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Dynamics of synchronously pumped mode-locked color-center lasers
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Numerical simulations of mode locking in synchronously pumped Tl (1) color-center lasers are
presented. An asymmetric response with respect to cavity mismatch and the origin of large-scale fluc-

tuations in spontaneous-emission noise are described. It is shown that quasistationary pulse trains may
be obtained on cavity tuning without a degradation in pulse quality.

PACS number(s): 42.60.Fc, 42.60.Da, 02.70.+d, 42.25.Bs

I. INTRODUCTION

In lasers with suN[ciently large gain cross sections, such
as dye lasers and color-center lasers, synchronous pump-
ing can be used to generate trains of mode-locked pi-
cosecond pulses [1,2]. The principle of this technique is
the strong periodic modulation of the gain medium by
the output from an actively mode-locked laser and its
main requirement is that the period between pump pulses
is equal, or close, to the round-trip time of the laser cavi-
ty. From a dynamical viewpoint, the principal difference
between the color-center laser and its dye laser counter-
part is that the relaxation time of the color-center medi-
um (t, ) is long, as opposed to short, compared with the
cavity round-trip time (t„).Thus the mode-locking
characteristics of each system are significantly different
[3] and, for instance, it is necessary to pump a color-
center laser many times above threshold to achieve mode
locking [2], whereas a dye laser mode locks more readily.

Until recently most of the theoretical work concerning
mode locking by synchronous pumping has been related
directly to dye lasers. An exception is the analysis of
Yasa [3] which applies to the case t, »t„.In addition,
Kelly, New, and Wood [4] and Kurobiro et al. [5] have
applied a powerful numerical technique developed by
Catherall and New [6] to investigate the mode-locking
characteristics of KC1:Tl (1) and NaC1:(F2+ )H color-
center lasers, respectively. This technique defines a set of
pulse shaping operations per cavity round-trip time.
These operations, which represent gain, spectral filtering,
and a temporal shift, are then applied to an initial pulse
profile which evolves according to the operation parame-
ters. The effect of spontaneous emission is simulated by
the inclusion of an additive noise term. In general, how-
ever, most simulations adopting this technique are
confined to a narrow local time window surrounding the
pump pulse. In addition, phase effects such as gain
dispersion and group-velocity dispersion, which can play
an important role in the generation of ultrashort pulses
[7], are usually neglected in these rate-equation treat-
ments.

In this paper, we study the mode-locking dynamics of a
KC1:Tl (1) color-center laser. We adopt an alternative
approach based on the solution of a simple, traveling-
wave model derived from the Maxwell equations for a

two-level atomic system [8]. We do not restrict the mod-
el to the vicinity of the pump pulse, but simulate the laser
equations over the entire cavity period. There are no
direct assumptions about the longitudinal mode structure
of the laser, the output of which evolves from spon-
taneous-emission noise and is subject to the boundary
conditions imposed at the cavity mirrors. Furthermore,
by retaining the polarization and population terms (non-
rate-equation theory) we include the gain dispersion
effects inherent to a two-level atomic transition. Al-
though computationally intensive, the traveling-wave ap-
proach is well suited to the time domain description of
multimode laser phenomena. In particular, it may yet
provide one of the best methods to numerically simulate
the recently developed coupled cavity systems, such as
the soliton laser [9,10], which utilize nonlinear external
cavities to improve the mode-locking performance of
color-center lasers.

