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In this paper, we have investigated the time evolution of the phase operator of the radiation field in
the Jaynes-Cummings model with and without the rotating-wave approximation, making use of the
phase formalism of Barnett and Pegg [J. Mod. Opt. 36, 7 (1989); Phys. Rev. A 39, 1665 (1989)]. We veri-
fy by an analytical method that the atomic Rabi oscillation leads to phase dissipation of the radiation
field, and also that the effect of the virtual-photon field can exhibit quantum fluctuations in the atom-
field-coupling system and lead to a frequency shift of the radiation field.

PACS number(s): 42.50.Dv, 42.50.Md

I. INTRODUCTION

One of the simplest nontrivial systems in quantum op-
tics is the Jaynes-Cummings (JC) model, where a two-
level atom is coupled to a light mode [1]. Starting with a
radiation field in the coherent state and with the atom in
different initial states, this simple model already shows
such interesting features as periodic revival and collapse
of the inversion of the atom [2-4], and the squeezing of
the light field [5-8]. The predicted collapse and revival
of the inversion are in agreement with experiment [9].

As we know, the phase property of the light field is
very important [10]. Recently, Barnett and Pegg [11,12]
introduced a new formalism based on a unitary phase
operator that has properties coincident with those nor-
mally associated with the phase. Recently, Pegg and Bar-
nett [13] rectified three minor errors in their previous pa-
per [12] following a suggestion by Ma and Rhodes [14].
Some authors investigated the phase properties of
squeezed light [15], an anharmonic oscillator [16], a one-
photon laser [17], correlated-emission laser [18,19], and a
laser with atomic-memory effects [20]. However, less at-
tention has been paid to the time evolution of the phase
operator [21] and the phase fluctuations in the JC model.
In particular, no one has studied the influence of phase
fluctuations due to the effect of the virtual-photon field
[22-27] (counterrotating terms) in the JC model.

In this paper, we have investigated the time evolution
of the phase operator of the radiation field in the JC mod-
el both with and without the rotating-wave approxima-
tion (RWA) according to the phase theory introduced by
Barnett and Pegg. That the atomic Rabi oscillation leads
to phase dissipation of the radiation field that is initially
in a coherent state is verified. We also show that the
influence of the virtual-photon field leads not only to
quantum fluctuations in the atom-field-coupling system,
but also to a frequency shift of the radiation field.
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II. TIME EVOLUTION OF THE PHASE OPERATOR
IN THE JC MODEL WITH THE RWA

We consider a system of a two-level atom and a mode
of the radiation field. These two are coupled by the di-
pole interaction within the RWA, and the system is de-
scribed by the Hamiltonian

H=Hy,+V, (1)
where
Hy=wa'a +ays, , (2)
V=g(aTs_+as+) . (3)

Here a',a are the Bose creation and annihilation opera-
tors for the photons at frequency w. The two-level atom
is described by the usual spin-flip operators and the inver-
sion operator s,, and g is the coupling constant. For sim-
plicity, we take the exact-resonance case wy=w. To
study the phase properties of the field, we need to know
the state evolution of the system. In the interaction pic-
ture, the interacted Hamiltonian can be described by

VI(t)=g(aTs_+as+) . (4)

If at time 1=0 the state vector of the atom-field-coupling
system is

|Yad0))=3 F,(0)la,n) , (5)
n=0

it means that the atom is in the excited state |a ), and the
radiation field is in the arbitrary state 3 ,F,(0)|n ). With
time development, the state vector is

[YAd)) =3 a,(t)la,n ) +b,(t)|b,n) , (6)
which obeys the Schrodinger equation in the interaction
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picture,
gty = VIDlghD) . @

Substituting Egs. (4)-(6) into Eq. (7), we obtain
a,(t)=F,(0)[exp(—iy,t)+expliy,t)]/2, (8)

b, +,(1)=F,(0)[exp(—iy,t)—expliy,t)]/2, 9)

where

Y. =8V (n+1)
is associated with the frequency of atomic Rabi oscilla-
tion. Substituting Egs. (7) and (8) into Eq. (6), the state
vector of the system at time ¢ is decided in the interaction
picture. We change it into the Schrodinger picture

l(2)) = i la,(D]a,n)+b,  ()|b,n+1)]
n=0

Xexp[—i(n +1/2)wt] . (10

According to Barnett and Pegg’s approach [11,12], the
phase operator operates on an (s+ 1)-dimensional sub-
space W spanned by the number state [0),]1),...,[s).
The value of s can be made arbitrarily large. A complete
orthonormal basis of the (s+ 1) phase state is defined on
Y as

16,,)=(s +1)"12 3 exp(in6,,)|n) (11)
n=0
with
6,=6y+2mm/(s+1), m=0,1,2,...,s .

