomes diagonal. This is useful when the dy-
namics is dominated by the coherent part (e.g. , strong
coherent driving fields) and the coupling to the reservoir
can be treated as a perturbation. As we will see, this ap-
proach is contained in the diagonal representation as a
limiting case. Beyond that, the diagonal representation
allows us to some extent to describe the transition from a
dominating coherent dynamics to the case where the cou-

pling to the reservoir determines the dynamics of the sys-
tern (e.g. , weak coherent driving fields).

The diagonal representation is (up to the physically ir-
relevant overall phase of the basis states) unique, as long
as all nonzero occupation probabilities p„„aredistinct. If
two or more matrix elements coincide, the diagonal rep-
resentation must be defined via the process by which this
specific state has been prepared: This is possible since,
starting the preparation from a pure initial state, two ma-
trix elements p„„andp „(pWv)coincide only asymptoti-
cally (i.e., ~p„„—p „~ is finite for all times, but no lower

bound can be given).

B. Separation between coherent
and incoherent motion: Coupled rate equations

The temporal evolution of an open quantum system S
is described by a generalized Master equation for the re-
duced density matrix p of the system [59]

dp t [p ~] Bp

dt A
" Bt
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&mlv&=&mlO(t)ln) . (3)

In general, a unitary transformation in the N-dimensional
Hilbert space is specified by N independent real numbers
[60]. However, a transition to the diagonal representa-
tion fixes only N —N real numbers, so that the corre-
sponding unitary transformation 0' is not uniquely deter-
rnined. However, the N additional real parameters can be
chosen arbitrarily and correspond to the (physically
meaningless) overall phases of the basis states

I
v )

defining the diagonal representation. Again, the system
is characterized by N —1+(N N) =N 1—relevant—
real parameters.

In the fixed basis lm ), the generalized Master equation
(1) may be cast into the form

= g (D; "+R,&")p„. (4)
m, n

The dynamics of the open quantum system is governed
by the rotation matrix D; " and the relaxation matrix
R;~ ". The rotation matrix is due to the Liouville part of
Eq. (1) and describes the coherent motion, a mere rota-
tion of a complex vector S in (N 1)-dimensiona—l space
(the generalization of the Bloch vector [61]).The relaxa-
tion matrix originates in the incoherent part of Eq. (1). It
is responsible for the incoherent decay of the system,
where the length of the vector S is not preserved, in gen-
eral.

At any instant of time, the density matrix has to fulfill
the von Neumann conditions of Hermiticity (p = p), trace
preservation (trp= 1}, and positivity (0&p (1 for any
basis lm ) ) [62]. This leads to some general constraints
on the relaxation and the rotation matrices. For the re-
laxation matrix we find [49]

(R mn) Rnnm
IJ ji

R„„)0V mAn,

y R nm —0

(Sa)

(Sb)

(Sc)

(Sd)

The Liouville part (commutator) describes the coherent
dynamics of the system. H, is the Hamiltonian of the
open quantum system S and includes the coupling to
coherent driving fields [31]. The second part is due to the
coupling to the reservoir and describes the incoherent
motion (decay) of the system.

Limiting ourselves to a discrete state space, each quan-
tum system in its N-dimensional Hilbert space is charac-
terized by N —1 real numbers which specify the density
matrix p „=(mlpln) with respect to any jtxed basis
lm ) (m =1,2, . . . , N) [48]. Alternatively, the system
can be described by the N —1 independent matrix ele-
ments p =(vlplV) of the density matrix in the (instan-
taneous} diagonal representation lv), supplemented by
the (in general time-dependent) unitary transformation
t&(t), connecting this specific basis to the fixed one [44]

lv)=0(t)ln)=Jim)(mlv) . (2)
m

In the fixed basis, this unitary transformation is defined
by the matrix elements

Similarly, Hermiticity of the density matrix yields the
condition

(D mn
)

n —D nm
IJ JI (6a)

for the rotation matrix. In addition, length preservation
of the vector S requires

D„„=OV m, n (6b)

for any basis
I
m ).

The connection between the density-matrix elements in
the fixed basis p; and in the diagonal representation p„
is given by

p„„=g &pit)p;, (j Iv), (7a)

p;, = g (i
I p )p„„(vjl), (7b)

so that the equation of motion (4) can be transformed
into the instantaneous diagonal representation

dp PP

dt
I,J, m, n

& p li ) (j I p)(D,, "+R)")

x(mlv)(v n)

+ g &ilv&&vlj& —(&pl~ && jlp&) p..
I,J

(8)

dp
vPvv+ I I PI p ~

v (Ap)

with, in general, time-dependent transition rates

(9)

(pli )(j lp)R;. "(m lv)(vln ) for pAv,
(10a)

I,J, m, n

&pli &&j Ip&R;, "&mlp&&pin & . (lob)

Equations (10a) and (10b} may be understood as a time-
dependent transformation of the relaxation superoperator
(which has the character of a fourth-rank tensor) within
Liouville space [49].

The interpretation of (9) as a set of coupled rate equa-
tions is guaranteed by the relations

R + g R„„=O,
p (Wv)

R„„)0V pAv.

(1 la)

(1 lb)

In deriving (8) we have used that in the diagonal repre-
sentation p„„=Ofor all pAv.

Using completeness and orthonormality of the two sets
of basis states lm ) and IV) we show in Appendix A that
the second sum (involving the time derivative of the uni-
tary transformation) vanishes. Furthermore, the part of
the first sum involving the rotation matrix D, " vanishes
due to condition (6b).

Thus, in the diagonal representation, the generalized
Master equation (1) takes the form
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The sum rule (1 la) follows directly from (Sd) and the in-
equality (1 lb) is obtained from similar arguments that led
to the constraints (Sb) and (Sc).

Using the sum rule (lla), Eq. (9) can be cast into the
form of a simple rate equation (Pauli-Master equation)
[47]

"jl'S S

dt v (wp)
(12)

Re(R„"-)=—-' g R,","+
, i (Wn) i (Wm)

(13)

The coherent dynamics of the system is contained in the
time evolution of the pure states lV) [Eq. (2)] and is thus
completely decoupled from the rate equations. The in-
coherent dynamics, on the other hand, is contained in the
coupled rate equations (12), but may also infiuence the
time evolution of the pure states. We plan to discuss this
in more detail in the second part of our work, devoted to
nonstationary rate equations [55].

Two basic scenarios for the time evolution can be dis-
tinguished: (i) The transition rates R„„areindependent
of time (stationary rate equations) Thi. s situation is en-
countered in most conventional resonance fluorescence
experiments. (ii) The transition rates R„„aretiine depen-
dent (nonstationary rate equations), which implies that the
diagonal representation depends on time as well. It ap-
plies to situations where the steady state has not yet been
reached (transient effects) and is the subject of a planned
second part of our work [55].

Using the eigenbasis of the Hamiltonian of the isolated
system as the fixed basis lm ), energy conservation leads
to additional restrictions on the relaxation matrix. When
the coupling Hamiltonian between system and reservoir
has the form Ps+ =+~Q&P~ and the diagonal elements of
the reservoir operator F~ vanish (this is no restriction,
since any nonvanishing diagonal element of F leads to a
mere energy shift which can be incorporated into the
definition of the reservoir Hamiltonian), it can be shown

[49] that the only nonvanishing elements of the relaxation
matrix in the fixed basis are R„„andR," .