II. MODEL

A detailed derivation of the model we study is given
elsewhere [8], and also briefly outlined in Appendix A to
clarify the scaling used here. We consider a Fabry-Perot
cavity but ignore all higher-order Fourier terms
representing the polarization and population gratings
generated by the counterpropagating fields. Thus the
truncated system of scaled Maxwell-Bloch equations is
given by

aE* aE*
Bz' Bt'

aP,* r,(P,*+E*D,—]+S*, (1)

BD =—I,[D —A (t)—
—,'(E+*P+ +E 'P +c c )], . .t'

where E* represent the slowly varying envelopes of the
forward and backward-going electric fields, Po the
zeroth-order polarization terms associated with these
fields, and Do the population inversion between the two
atomic levels. The longitudinal coordinate has been
scaled to the length of the lasing medium (L) and the
time to L divided by the phase velocity. I

&
and I 2

represent the phenomenological damping constants for
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E (z=z „r)= r, E—+(z=z „r), (2)

where z, and z 2 are the positions of the mirrors form-

ing the Fabry-Perot cavity, comprise our model system.
We note that in the color-center laser under considera-
tion, the length of the lasing medium is approximately
O. l%%uo of the distance between mirrors. The propagation
of radiation in those parts of the laser cavity where no
lasing medium exists is described by Eqs. (1) with all ma-

terial variables discarded.
A number of the simplifying assumptions made in ar-

riving at this model system merit further comment.
Firstly, for the sake of simplicity we have made the crud-
est possible truncation of higher-order Fourier terms, ig-

noring all above the zeroth order. Thus the short-range
spatial variation of the atomic variables, which arises due

to the counterpropagating fields in a Fabry-Perot cavity,
is not described at all by the truncated equations. In cer-
tain cases, it is possible to argue that higher-order terms

may be ignored if, for instance, diffusion washes out the
phase gratings [11]. However, this argument does not ap-

ply to color-center crystals in which the atomic sites are
fixed within the crystal lattice. Exactly how many
Fourier terms are required to accurately represent a

given standing-wave dynamical phenomenon, such as the
mode-locking process studied here, is an open question

[12,13]. To consider the short-range spatial variations at
the crudest possible level one could follow Fleck's lead

and retain only those terms up to first order. However,
for simplicity and to keep the computational burden

within reason (the addition of each Fourier term adds

three equations to the model system) we ignore the
small-scale spatial effects completely.

A second simplifying assumption concerns the simula-

tion of spontaneous-emission noise. This should be a
multiplicative colored noise with a weight determined by
factors such as the inversion lifetime and cavity

geometry, and a Lorentz spectrum of frequency width

equal to the laser linewidth [6,8,14]. Instead we choose
to simulate the source terms S+—as an additive contribu-
tion of fixed amplitude but random, uniformly distributed

phase, such that

—
( t)S—(zi, t, )= A, e (3)

where A, is constant and P+(z , t;) are uniform —dev. iates

on the interval [0,2m ]. We note that the apparent
deficiencies of this-simple treatment may not be as severe

as at first sight, for two reasons: firstly, it has been sho~n
that variation of the magnitude of S+—over several orders

of magnitude has little effect on mode locking by syn-

chronous pumping [6], and secondly, reducing Eqs. (1) to

Do and Po, respectively. The term A (t) is a phenomeno-
logical pumping term which is time dependent and estab-
lishes the population inversion required for lasing. S—
are phenornenological stochastic source terms which
represent fluctuating contributions to I'o, independent of
E—,and simulate the effects of spontaneous emission.
Equations (1) together with the boundary conditions,

E+(z =z, , t) = r, E—(z =z „t),

difference equations, as required for their numerical solu-
tion, defines a spontaneous-emission spectrum which is
indeed Lorentzian [8].

Finally, an important simplification concerns the phe-
nomenological pumping function A (t) W. e presume that
this modulation follows exactly the optical pulse of the
pumping laser and is therefore a train of Gaussian, or
sech (t) functions of the appropriate durations, which act
homogeneously over the axial extent of the lasing medi-

um. Because the optical transit time of the color-center
crystal is short by comparison with the pump-pulse dura-

tion, the second of these assumptions may be acceptable.
However, from a dynamical viewpoint, the first may be
inadequate because the transfer of excited states from the

upper pump level to the lasing transition may occur on a
time scale of the order of, or longer than, the pump pulse.
To take account of this latter effect one would need to ei-

ther add a rate equation to drive the pumping function,
or increase the level structure of the model, neither of
which we undertake in this study.