The value of 6, is arbitrary. These states are eigenstates
of the Hermitian phase operator

|

P(6,,0)=|(a,0,,|d(t))|*+[(b,0,,[¥1))|*
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b= 0,,10,,)€6,, . (12)
m=0

So the state vector |#(¢)) of the atom-field-coupling sys-
tem is spanned by the phase eigenkets as

W= (a,0,,1¢(1))]a,6,, )+ (b0, |(1))]b,0,,) .
m =0

(13)

Here [{a,0,,|¢())|*+]{b,0,,|¢(t))|*> represents the
phase-probability distribution. Thus the expectation
value of the phase operator is

(B9)=6,[1¢a,0,, ¢ *+[(b,6, [¢(1) ], (14)
(®2)=36%[1{a,0,, (1)) ?+1b,0,,l¥(0))*], (19

if the radiation field is initially in a coherent state, i.e.,
F,(0)=exp(—7 /2)a"/Vn!, (16)
where
a=7'"exp(if) .

Here 7 is the mean photon number, and § is the phase an-
gle of a. If n >>1, then the photon field is in the Gauss-
ian distribution [11,18]

F,(0)=~(277) V4exp[ —(n —7)?/47 Jexp(in&) . (17)

Recalling the saddle-approximation method [2], i.e.,

gVin+D)=~gV(n+1)+gn —a)/2V (a+1)
~gV7 +gn—m)/2V7 | (18)

the phase-probability distribution can be approximated as

=27 /(s +1)](47 /27)*{exp[ —27(E—6,, — ot +gt /2V 71 2] +exp[ —2A(E—0,, —ot —gt /2V 7 1} /2 .

In the continued limit, i.e., s — o, 6,, is a continued vari-
ation. The phase-probability density is normalized ac-
cording to Refs. [11,16,18,19]

[P0+ [2mdo=1,

where (s +1) /2 is the density of the states.

If considering g/Z\/ﬁ <<w in Eq. (19) when 77 >>1, we
can neglect the term g/2V 7 associated with the atomic
Rabi oscillation. Using Eqgs. (15) and (16), we obtain the

time evolution of the phase operator

(&)= [op@.0s+1) [2mdo=¢or 20)

(19)
[
(@2>=fBzP(B,t)(s+1)/21-rd9=(§—wt)2+1/4r7 :
2n
So the phase fluctuations can be expressed as
(8A8)2=(8*) —(®)*=1/47 . (22)

Since the photon number distribution is still Poissonian,
we have [18]

(AN)Y*=7,

so that the number-phase-uncertainty product is
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(A®)2(AN)?=1 . (23)

We see that the field, which is initially in a coherent state,
retains coherence with time development if one neglects
the influence of the atomic Rabi oscillation on the phase-
probability distribution. _

However, if we do not neglect g/(2\/ﬁ ) in Eq. (19),
then

(D2)y=(E—wt)*+1/47 +(gt)* /47 , (24)

and (®) is satisfied by Eq. (20). So the phase fluctua-
tions can be shown

(AD) =1/47+(g1)? /47 . (25)
Also, the number-phase-uncertainty product changes:
(A®)HANY =1+ (gt)?/4 . (26)

This means that the phase fluctuations are enhanced, and
the field does not keep its phase-number-minimum-
uncertainty product [28]. From Egs. (23) and (25), we
can see that the cause leading to the enhancement of the
phase fluctuations is the atomic Rabi oscillation due to
the atomic-field coupling.

For a chaotic field, the phase fluctuations are max-
imum [11,12]

(A@)fmx‘—‘ﬂzﬁ , (27)
and we find, when

t =272 /gV3=Ty /V3< Ty , (28)

that the phase fluctuations in the JC model reach the
maximum value due to the atomic Rabi oscillation, and
that the field is in a chaotic state. Here T is the revival
time of the atomic inversion that exhibits the repeated
collapse and revival [2-4].