The diagonal matrix elements of Q belong to interac-
tions between system and reservoir which do not lead to
an energy relaxation of the system. They correspond to
adiabatic processes which give rise to pure phase damp-
ing, i.e., which destroy coherences in the eigenbasis of the
Hamiltonian of the isolated system. On the other hand,
the off-diagonal elements of QJ describe energy relaxation
phenomena. For these nonadiabatic processes in the
fixed basis lm ), the following relation holds [59]:

where R„' (R„"') describes transitions originating from
the adiabatic (nonadiabatic) processes in the diagonal
basis lP ). Using completeness and orthonormality of the
two sets of basis states

l
m ) and

lj ) we find with the help
of relation (13) and the sum rule (Sd) for the nonadiabatic
transition rates in the diagonal representation (cf. Appen-
dix A)

C. From quantum dynamics to quantum stochastics

The diagonal representation of the density matrix al-

lows a simple and intuitive interpretation of the dynamics
of individual quantum systems: At any instant of time,
each individual quantum system S occupies one of the
pure states lV), defined by the (instantaneous) diagonal
representation (2). The time evolution of the single-

quantum system proceeds in two different ways: (i) via
the smooth time evolution of the pure states lV) as
defined by the unitary transformation 0(t) (3) and (ii) via
discrete quantum jumps l

v) ~ lp ) between these states.
The transition rates R„for this stochastic point process
are given by Eq. (10a). R„~0 [cf. Eq. (10b)] can be in-

terpreted as the total loss rate out of state
l
v). Note that

these "jumps" appear here in the context of a theoretical
description with finite time resolution.

The scenarios we have in mind are individual few-level

systems S, driven by one or more coherent light modes
and coupled to the photon field vacuum as a reservoir
(scattering scenario, cf. Fig. 1). R,J~ is then the rate by
which photons with an energy corresponding to the ener-

gy difference fico; between the (fixed) states lj) and i )
are emitted if the system is in state lj). The system-
reservoir interaction contains no adiabatic contributions
in this case, so that the transition rates R„,in the diago-
nal representation are given by Eq. (15).

luminescence channel L

incoming

driving field D

outgoing

driving field D

i j (iw j)

If the system-reservoir interaction contains no adiabatic
contributions, the transition rates in the diagonal repre-
sentation follow from the fixed basis rates according to
Eq. (15).

R„=R„'+R„"' (14)

The imaginary part of R„" gives rise only to a renor-
malization of the transition energies which can be includ-
ed in the definition of the Hamiltonian of the system; it
will be neglected in the following, so that all elements of
the relaxation matrix are real.

Correspondingly, the transition rates (10a) in the diag-
onal representation can be considered as the sum of two
terms,

FIG. 1. Schematic representation of the scattering scenario:
The single-quantum system S scatters photons of the coherent
driving field either coherently into the outgoing channel D of the
driving field or incoherently into the channel L of the lumines-

cence fields. Coherent scattering processes are included in the
diagonal representation and thus do not influence the state lv).
Incoherent scattering processes [rate g, ,„.&,P,;;(v)] into the
channel L, on the other hand, are accompanied by quantum
jumps lv) ~ lp, ) with a rate R„„(cf.text).
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Realizing that each term in the transition rate (15) can
be written as the product of two factors, l(Pli ) l and

X„(v)=R,iJl (q lv) l', (16)

The first part on the right-hand side of Eq. (17) is the to-
tal rate of quantum jumps in the matter system out of
state lv). In order to allow for a strict correlation be-
tween the spontaneous emission of photons and jumps in
the matter system S (i.e., a "combined event"), we have to
include

l(Vlt & l'R,' I & jlv& I' (1g)
i j (i')

as the rate for an additional process: R „~0describes a
quantum jump from the diagonal basis state lv) back to
the same state lv) with spontaneous emission of a photon
(i.e., scattering of a photon out of the driving channel D
into the luminescence channel L, cf. Fig. 1). It should
not be confused with the total loss rate out of state lV),
R„~O[Eq. (10b), see also Appendix A]. This process
lV) ~ lV) does not change the occupied state, but rather
leads to a phase loss of the system, i.e., there is no fixed
phase relation between the initial state lv) before and the
final state l v ) after the photon emission event.

Note that the process lV) ~ lV) does not change the
rate equation (12), i.e., the dynamics of the diagonal
density-matrix elements p, (average occupation proba-
bilities of state lV) ) is unaffected:

dp PP &( .-P:. R:6.)

v (Wp)

(19)

The strict correlation between quantum jumps in the
diagonal representation and the spontaneous emission of
photons results in the sum rule

gR„,= g R,", ,
pv ij (i'�)

(20)

and allows us to couple the simulation of the quantum
jumps lv) ~lp) (transition rate R„)in the matter sys-
tem S with the simulation of the photon emission pro-

allows a simple and intuitive interpretation: A, ;,(V) is the
rate for a photon emission event with frequency co,- out
of the diagonal basis state lV), while l(j, li ) l is the con-
ditional probability that given this event the system un-

dergoes a transition lV) ~ lP) (cf. [38]). This means that
each quantum jump is accompanied by the spontaneous
emission of a photon.

On the other hand, each spontaneous emission of a
photon should also be accompanied by an irreversible
process in the matter system S. Rearranging the average
total photon emission rate out of state

l v), we find

&;,(v)= & g 1(Pit &I' R/('1&i lv&l'
i,j (i') i,j (i') p

y R„„+y 1&vii &I'R,' l&JIV&l'.
p (Av) i,j (i')

(17)

cesses [rate A, (v), Eq. (16)]. Similarly, the sum rule

RJ,'= QA„(V)

holds for the photon emission rates (16) in the diagonal
basis.

III. APPLICATION TO TWO-LEVEL SYSTEMS

In order to illustrate our interpretation of the dynam-
ics of individual quantum systems, we apply the general
framework developed in the preceding section to some
concrete scenarios. Specifically, we consider few-level

systems, subject to various boundary conditions
[coherent driving fields, coupling to totally absorbing
reservoirs (photon field vacuum), phase-damping mecha-
nisms]. Possible experimental realizations include dilute
atomic beams [6], correlation experiments [7], single elec-
trons or ions captured in an electromagnetic trap [2—4],
or individual semiconductor quantum dots [19]. In the
following, we restrict ourselves to stationary rate equa-
tions, i.e., the transition rates R„areconstant in time.
This implies, in general, that the steady state of the sys-
tem has been reached and the ensemble density matrix is
constant in time.

The simplest quantum dynamical system is a two-level
system (cf. inset in Fig. 4). It is driven by a coherent,
linearly polarized electromagnetic field of frequency co

(characterized by the detuning 5=co&2 —co with respect to
the transition frequency co,2 of the isolated system and by
the Rabi frequency Q, which is controlled by the intensity
of the applied field) and coupled to one or more reser-
voirs. The time evolution of the reduced density matrix,
characterizing an ensemble of two-level systems, is
governed by the (optical) Bloch equations [59]

dpi' =i Q(P]2 —P21)+ WP22dt

dp22
iQ(pu p2t } Wpu

dp&2 . . W=i Q(p» —p~2)+ i 5
1

Pi2 ~

(22)

dp2i . . W= —iQ(pit Pqq)+ i5—1
P2&

Here, we have used Eq. (13) and set R &f
= W, Rzz=O

(temperature T=0}. The single parameter 8' character-
izes the coupling to the photon field vacuum and can be
identified with the rate at which photons are absorbed by
the reservoir. The phenomenological relaxation time ~
allows for additional phase-damping mechanism (adiabat-
ic processes} to be included. The connection to the more
conventional form of the Bloch equations is obtained by
identifying the real (imaginary) part of p, 2 with (o„)
((o ) } and the inversion (p22

—p») with (o, ).
In deriving (22) the reduced density matrix has been

transformed into a reference frame rotating with the fre-
quency co of the incident field and the RWA has been ap-
plied. The transformation into a rotating reference frame
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takes care of the fast oscillatory motion forced upon the
system by the external driving field. The transition from
the rotating to the fixed reference frame can be per-
formed by replacing the matrix elements ( 2 ~)M ) of the un-
itary transformation (3) by (2~)M)e ' '. However, nei-
ther the occupation probabilities p nor the transitionPP
rates in the diagonal representation are influenced by this
transformation. This can be seen from (15) and (16) for
the rates connected with the coupling to the photon field
vacuum, or froin (10a) for the transition rates connected
with phase destroying processes.