Given the direct pumping function considered here, it
is straightforward to show that the continuous pumping
level required to raise the gain sufficiently to overcome
the losses at the mirrors is given by

A )A„„=—,'ln
T) 7'2

(4)

We are primarily interested in the generation of popula-
tion inversion by trains of pump pulses of short duration

compared with the inversion lifetime. In this case, good
estimates of the lasing thresholds can be made by treating
the pump pulses as 5 functions and simply integrating
over their areas. For a single Gaussian pulse,

2 2—41n2t /tFWHM (5)A (t)= A,„e
of full width at half maximum, tFwHM, the amplitude re-

quired to reach lasing threshold is given by
1/2

ln2 1
(6)

~i ~2 tFWHM

( A,„),„,=2
1/2

tp ~ con
tFWHM

(8)

is considerably higher than the cw pump threshold, but
greatly reduced with respect to the single-pulse threshold.
However, to achieve mode locking by synchronous
pumping it is necessary to strongly modulate the gain

[2,4] and therefore to pump the system at many times las-

where t
~
))t„wHM so that ( A,„),h, ))A„„,as expected.

For trains of pulses separated by interval t, where

))tp ))t FTHM this amplitude is reduced by the factor

t&

t
1 —e ' ' p

Therefore the threshold amplitude for a train of Gaussian

pump pulses satisfying the above criteria and given ap-

proximately by
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ing threshold. It is convenient, therefore, to use the
single-pulse threshold ( A,„),i„defined in (6} as a mea-

sure of pumping strength, moreover, since it provides a
clear picture of the depth of gain modulation produced
by each pump pulse. For the KC1:Tl (1) color-center
laser parameters given below in Table I (t, =1.6 ps,
t~=10 ns} a pumping strength of 1.0(A,„),h, corre-
sponds to 160X above lasing threshold. Thus, in order
to significantly modulate the gain, by say tens of percent,
it is necessary to pump tens of times above first lasing
threshold. Experimentally, factors of approximately
10X are needed for acceptable mode locking [2], whereas
the theoretical results using the pulse shaping operation
approach [4] indicate a factor of around 100X. To deter-
mine accurately the mode-locking threshold using the ap-
proach presented here is computationally time consum-
ing because the laser dynamics become increasingly slow
near the threshold. Nevertheless, our few low pump
power calculations indicate that the mode-locking thresh-
old for system (1) lies below 16X lasing threshold, as de-
scribed further below.

To consider mismatches between the round-trip time of
the laser cavity (t„)and the pump period (t ) we keep
the laser cavity length fixed and vary t~. In this way,
mismatch times (t =t„t) and—variations of fractional
values of b, t (the time step of our numerical scheme) can
be simulated because a train of Gaussian functions of
periodicity t =(k +i /j )b t, where i, j, and k are integers,
is easily generated on a numerical grid of time step Lt. In
contrast, t„canbe varied by only integer multiples of ht,
because the discretized cavity length comprises an integer
number of spatial zones, each corresponding to a propa-
gation time of b t.

To enable wavelength tuning and to limit the spectral
bandwidth most color-center laser cavities include a
Fabry-Perot etalon, which can be modeled as a spectral
filtering element [4,5]. The spectral bandwidth of our
model system is controlled solely by the linewidth of the
laser transition. (We note that on a numerical grid of
temporal spacing ht, the spectral bandwidth is limited by
the Nyquist frequency ll2ht. ) An additional filter could
be readily introduced without a significant computational
overhead because spectral filtering in the time domain

7l

f2

A,
tp

~FWHM

1.5 m
1.5 mm
1.0
v'0. S
3.0X 10' cm
2.0X10 ' cm
1.47
1.6 ps
2 ps
10X10
=10 ns
80 ps

TABLE I. Parameter values used for computations. t2 is a
compromise value; A, is chosen arbitrarily (see body of text).