It is evident that our result is not in agreement with
Ref. [21], which studied the phase property in the JC
model. Comparing our result with that of Ref. [21], we
find that the difference between Eq. (20) here and Eq. (20)
in Ref. [21] is wt. And from Eq. (23) in Ref. [21], we can
see that the maximum phase fluctuations are larger than
m*/3. Among the causes for these differences is that the
state vector described by Eq. (12) in Ref. [21] is in the in-
teraction picture, but the phase operator in Egs. (21) and
(23) is in the Schoédinger picture. Because our phase
operators are all in the Schridinger picture, our result re-
garding phase fluctuations [Egs. (25) and (28)] is not only
exact, but is also in agreement with Refs. [11,12].

Another point we would like to mention is that from
Ref. [21] the phase-probability distribution, which obeys
P_(6,t)=P_(0,t), is the cause of the revival effect of
atomic inversion. However, this result is only based on
the interaction picture. But if we consider the phase-
probability distribution in the Schrodinger picture, Eq.
(22) in Ref. [21] changes,
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p(6,0)= [142 3 b,bycos[(n —k)(O+wt)
nk

—(V'n —V'k )gt]

[

It is easy to see, not only when t =mTj but also when
ot=mm/(n—k)—0 (m=0, 1, 2, ...), that the phase-
probability distribution satisfies P_(6,2)=P(0,t). As
we know, the revivals of atomic inversion happen only at
t=mTy and not at wt=mw/(n —k)—06. This means
that the proof deduces the result, that the revivals of the
atomic inversion appear when P_(6,t)=P_(0,t) is not
sufficient.

III. TIME DEVELOPMENT
OF THE PHASE OPERATOR WITHOUT THE RWA

As we know, the virtual-photon processes are
represented by the counterrotating terms in the JC model
[4,23-27]. In order to investigate the role of virtual-
photon processes in the time development of the phase
operator in the JC model, we cannot neglect the counter-
rotating terms in the Hamiltonian. The Hamiltonian for
a system of a two-level atom interacting with a single-
mode radiation field in the interaction picture is

H=H,+V1), 9)
where
Hy=wa'a+oys, , (30

Vit)=g [aTs_ +as_+ats expli2wt)
+as_exp(—i2wt)] . (31)

For simplicity, we also take the field to be resonant with
the atomic-transition frequency.

Substituting eqgs. (6) and (31) into the Schrédinger
equation, we obtain

ia,=g[V'n+1b, ., +V'nb,_expli2ot)], (32)

ib, ;1=g[V'n+1la,+Vn+2a, .exp(—i2wt)] . (33)

It is easy to see that the last terms in Eqgs. (32) and (33)
represent the influence of the virtual-photon processes on
a,(t) and b, , (). If we regard the last terms in Egs. (32)
and (33) as perturbation terms, and define a perturbation
parameter that is the ratio of Rabi frequency to the field
frequency, i.e., gV 7 /20, the a,(t) and b, , ,(¢) are then
in the form of a perturbation series. The zeroth-order
terms in a,(¢) and b, . (t) correspond to the solution
with the RWA, and the terms including g\/ﬁ /20 are
the first-order correction due to energy-nonconserving
terms. We only retain terms up to first order in g /2w, in
a,(t), and in b, (). Then the solutions of a,,(¢), b, . ,(t)
are
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a,(t)=F,(0)[exp(—iy,t)+expliy,t)]/2
+gVnF, _,(0)({exp[i 2o+gVn —1)t]—1} /Qo+gVn —1)

—f{exp[iQu—gV'n —1)t]—1}/Qo—gV'n—1))/2, (34)

b, (()=F,(0)[exp(—iy,t)—expliy,t)]/2
+gV'n +2F, . ,(0)({exp[ —i(2w+gV'n +3)t]—1}/Qow+gV'n +3)
+{exp[—i(Qu—gV'n +3)t]—1}/2w—gV'n+3))/2 . (35)

From Egs. (34) and (35), we can see that gV'n /(20+gV'n —1) and gV'n +2/(20+gV'n +3) remain infinitesimal only
when the radiation field is not intensive: otherwise, the RWA in the JC model is destroyed [29]. For simplicity, we sup-
pose that the terms gV'n /(2otgV'n—1) and gV'n +2/(20+gV'n +3) are not large, so we can use perturbation
theory. Substituting Eqgs. (34) and (35) into Eq. (10), the state vector of the system in the Schrédinger picture is deter-

mined.