In the diagonal representation the dynamics is completely
contained in the time evolution of the respective pure
state

~
1)=cos(Qt)

~
I) —i sin(Qt) ~2 ) . (27)

Equations (26) and (27) are two diff'erent ways to express
the Rabi oscillations of a coherently driven two-level sys-
tem [24]. Note that we have adopted the convention that
the inversion time (vr pulse) is given by T =it/2Q [59].
The state (27) can alternatively be expanded in terms of
the dressed states (25)

A. Coherent dynamics (1 ) (e
—inti+ ) +eint( ) )

1
(28)

p2+2
=

—,'(1+cos8),

p,+, = + —,'sin28 .

Here, we have used the abbreviation

(23)

On a time scale t &&~, W ' phase damping and the
spontaneous decay of the excited state ~2) can be neglect-
ed (W=r '=0). Since there is no coupling to a reser-
voir, no quantum jumps occur and the dynamics of the
system evolves in a purely coherent fashion. All transi-
tion rates vanish, i.e., the occupation probabilities in the
diagonal representation p„„donot change. Starting from
a pure initial state, the system remains in a pure state
(e.g., p»=1 and pi2=0 for all times). The dynamical
evolution of the system is completely contained in the
time development of the basis state

~
1 ) of the instantane-

ous diagonal representation.
First, we consider the stationary solution of Eq. (22).

Taking into account Hermiticity and trace preservation
of the density matrix, we find the following two (pure)
stationary solutions:

p„=—,
'

( 1+cos8),

In this representation the Rabi oscillations appear as
quantum beats between the dressed states

~
+ ) and

~

—)
which are separated by an energy 2AQ.

Depending on excitation conditions, either the Rabi
state (27) (constant driving field) or one of the two dressed
states (25) (phase change of +m/2 after a pulse area of
m/2 has been acquired) can be prepared starting from the
ground state ~1) [63].

B. Decay of a pure state

When no driving field is present (Q=O) and neglecting
phase damping (r '=0), i.e., considering the system on a
time scale t with W ' & t «~, the isolated effect of a
coupling to the photon field vacuum can be discussed.

Starting from the excited state ~2) [initial condition
p;.(0)=52;52 ], the time evolution of the ensemble
density-matrix elements is given by

(29)

tan(28) = 20
5

(24)
p (t) =p (t)=e

The corresponding basis states in the diagonal represen-
tation are given by

I

—) =cos8~1) —sin8~2),
(25)

~+ ) =sin8~1)+cos8~2),
~
1) and ~2) are fixed basis states in the rotating reference

frame. The two states (25) form an orthonormal basis for
the two-level system and can be identified with the semi-
classical dressed states of the driven two-level system, in
which the respective interaction Hamiltonian is diagonal
[54]. These semiclassical dressed states are the direct
analogue of the conventional dressed states [50—52,58],
i.e., eigenstates of the total system of "atom plus driving
field. "

For resonant irradiation (5=0) and with the initial
condition p;J(0)=5„.5) (system in the ground state ~1))
we find from (22) the (time-dependent) solution

M
AM)(t) y A))(t)

IG =1
(30)

All off-diagonal elements of the density matrix in the
fixed basis vanish. Thus the fixed basis

~
m ) and the diag-

onal representation
~ p, ) coincide.

For the transition rates [(15), (18)] we find R)2=W.
All other rates vanish. The individual two-level system is
either in state

~
2 ) =

~

2 ) with probability p2z or in state

~
1 ) =

~
1) with probability p». It decays from the excited

state ~2) to the ground state ~l) with the constant rate
W. Since there is no transition from state ~1) back to
state ~2), the ground state ~1) is a trapping state.
Asymptotically, the system is in state ~1) with certainty.
However, the instant of the quantum jump (transition
from ~2) to

~
1 ) ) is unpredictable for any individual quan-

tum system.
Figure 2 shows the ensemble density-matrix element

p»(t)=cos (Qt),
pz2(t)=sin (Qt),

p, 2(t)= —sin(2Qt) .

(26) for different ensembles comprised of M independent two-
level systems, all prepared in the excited state ~2) = ~2)
at t=O. The quantum fluctuations are most pronounced
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FIG. 2. Decay of M excited two-level systems: Sample traces
(~)

of ensemble density-matrix element p» as a function of time

for diferent ensemble sizes M= 1,2,5,50. Dotted line: ensemble

limit M~ 00. Initially (t=0) a11 systems are in the excited state

~2) =~2) (Pq2 =1}.Only the coupling to the photon field vacu-

um is considered ( v
' =0 and Q =0).

for an individual system: p;;" can take on only the two
values zero or one. With increasing ensemble size the
fluctuations are gradually washed out. The ensemble lim-

it M~ ~, of course, follows the usual exponential decay
law, as expected for a constant transition rate.

Since initial and final states of the quantum system are
energy eigenstates, a direct correlation between the spon-
taneous emission of a photon and the quantum jump in
the system is required from energy conservation.

C. Photon statistics: Driven system with damping

Generally, neither the driving field, nor the coupling to
the reservoirs (photon field vacuum, phase damping), can
be neglected. This implies that conflicting boundary con-
ditions are imposed on the system: The coherent driving
field prefers the (semiclassical) dressed-state basis ~+)
(25), whereas the coupling to the reservoirs tries to force
the system into the fixed basis ~m ). The diagonal repre-
sentation mediates between these two extremes: When
the driving field (coupling to the reservoirs) dominates,
the diagonal basis ~P) coincides with the dressed-state
basis (fixed basis). Between these extremes, the diagonal
representation is determined by the relative strength of
the driving field compared to the coupling to the reser-
voirs.

The diagonal basis ~}M) thus results from the "dress-
ing" due to the coherent driving field and the coupling to
the reservoirs as well ("dressing of the dressed states").
The diagonal representation can therefore be considered
as a generalization of the semiclassical dressed-state con-
cept [54] to open quantum systems.

We are interested in the steady-state dynamics of the
system. The diagonal representation is fixed and the dy-
namics can be described in terms of stationary rate ques-
tions. From the equations of motion (22) we find the sta-
tionary solution of the ensemble density matrix in the
fixed basis

4(Q/W) (1+I/rW)
(]+I/rW) +8(Q/W) (I+I/rW)+4(5/W)

Re(pt"2) =— 5ln
P22 (31)

1 8'
Im(ptq)=

2 Q p

A11 other matrix elements are determined by the condi-
tions of Hermiticity and trace preservation. Due to the
damping mechanism, the stationary solution will be
reached asymptotically, independent from initial condi-
tions.

Diagonalization of the stationary density matrix (31)
leads to the occupation probabilities p„„andthe basis
states ~p) in the diagonal representation. From the
latter, we obtain the photon emission rates (16) and the
transition rates [(14), (18)] for the stochastic point pro-
cess, corresponding to the rate equation (19). Figure 3
shows (a) schematically the resulting two-point process
and (b) a sample "trajectory" of the stochastic time evo-
lution of an individual quantum system.

In order to obtain simple analytic expressions, we will

perform this program for various limiting cases by ex-
panding (31) up to second order in the expansion parame-
ter.

1. Strong detunings: Spectral correlations

(o)

Ad Rat

21 12

'~/

R22

(b)

]IE

FIG. 3. (a) Schematic representation of a stochastic two-
point process with the two possible states ~1) and ~2). The
transition rates R„„[(1Qa},(18)] corresponding to the four possi-
ble transitions

~
v) ~ ~P ) are indicated. (b) Sample trajectory of

the stochastic time evolution of a single quantum system S. At
any instant of time, S can occupy any of the two states ~1) or
~2). Each dot corresponds to one of the four possible transi-
tions indicated in (a).

For strong detuning of the applied electromagnetic
field (~5~=~cotz —III~)) W, Q) we find, neglecting phase
damping (r '=0), for the basis states in the diagonal
representation (stationary limit)

2
1 0 0 i Q 8'
2 5 5 2 5 5

(32)20 i 0
5 2 5
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In leading order, the diagonal representation coincides
with the dressed-state basis (25). The terms containing
( W/5) give the first-order correction due to the coupling
to the photon field vacuum ("dressing" of the dressed
states).

For the occupation probabilities we obtain

0

0
P22 P11

(33)

and the transition rates [(15), (18)] for the stochastic two-
point process [cf. Fig. 3(a)] are given by

2

lations are a specific single system effect which can only
be found when the respective photons are emitted by the
same atom.

In order to test the concept of the diagonal representa-
tion more directly, it would be interesting to perform
correlation experiments for parameters where the dress-
ing by the coupling to the photon field vacuum already
becomes noticeable (i.e., smaller Rabi frequency Q
and/or smaller detuning 5).

2. High-intensity limit

When the transition is saturated (Q)) W) the diagonal
representation coincides with the dressed-state picture.
For resonant irradiation (5=0) and neglecting additional
phase damping (r '=0), we find

R11 =

4

I
I ) = (il 1 ) + 12) ),

2
(36}

R21 =

Rzz =
2 (34)

R,z= 0
1 —2

5

2

Each transition is connected with the spontaneous emis-
sion of a photon. Comparing with the conventional
dressed-state approach [58], we identify the transitions

R» and R2z with the elastic (Rayleigh) scattering chan-
nel Lo [shifted energy of scattered photon:
fico=fi(co, 2 5)] and th—e transitions Rz, and R,2 respon-
sible for the L [iri(ai —5)=iri(co, 2

—25)] and L+ [energy
A(co+5)=fico, 2] sidebands, respectively, of the fluores-

cence spectrum (Mollow triplet [27]}.
From (33) and (34) the average rate by which photons

are scattered is given by [(Q/5) ]W. The ratio between

Rayleigh, Lo, and sideband scattering, 1. , is found to be

Io

R21

'2

(35)

i.e., the dynamics of the system is dominated by the shift-
ed Rayleigh scattering. Using the experimental parame-
ters of Aspect et al. [7] (W=2X10 sec ', Q=2. 5X10"
sec ', and 5= —2.5X10' sec ', i.e., the Rayleigh line is
blue shifted) we can quantitatively reproduce the experi-
mental ratio Io/I = 10 .

Since the transition rate R,z for a low-energy photon is
much larger than all other transition rates (especially the
competing process R2~), the emissions in the two side-
bands are strongly correlated (photon bunching} and
come in a fixed time order: A high-energy photon (rate
Ri, ) is followed by a low-energy photon with a mean
waiting time (R,~ ) = W, which is much smaller than
the average time 6 /0 8'between two successive photon
emission events. This is also in excellent qualitative and
quantitative agreement with the experimental results of
Aspect et al. [7]. It should be noted that spectral corre-

—

(ill�

) —12) ) .v'2

Note that the phase factor i [missing in the dressed states
(25)] can be included in the definition of the rotating
reference frame.

For the occupation probabilities in the diagonal repre-
sentation we get p&&

=
—,'+ —,'( W/Q) and

pi&
=

—,
' —

—,'( W/Q ). Due to the near degeneracy of the oc-

cupation probabilities p„„,very small off-diagonal ele-

ments p, 2=pz, =iW/40 of the density matrix in the fixed
basis lm ) lead to the strong coherences present in the
states (36). The transition rates in the diagonal represen-
tation are given by

R11=R21=R22 =R12 =
4

(37)

3. Low-intensity limit

In the low-intensity limit (Q « W) the coupling to the
photon field vacuum dominates and the diagonal repre-
sentation coincides with the fixed (bare atom) basis lm ).
For resonant irradiation (5=0}and still neglecting phase
damping (r =0}, we obtain, including first-order
corrections in (Q/W),

2

ll)= 1 —2

12~ = —2 il 1 )+ 1 —20 0
8' 8'

2 (38)

The elastic Rayleigh component (connected to the
rates R» and R iz ) is twice as intense as the two side-
bands (connected with the rates Rz, and R,z) of the
fiuorescence triplet. The photon correlations are not so
marked as in the case of nonresonant irradiation. From
Fig. 3(a) it follows that the sideband photons are emitted
alternatingly [64]. However, since the delay times be-
tween two photons are comparable, there is no fixed time
order and a sideband photon might as well be succeeded
by a Rayleigh photon.
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0
R2) = 16

0
R22= 4

4

(39)

R = 1 —8
0

12 8'

Similarly to the case of nonresonant excitation, the dy-
namics is dominated by the Rayleigh scattering process
I

1 & ~ I
1 & and the two sideband photons come in a fixed

time order. However, for low driving field intensities,
Rayleigh and sideband scattering can no longer be dis-
tinguished in frequency space, so that the detection of
these photon correlations becomes difficult. Also, the
quantum nature of the electromagnetic radiation field be-
comes more and more important for lower intensities.
Therefore the semiclassical approximation for the radia-
tion field should not be used any more in this limit.

4. Strong phase damping: Photon antibunching

For strong phase damping [rW «1, (W/Q) ] the di-
agonal representation coincides also with the bare atom
basis. For resonant irradiation (5=0) we find, including
the first-order correction in (rW),

2

I —2 (rW}'
I
l &

—2 (rW)t I2&,8' 8'
(40)

I2& = —2 (rW)i I
1 &+ 1 —2 (rW) I2& .

W

and the occupation probabilities are given by

p, i= 1 —16(Q/W) and p2z=16(Q/W) . For the transi-
tion rates we find

2
QRi)= 4

cess R2& before the next photon can be emitted imitates a
cascade process and leads to antibunching and sub-
Poisson statistics of the spontaneously emitted photons.

Note that only adiabatic processes which change the
occupied state have been taken into account in the transi-
tion rates (41}. However, in the limit of strong phase
damping, the adiabatic interaction will predominantly
lead to irreversible processes I

v & ~ I
v & which do not

change the occupied state. In the language of quantum
measurement theory, the phase-damping interaction per-
forms frequent measurements which force the system into
the bare atom basis and lead to the suppression of the
coherent dynamics (quantum Zeno effect [65]).

(n'& (n &-'
(n &'

(42)

Here ( n & ( ( n & ) is the average photon number
(squared). Q characterizes the deviations of the photon
number distribution from a Poisson distribution. For
Q &0 the distribution is narrower (sub-Poisson) and for
Q )0 wider (super-Poisson) than the Poisson distribution
(Q=0).