As before, the phase-probability distribution for which the field is initially in a coherent state for 77 >>1 is

P(6,t)= A[2m/(s+1)](47 /2m)*{exp( —27ix ) +exp( — 27y ) —exp[ — 7T (x +2)]cos(2t+gVR1gVE /o

+exp[ —n(y +z)]cos(2§—g\/gt)g1/; /w

—2exp[ —A(x +y)]sin[2(wt —&)]sin(2gV AV /0) /2 , (36)

where
x=(t—0—wt+gt/2V7 )2, (37)
y=(—0—awt —gt/2V 7 )7, (38)
z=({—0—wt), (39)
A=1—sin(20)sin(g V7 1)gV 7 exp(—g2t2/8)/o+sin[2(wt —&)sin(2gV A t)gV 7 exp(—g2t2/2) /o . (40)

Here we have neglected the second-order correction due to energy-nonconserving terms, and A is the normalized prob-

ability parameter.

Using Egs. (15) and (16), and (36)—(40), we only retain terms up to first order in g /2w and obtain the time evolution

of the phase operator,

(®)=t—wt +g2 cos(2&)cos(gV 7 t)exp( —g2t2/8) /4w @1)

(81)2

(B?)=(E—wt)*+1/4n +—4——+(gt)2/4n {sin[2(w? —§)]sin(2g1/gt)exp( —g?/2)

n

—sin(28)sin(g V7 )exp(—g2t2/8)}3gV 7 /4w

+(E—awt)gitcos(2E)cos(gV 7 texp(—g 22 /8) /20 . (42)

So the phase fluctuations are

(A®)2=(g1)*/47 {sin[ 2wt — &) ]sin(2g V7 t)exp( —g2t2/2)—sin(2¢ )sin(g V 7 t Jexp( —g 212 /8))

X3gV'7 /4o+(gt)? /47 +1 /47 .

From Eqgs. (41)-(43), we can find that terms of the first
order in g/2 appear in the expectation value of the
phase operator. The appearance of g /2w occurs because
of the role of virtual-photon processes in the state vector.
These terms containing g /2w arise from an interference
between the counterrotating- (virtual-photon processes)
and the rotating-wave (real-photon processes) contribu-
tions. The interference induces small-amplitude fluctua-
tions in the expectation value of the phase operator,

(43)

[

which represent the quantum fluctuations of the atom-
field-coupling system. That is to say, the system without
the RWA can explicitly exhibit the quantum fluctuations
of the system, but these quantum fluctuations are not ex-
hibited in the RWA. The amplitudes of quantum fluctua-
tions are associated with the coupling g, the mean photon
number 7, the resonant frequency w, and the phase angle
£. This means the quantum fluctuations are decided by
the atom-field coupling. This result coincides with the re-
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sult we obtained previously [3]. Comparing Egs. (42) and
(43) with (25), we find that the phase fluctuations are as-
sociated with not only the coupling constant g and the
mean photon number 7, but also the frequency w and the
initial phase §. So the different frequency and the initial
phase of the field induce different fluctuations due to the
effect of the virtual field, even if the coupling constant
and mean photon number are the same. In the RWA, the
conclusion is opposite. That is to say, the phase fluctua-
tions in the JC model without RWA are associated with
not only the intensity properties of the field, but also the
phase properties of the field.

Comparing Eq. (41) with Eq. (20), we find
(d /dt){®)#* —w. This means that the frequency of the
field is shifted. Its value is decided by the property of the
atom-field-coupling system. The cause of the frequency
shift of the field is the interference between the
counterrotating- and the rotating-wave contributions. So
the role of virtual field induces not only the atomic ener-
gy shift [22,25] but also the frequency shift of the field.

3293

IV. CONCLUSIONS

In conclusion, we have studied the time evolution of
the phase operator in the JC model with and without the
RWA. That the atomic Rabi oscillation induces the ini-
tially coherent state of the field to lose its property of
phase-number-minimum uncertainty product is shown.
We have verified that the virtual-photon field is the cause
for quantum fluctuations, and revealed that the frequency
shift of the field is due to the effect of virtual-photon pro-
cesses.
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