Figure 4 shows the Q factor for different phase-
damping constants ~ as a function of the Rabi frequency
Q. For vanishing phase damping ~ ' —+0 the photon
statistics is super-Poisson with a maximum Q factor
Q,„=0.25. Increasing phase damping leads to a transi-
tion to sub-Poisson statistics with a minimum Q factor

5. Transition from super Poiss-on to sub Pois-son statistics

In this section, we present numerical results for the
photon statistics of the coherently driven two-level sys-
tem. For various parameter sets we determine the transi-
tion rates [(10a), (18)] and simulate the stochastic dynam-
ics of a single-quantum system (Monte Carlo simulation).
An ensemble average yields the photon number distribu-
tion P(n}, from which we calculate Mandel's Q parame-
ter [66]

For the occupation probabilities we obtain
P»=1 4(Q/W) (r—W) and p22=4(Q/W) (rW), and the
transition rates [(10a), (18)] are given by

0.3-

0.2

(rW)
' =

Rii=[4(Qr) ]W,

R2, =[4(Qr) ]r

R22 = [4(Qr) ]W,
(41)

0. 1

0.0

—0. 1

Two kinds of processes can be distinguished: (i) adia-
batic processes which are connected to phase damping
and (ii) nonadiabatic processes which are correlated to
the spontaneous emission of a photon. Phase damping
suppresses the interaction with the coherent driving field
and renders the excitation process incoherent. In the
limit of strong phase damping, the transitions R» and
R22 can be neglected. R2, is connected to an adiabatic
process, and only R &2 leads to the spontaneous emission
of a photon. The reexcitation of the system by the pro-

—0.2

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Robi frequency ft (units of W)

FIG. 4. Q factor as a function of the intensity of the coherent
driving field {Rabi frequency 0, detuning 5=0) for various
phase damping constants ~ '. Inset: Level scheme and quan-
tum optical coupling parameters (Rabi frequency Q, detuning 6,
relaxation rate 8') for a two-level system.
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Q,„=—0.25. This is consistent with the minimum Q
factor attainable in a rate process (incoherent excitation)
[67].

The diagonal representation, as well as the dressed-
state picture, contains correlations due to cascade pro-
cesses only. These correlations might be termed "classi-
cal." Therefore antibunching and sub-Poisson photon
statistics for the two-level system can be obtained only
for incoherent excitation, here achieved by a strong phase
damping. "Quantum" correlations, on the other hand, as
found for coherent excitation processes lead to a
minimum Q factor of —0.75 [68,69].

As has been discussed in Sec. II A, the rate equation
(19) is only valid on a time scale ht ))r,'„,. An estimate
for ~„„canbe obtained from calculations of the second-1

order correlation function G' '(r) [64]: The "antibunch-
ing hole" defines the time scale on which successive pho-
ton emission events are correlated:

' 2 1/2

(r,'„,) '=0 1+4 8' (43)

On the other hand, the interpretation of the rate equa-
tion (19) as a stochastic point process requires a time scale

(«sp) wh«e (brsp) =(~P22) is the av«age
time between successive photon emissions. Applicability
of the corresponding Master equation to a single-
quanturn system therefore requires the time scale spread-
ing r,'„„«( hrsp ), so that we have

r~o~, && b t && ( krsp ) (44)

This condition is not fulfilled for 0= W, when quantum
correlations show up most pronounced. In this case the
Markov assumption is no longer a good approximation,
since successive photon emission events are strongly
correlated.

A similar estimate for the minimal time resolution (43)
can be obtained by considering the complementarity of
time and frequency: In order to resolve the fluorescence
triplet, a minimum frequency resolution of
b,co =A[1+4(5/W) ]' is required. The time-frequency
uncertainty relationship immediately yields the minirnurn
time resolution (43). A better time resolution, as is re-
quired to measure antibunching, implies that, e.g., the
processes ~1) —+~1) and ~1)~~2) cannot be dis-
tinguished any more. Therefore the various paths should
be combined, so that the final state becomes a coherent
superposition of all possible final states. This corre-
sponds to the projection of the system into the ground
state [64]. In this interpretation the system would not
only jump between (stationary) states when a photon is
emitted, but would experience a quantum jurnp of the
basis states itself ("collapse of the wave function"). Obvi-
ously, the stationary rate process in the diagonal repre-
sentation is not particularly adequate to describe such a
situation.

On the other hand, for high-frequency resolution the
various rate processes can be distinguished, but the time
order in which they oeeur can no longer be controlled.
This leads to modifications in the width of the sidebands
of the fluorescence triplet [51].

The strong influence of the detection process (e.g. , time
versus frequency resolution) indicates that the basic as-
sumption of an uncorrelated reservoir might not be as
good for a single-quantum system as for an ensemble
where these correlations are washed out. If we treat
"quantum system plus measurement apparatus" as a new
open quantum object, part of the correlation between sys-
tem and rneasurernent apparatus can be retained. The
separation between the system of interest and the reser-
voirs is not arbitrary, but given by the experimental situa-
tion to be described. Furthermore, this approach is
motivated by the fact that non-Markovian stochastic pro-
cesses should become Markovian in an adequately ex-
tended state space [47].

IV. THREE-LEVEL SYSTEM:
RANDOM TELEGRAPH SIGNALS

In a two-level system, quantum jumps ean only be
detected by recording individual photon emission events.
In suitably prepared three-level systems, however, quan-
tum jumps can be observed with the naked eye [70,2—4].
The basis for the amplification of quantum jumps is a
time scale spreading in the lifetime of the various states:
Due to the finite time resolution of the "eye," the reso-
nance fluorescence of a "strong" transition monitors the
dynamics of the "weak" transition.

The distinction between the ensemble and an individu-
al quantum system is most pronounced in the steady
state. While the former leads to a time invariant (ensem-
ble) density matrix, the latter must be described by a set
of stationary rate equations (dynamical equilibrium). The
random telegraph signal of the resonance fluorescence
directly demonstrates the stochastic dynamics of single
three-level quantum systems. Only time averaging leads
back to the constant ensemble density matrix.

A. A, con6guration

Two basic scenarios can be distinguished: the
configuration and the v configuration. In our notation
the generalized Master equation for the A, configuration
(cf. inset in Fig. 7) in the rotating reference frame is given
by (see, e.g., [35])

dP11
13 P13 P31)+ ~13P33+ 12P22 ~dt

dp22 = ~23P33 —~12P22at

dp33
+13(P13 P31) ( ~13+ ~23 )P33dt

(45)
dp13

~13P13+ +13(P11 P33) 2 ( ~13+~23 )P13dt

dp23
+13P21 T( ~13+~23+ ~12)P23dt

dp12
E~13p12 ~ +13P32 2 ~12P12 '

dt

Hermiticity of the density matrix determines the equa-
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P33 y

8'23
Pzz= ~ P33 y

12

' —1

W'3 (W'3+ Wt3)
p33= 2+ +

12 4013

tions of motion for the remaining matrix elements.
For the steady state of (45) we find

(W23+ W, 3)1+
13

(46}

and

8'13
R11=R31=

R33 R13 =

8'23
Rz, =

~12
R1z =R3z =

2

(49a)

(49b)

~23+ ~13
2Q13

P33

W23

2 8'12 + 8'23

~12
P 2~ + Pr

8'13 + 8'231—
2013

(47}

and the diagonal basis is given by

( Il &+ I3&),
2

(4')

v'2

For these we get for the transition rates of the stochas-
tic three-point process (cf. Fig. 5)

Besides p3„which is fixed by the Hermiticity condition
all other off-diagonal matrix elements vanish.

Transformation into the diagonal representation leads
to a stochastic three-point process as depicted in Fig. 5.
In the limit of a strong driving field (Q&3» Wt3), simple

analytic expressions can be obtained. For the occupation
probabilities in the diagonal representation we find

8'12 %13+ 8'23
P11
~00 1+

2$'12+ 8 23 2013

1000-
100-
10-

"blue"

Rzz =0

In the following, we consider the dynamics of the sys-
tem for widely separated transition rates

13 ++ 8 23 S1z. We have performed numerical simula-
tions of the stochastic three-point process ("quantum
Monte Carlo" ), defined by the transition rates [(49a},
(49b)]. Since additional phase-damping mechanisms have
been neglected, each quantum jump is connected to the
spontaneous emission of a "blue" (W&3), "green" (W23),
or "red" (W,2) photon (cf. inset in Fig. 7). Contrary to
actual experiments, in the computer simulation each
spontaneously emitted photon can be registered. Fur-
thermore, a computer experiment allows us to investigate
and visuahze details (variation of control parameters,
time scales, etc.) which are usually not accessible in a real
experiment.

Figure 6 shows the photon emission events for a sam-
ple run. For a sampling time ht, on the order of
At, = 8'13, individual emission events of blue photons
can be resolved. For an intermediate sampling time,
W13 ((At (( JY23 8 12 the spontaneous emission of
individual blue photons cannot be resolved any more, but
dark and bright periods in the time-integrated fluores-
cence of the blue photons become visible (random tele-
graph signal). The random telegraph signal, i.e., the
switching of the signal between a limited number of
discrete states, is the most pronounced way to represent
quantum fluctuations. With further increasing the sam-
pling time the relative fluctuations of the fluorescence sig-

R31
/4

~ lk lK
21R

R22

AJ rtV

R23 R32 I
I

I
I

I
I

I7& ,
,
'

R Rbd 0
10- "green"

10-
red

n
'

IIII IIIIIIIIIIIIIIIIII, I

IIIIIIIIIIIIIIIIIIIIIIIIIIII

IIIIIII IIIIIIIII IIII III II

FIG. 5. Schematic representation of a stochastic three-point
process. The transition rates R'„[(10a),(18)) corresponding to
all nine possible transitions Iv}~IP) are indicated. For
respective transition rates and an intermediate time scale (cf.
text), the dynamics is governed by an e~ectiue two-point process
between the two states d (dark, system in I2) ) and b (bright, sys-
temin Il& or I3)).

bt =1
S

I I I I

225 450 675 900
channel number

FIG. 6. Computer simulation of the photon traces for the A,

con5guration. Each photon is registered ("detection efficiency"
g=1). The sampling time per channel ht, (in units of 8'13 ) is
indicated. Parameters: 013 5 ~13 ~13 ~23 ~12
=5 X 10 8'13.
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R 12p11+R 32P33
Rd~ =

P11+P33

Rbd =R21+R23 .
(50)

For a strong driving field II» » W13 we get from (49b)
and (47) the rates Rbd = W12 and Rdb=W23/2, which
agree with the rates given by Javanainen [35] for the
same limiting case.

The transition rates (50) of the effective two-point pro-
cess are directly connected to the average duration
( T,ff) (( T,„)) of dark (bright) periods

( T.r &
=Rbd

(T,„)=R~bt .

Figure 7 shows the dependence of ( To„)and ( T,ff )
on the Rabi frequency Q, 3. The mean duration of the
bright periods ( T,„)depends on the transition rate W'23

and the occupation of level ~3). It increases strongly
with decreasing laser intensity. (T fr), on the other
hand, is independent of the laser power and depends only
on the transition rate 8',2.

nal diminish: The quantum jumps are averaged out, and
the fluorescence signal approaches the constant value as
given by the ensemble density matrix.

Bright (dark) periods in the fluorescence of the blue
photons end by the emission of a green (red) photon.
Therefore it is possible to monitor the successive emission
events of green and red photons by observing the blue
resonance fluorescence. Green and red photons are emit-
ted alternatingly. Therefore antibunching is observed in
the emission of green or red photons.

The amplification of quantum jumps is possible due to
the spreading of the transition rates [(49a), (49b)]:
R11 R31 R33 R13 + R21 R23 R12 R32. The Shelving
state ~2) = ~2), connected to the dark periods of the blue
resonance fluorescence, is only weakly coupled to the
states ~1) or ~3). The bright periods, on the other hand,
are connected to the strong transition rates (49a) within
the subspace of states ~1) and ~3). The blue resonance
fluorescence therefore continuously tests the occupation
of state ~2) and amplifies quantum jumps to and from
this state.

On a time scale where individual emission events of
blue photons cannot be resolved, it is possible to replace
the stochastic three-point process by an effective two-
point process (cf. Fig. 5). Two states are then dis-
tinguished: The combined state b ("bright, " fluorescence
on, the system is either in state ~1) or ~3) ) which occurs
with a probability (p„+p33),and the state C ("dark, "
fluorescence off, the system is shelved in state ~2) ) with
probability p22. It should be mentioned that the states of
the effective two-point process should not be confused
with the physical states of the system. The state b is not a
pure state as discussed in Sec. IIA. The effective two-
point process represents a reduction of the system in state
space and is accompanied by a loss of time resolution.
For the transition rates of the effective two-point process
we find

10

—10

O

10
C

p&
,'W,

2
("red")

I

E
10

B. v con6guration

In the rotating reference frame, the generalized Master
equation for the v configuration [cf. inset in Fig. 10(a)] is
given by (see, e.g., [41])

dP11

dt
1+13(P13 P31)+1+12(P12 P21)

+ W13P»+ W,2p,2,
dp22

Ch
~12(P12 P21) W12P22 ~

dP33

dt
(52)

i5,3— P13 l 013(Pll P33) l012P23

CPi2 . Wi2
P12+1+12(P11 P22) 1+13P32 ~

dP32

dt
—[1(fi12 fi13) ( W13+ W12)]P32

+ +12P31 13P12

The equations of motion for the remaining matrix ele-
ments are fixed by the Hermiticity condition of the densi-
ty matrix.

Since the two coherent laser beams lead to a coupling
of all three atomic levels

~
I ), ~2), and ~3), the dynamics

of the v configuration is not as intuitive as for the A,

configuration (cf. Sec. IV A). In particular, the oc-
currence of intermittency has been under dispute [71]un-

til it was finally settled in favor of the random telegraph
signal by experiment [3].

Applying the theoretical concept developed in Sec. II
to the steady-state solution of Eq. (52) we obtain the tran-
sition rates [(15), (18)] for the three-point process (cf. Fig.

10
0.0 0.2 0.4 0.6 0.8 1.0 1,2 1.4 1.6 1.8 2.0

Robi frequency Q,s (units of W, s)

FIG. 7. Average duration of dark {( T,tr) ) and bright
{( T,„)) periods in the fluorescence signal of the strong ("blue" )

transition as a function of the Rabi frequency Qj3. Parameters:
5)3=0, 8'23=8'12=5X10 8')3. Inset: Level scheme for the
A, configuration including relevant coupling parameters (Rabi
frequency 0», detuning 5», and relaxation rates 8 J3 $23,
8')2 ).
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5) which governs the incoherent dynamics of the system.
We can distinguish between the spontaneous emission of
a "blue" or a "red" photon, respectively, connected to
the decay rates Wtz or 8'tz [cf. inset in Fig. 10(a)]. Since
already the evaluation of the steady-state solution in
some limiting cases [36] gives very complicated expres-
sions, we give numerical results only.

Prerequisite for the occurrence of intermittency is the
distinction between a strong (blue) and a weak (red) tran-
sition: %13 ~13 ~12 +12' In addition, strong satura-
tion of the weak transition (Qtz » Wtz ) is required in or-
der to obtain comparable average durations of dark and
bright periods in the strong resonance fluorescence. Fig-
ure 8 shows a sample run for a single v system. Note
that, contrary to the A, configuration, dark periods do not
necessarily end with the spontaneous emission of a weak
photon [38,41]. The ratio of dark periods which end with
the spontaneous emission of a weak photon to those end-
ing with the emission of a strong photon is given by
A, tz(2)/A, tz(2) [cf. Eq. (16)]. This ratio is found to depend
on all excitation parameters of the system and agrees
with the results of Porrati and Putterman [41] and Erber
et al. [34] in the respective limiting cases. Similarly,

though much less likely, a weak photon can be emitted
during a bright period. The reason is, that due to the
coupling by the coherent driving fields, all three diagonal
basis states IP ) contain admixtures of all three bare atom
states Im ).

Figure 9(a) shows the transition rates [(15), (18)] for the
three-point process as a function of the Rabi frequency
013 of the strong transition. For a broad parameter
range, the transition rates to and from the diagonal basis
state I2) are much smaller than the rates between the
other two states

I
1 ) and I3): R tz, Rzz, Rzz, Rz„Rz3

«R», R», R», R33 As for the A, configuration (cf. Sec.
IVA), an effective two-point process (Fig. 5) can be
defined in this case, which describes the dynamics of the
system on an intermediate time scale where the spontane-
ous emission of blue photons cannot be resolved any
more. The transition rates (50) of the effective two-point
process are directly related to the experimentally relevant
quantities ( T,„)and ( Totr) (51).

The occurrence of intermittency in a v-level system has
been investigated by various authors [33,36—38,41]. The

(a)

10
tV IV R
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O
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R22

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Rabi frequency (),s (units of W,3)

(b)

10 R13
PV

11

most pronounced effect is a strong dependence of ( T,„)
on the detuning 5tz of the weak laser [33] (Autler-Townes
resonance [29]). The ratio ( Totr)/( T,„)obtained by
Cohen-Tannoudji and Dalibard [33) and by Kim and
Knight [37] for some limiting cases can be reproduced
qualitatively and quantitatively within our diagonal rep-
resentation. However, it should be noted that this ratio is
not a sensitive test to distinguish between different inter-
pretations of the dynamics of individual quantum systems
since, in the cases of interest, it is already fixed by the en-
semble density matrix (cf. Appendix B). Ligare [38] per-
formed a dressed-state analysis of the v configuration and
his results for the lifetime of the dressed states as well as
for the average duration of bright and dark periods can
also be reproduced within the diagonal representation.

In our approach, however, the transition rates of the
three-point process show a strong resonance when two
occupation probabilities p~„become degenerate (see Fig.
9): The strong rates R», Rz„Rtz, and R 3z are
influenced only very close to the resonance [Fig. 9(b)],
whereas the weak rates R 12, R22, R32 R21 and R» react
much more sensitively [Fig. 9(a)]. Formally, this reso-
nance can be understood by noting that the importance
of the off-diagonal density-matrix elements p;~ (in the

1000-
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III III II IIIIII IIIIIIIII IIIII

~ 1Q

0
U) 1Q
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1- red

IIIIII I IIIIIIII I III I

I I I I
ht =1

225 ht, =10 450 ht, =10 675 I"-) s 9QQ
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I 22I

0.8074 0.8078 0.8082 0.8086
Rabi frequency t)a (units of tNa)

I

0.8090

FIG. 8. Computer simulation of the photon traces for the v
configuration. Each photon is registered ("detection efficiency"
g=1). The sampling time per channel ht, (in units of 8'&3 )

is indicated. Parameters: 513 0 Ql3 512 2 8 f3,
012—10 8'l3, W)2 = 10 Wl3.

FIG. 9. (a) Transition rates R„„from Eqs. (10a) and (18) for
the v configuration as a function of the Rabi frequency 0». (b)
same as (a) with the scale for QI3 enlarged to resolve the reso-
nance around Q»=0. 8 W» (cf. text).
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fixed basis) is amplified close to a point of degeneracy,
i.e., already small off-diagonal matrix elements may indi-
cate a strong coherence (cf. Sec. III C 2). Since the weak
transition rates are due to small admixtures of other
states in the diagonal basis, they react very sensitively to
small changes in the coherences of the diagonal basis
states. To our knowledge, this resonance effect has not
yet been observed in an experiment.

Figures 10 and 11 show the dependence of ( T,„)and
(T,ff) on various parameters of the coherent driving
fields. The variations of (T,fr) are much less pro-
nounced than for ( T,„),since an uPPer bound for ( Tofr)
is given by W&z . Decreasing the Rabi frequencies 0,2

[Fig. 11(b)] or Q» [Fig. 10(b)] as well as increasing the
Rabi frequency Q, 3 [Fig. 10(b)] diminishes the occupation
probability of the shelving state

~
2 ) and therefore leads

to a strong rise of ( T,„).Compared to the A,

(a)

5.0-
4.5-

f 4.0-
3.5-

0
m 3.0-

2.5-

2.0-
1.5

1.0

0.5

configuration, the average duration of dark and bright
periods for the v configuration is much more sensitive to
the parameters and coherence properties of the driving
fields.

The dashed lines are obtained by adiabatic elimination
of the strong transition [36] (see Appendix B). A good
overa11 agreement between the two approaches is ob-
served, since the shelving state ~2) =~2). Deviations
occur close to the point of degeneracy of the diagonal oc-
cupation probabilities [Qf3 -—0.8 Wt3, cf. Fig. 10(b)],
when coherence effects are enhanced. Another coherence
effect (which is not due to a degeneracy of the diagonal
occupation probabilities) can be observed for 5» -—0 [cf.
Fig. 10(a)].

So far only the experiment by Bergquist er al. [3] can
be considered as a realization of the v configuration. De-
tails of this experiment have been published by Erber
et al. [34]. In their analysis of a specific run they find

( Toff ) =69+4 msec and ( T,„)= 180+11 msec. Using
their estimate of the experimental input parameters
W» =44X 10 sec ', W&2 =22 X 10 W», Q&&=5 5

X 10 W]3 Q]3 1.6X10 'W&3, 5&3= 8'&3, and choos-
ing 5tz=4. 8X10 Wt3 we find (T,z) =65 msec and

( T,„)= 191 msec, which agrees well with the experimen-
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FIG. 10. Average duration of dark ((T,fr)) aud bright
((T,„))periods in the resonance fluorescence of the strong
("blue" ) transition: (a) as a function of the detuning 5l3 for
0[3 1 .6 X 10 ' W», (b) as a function of the Rabi frequency 013
of the strong transition for 5»= W». Solid lines: numerical
calculation in the diagonal representation [Eqs. (51) and (50)];
dashed lines: adiabatic approximation [Eqs. (51) aud (Bl), cf.
Appendix B]. Parameters: W, z =2.2 X 10 s Wts,
QI2=5. 5x10 W13 5» 4.8x10 W13. Inset in (a): Level
scheme for the v configuration including the pertinent coupling
parameters (Rabi frequencies 0», 0», detunings 5&3, 5», and
relaxation rates Wl3 W» ).
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FIG. 11. Same as Fig. 10, but (a) as a function of the detun-
ing 5» for 0» =5.5 X 10 'W», and (b) as a function of the Rabi
frequency 0» of the weak transition for 5»=4.8X10 W&3.
Parameters: W»=2. 2X10 W», Q»=1.6X10 ', 5l3= W».
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tal results. However, ( T,„)and ( T,tt) depend very sen-
sitively on the parameters of the driving fields (cf. Figs.
10 and 11), so that for a detailed comparison with the ex-
periment a precise knowledge of the experimental input
parameters is required. It would be interesting to com-
pare the theoretical predictions of the parameter depen-
dencies (especially of the Rabi frequencies 0» and Q,z)
with experiment, in analogy to the study of the more
complicated five-level system performed by Hulet et al.
[72]. In particular, it should be possible to decide wheth-
er the resonance effect in the transition rates close to the
degeneracy of the diagonal occupation probabilities is a
real physical effect or an artifact of the diagonal represen-
tation.

V. SUMMARY AND DISCUSSION

As demonstrated by various experiments, the dynamics
of individual quantum systems is intrinsically stochastic.
This is in contrast to the conventional ensemble descrip-
tion via the generalized Master equation for the reduced
density matrix. Other methods and/or additional inter-
pretations are therefore required in order to describe the
dynamics of single quantum systems. The specific
features of individual quantum systems can either be
characterized by correlation functions or, as we have
demonstrated, by direct simulation of the stochastic dy-
namics.

In the diagonal basis coherent and incoherent motion
are separated. The coherent dynamics shows up in the
time evolution of the basis states of the diagonal repre-
sentation, while, for a single-quantum system, the in-
coherent dynamics results in a stochastic point process.
Thus the diagonal representation allows for a simple and
intuitive interpretation of the dynamics of single quan-
tum systems: In some sense, the diagonal basis can be
considered as the basis where the properties of the system
become "classical. " The diagonal representation ac-
counts for a "dressing" of the dressed states due to the
coupling to the reservoirs. In this sense it is a generaliza-
tion of the dressed-state picture, which diagonalizes only
the coherent part of the dynamics.

The strict correlation between photon emission and
quantum jumps in the matter system allows us to couple
the simulation of both. Thus the numerical simulation
("computer experiment") of the stochastic dynamics of
individual quantum systems supports the visualization of
details which are not visible in an actual experiment. A
sample trajectory of the stochastic time evolution, e.g.,
gives an intuitive account of (spectral) correlation func-
tions.

The diagonal representation allows us to include both
coherence sects and single particle sects at -the same
time. Where applicable it agrees well with experiments
and with other theoretical concepts. However, further
experiments to test its validity would be desirable. Of
course, the applicability of the diagonal representation is
limited by the validity of the underlying ensemble
description. Especially it is only valid for a finite time
resolution ht ))r,'o„,the correlation time v „,for a sin-
gle system might be more restrictive than the correspond-
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APPENDIX A

Rewriting the second sum in Eq. (8) we obtain

S2 = g & i
l
v & & v

lj & ( (p I
l ) &j l JLt & )

dt

= g &ilv& —(& pit&) g & vlj) & jlp&

+ g (pit &(tlv& g (vlj) —((jlp)) .
dt

Completeness of the fixed basis set li )

g li&&ii=1,

(Al)

(A2)

and orthonormality of the diagonal basis states

& p, lv& =fi„„
leads to

(A3)

S2= g &ilv& —((pli &)+ g &vlj &
—((j lp)) 5„d

J

Therefore S2 =0 for pAv. For p =v we obtain

s, = y (tlv& —(&vli&)+ y &vlt& —(&ilv&)
d -- —. d
dt dt

(A4)

g &vli &(ilv& =0.
dt (A5)

Thus we finally get for all p, v

S,= g (ilv&&vlj& —
(&JMli&& jlp&)=0 .

dt (A6)

ing correlation time ~,"„,~,', of the macroscopic en-
semble.

We have restricted ourselves to stationary rate equa-
tions in this paper (steady-state dynamics). However, the
full power of the diagonal representation becomes ap-
parent when it is applied to transient phenomena. This
leads to nonstationary rate equations. Preliminary results
have been published in Ref. [44] and a detailed analysis is
planned to be given in the second part of our work [55].

Extensions of the present theory to more complicated
level configurations and to coupled quantum systems, as
well as attempts to include quantum correlations (i.e., to
include parts of the photon detector in the correlated sys-
tem) are under investigation. Applications of this con-
cept to systems with a (quasi) continuous state space as
typically found in solid-state physics (e.g., single-electron
tunneling in semiconductor heterostructures, Coulomb
blockade) seem rather promising.
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l,J, m, n

&Pli &&jlP, &R;, "&mlP &&Pln & . (A7b)

R,~~ and R . are the only nonvanishing elements of the
relaxation matrix in the fixed basis Ii & (secular approxi
mation):

I &Pled & I'R jul & jlv& I'
i j (i')
+ gR,"l&pli&&ilv&l'

+ g Rj &Pli '&&jIP&&ilv&&vlj &

i,j (i' )

(A8)

Considering only nonadiabatic processes, these transi-
tion rates can be simplified further. Using the sum rule
(5d) and relation (13}we obtain

Using this, the transition rates in the diagonal representa-
tion are given by

R,= g &pli &&j Ip&R; "&mlv&&v n & for pXv,
t,J, m, n

(A7a)

APPENDIX B

4g2 Weff
=W„+

( preff )2+4(5eff)

12 1240 W'

( preff )2+4(5eff)

(B1)

Kimble, Cook, and Wells [36] obtained analytic expres-
sions for the transition rates of the effective two-point
process describing alternating bright and dark periods in
the resonance fluorescence of the strong transition. For
widely separated time scales (W&3, Q&3»W, z, Q, z) the
fast variables follow adiabatically the time evolution of
the slow variables. For a time resolution At &) 8'13' the
fast variables can be approximated by their steady-state
values.

We repeat this procedure, including a finite detuning
5]3 of the strong laser. For the transition rates (quoted as
R and R+ by Kimble, Cook, and Wells [36])we find

I &Pli & I'R(i'I & jlv& I'
i,j (iw j)

R/,I, &Pli && jlP&&i'Iv&&vjl&
i,j,k (kWi)

Rki &pl& && jlp&&ilv&&vlj& .
i j,k (kWj)

(A9)

4$' Q
W =W, + 13 13

W +4(5 —5 )2
(B2)

The effective phase damping W;z and detuning 5;z for the

transition ll &~I2& are given by

Finally, completeness (54) and orthonormality (55),

I & p Ii & I'R,', I &j I
v & I'

i j (iw j)

R/, 'j, & P, I

~'
& & i

I
v &

'

g & v
Ij & &j IP &

i, k (kWi) J

R &'I, &j IP & & v
Ij & g & P I

i & & i
I v &

',
j,k (kXj)

(A10)

4(5iz —5|3»i3
W +4(5 —5 )

and we use the abbreviations

D1 —8'13 +8013+513

D2 —~/3+4(5iz 5|3»

(B3)

(B4)

(B&)

lead to the result (pAv)

(A13)

I & ply & I'R,'
I &j lv & I' (Al 1)

i,j (iA j)

For the total loss rate out of state Ip, & we find [cf. Eq.
(10b)]

R„'„=y I & ply & I'R/'I & jlv& I'
i j (i&j)

j,k (kAj)

R}tjl, l& jlp&l', (A12)
j,k (k&j)

where R is defined in Eq. (18). Changing indices and
PP

using again completeness and orthonormality we find

R/&'I & jlp & I'(I & pli & I' —1)
i,j (iwj)

R,', I & jlp& I'I & vli & I'(0 .
v (wp) i,j (i' )

4Q, 3 4W, 3Qf3+16(5i2—5,3)5,3Qi3

D1 D1D2

16512S 13013+
D D

(5 —5 ).
1 2 12

(B6)

Rdb

Rb

P22

P22

(B7}

i.e., the ratio between average on and off times is fixed by
the occupation probability pzz of the shelving state I2&.

This still holds in the diagonal representation since, in

the parameter range of interest, we have p22-—p22.

For the special case 513=0, the results of Kimble, Cook,
and Wells [36] can be recovered.

Note that from the analysis of Kimble, Cook, and
Wells we get for the steady-state solution of the effective
two-point process
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