Parameter

can be performed by accurate and eScient algorithms

[6,15]. However, since the gain bandwidth our model can
consider is limited by the inverse of ht to values compa-
rable to that of a typical bandwidth limiting etalon, as
discussed below, we have no need of an additional filter

and instead utilize the entire bandwidth available.
To solve our model system (see Appendix B},the par-

tial difFerential equations (1) were reduced to finite

difference form using a second-order scheme based on the
method of characteristics, due to Fleck [8]. The five re-

sulting implicit difference equations were then iterated
using the explicit scheme suggested by Fleck and based
on linearly extrapolating the inversion variables from two

previous integration cycles. To check the validity of
these results a second solution method using a Newton-

like iteration loop to solve the implicit difference equa-

tions was also developed. Because this latter implicit
scheme was computationally between five and ten times

more expensive than the explicit method, it was used rel-

atively sparingly, in which cases agreement between the
two schemes was confirmed to be good.

The accurate reduction of Eqs. (1) to finite diff'erence

form requires the discretization time interval ht to be
smaller than the shortest time constant, which is t2, the
polarization relaxation time. Thus in all calculations de-
scribed below an upper limit of approximately t2I4 was

set on b, t. Since the color-center bandwidth

1
hvb =

7rf2

is extremely large (i.e., multi-THz} and the color-center
medium is short (1-2 mm}, with a transit time of a few

ps, it is necessary to use very small values of ht with
respect to the cavity round-trip time. Therefore, in a typ-
ical calculation described below, each cavity round-trip
corresponds to approximately 20000 integration cycles.
Furthermore, because the pulse dynamics evolve over
hundreds of round-trips, many of our computations
stretch to multimillion cycles and hence our previous
concern with simplifying the Fabry-Perot model.

III. NUMERICAL RESULTS

The Fabry-Perot geometry we consider is shown in
Fig. 1. The parameter values for a typical KC1:Tl (1)
color center are given in Table I. The lasing medium is
placed —,

' of the way from the output coupler and divides
the cavity into three zones. Equations (1) describe the in-
teraction within the central zone. Either side, the propa-
gation of radiation in free space is managed by an array-
pointer system which returns the outgoing electric fields
to the medium, subject to re6ection from one of the mir-
rors and the appropriate time delay. Unfortunately, be-
cause of computational power restrictions, it is not possi-
ble to solve the model for values of the dephasing time t2,
corresponding to the ful} multi-THz bandwidth of the
color-center medium. The value of t2 suggested by the
color-center bandwidth of 650 cm ' is of the order of 15
fs, which is clearly impractical for our numerical scheme.
However, since this enormous bandwidth is usually limit-
ed, in both experimental and model systems, by filters of
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1, 5mrn

FIG. 1. Schematic diagram of the color-center laser cavity
under consideration. The cavity is 1.5 m long and the 1.5-mm
color-center medium is placed —' of the way from the output

coupler. The left-hand mirror is perfectly rejecting and the
output coupler has an intensity refiection coeScient of 0.8. The
forward (+ve) direction is defined from left to right.

= 1 THz bandwidth (filter times of between 0.8 and 0.1 ps
were used in [4,5]), we can increase tz to consider a simi-

larly bandwidth-limited system, but with this 1imitation
imposed solely by the lasing transition. Therefore, in the
calculations described here, we choose tz=2 ps and aim
for a good qualitative representation of the mode-locking
process. Since the axial mode spacing of a 1.5-m Fabry-
Perot geometry is 100 MHz and t2=2 ps corresponds to
a gain bandwidth of approximately 160 GHz, we are
nonetheless considering in excess of 1500 longitudinal
modes under the gain line.

We divide the 1.5-mm-long lasing medium into (n, —1)
spatial zones defined by n, points and the empty regions

to the left and right into ni and n„zones, represented by

nI and n, points, respectively. This corresponds to an in-

tegration time of bt =(gL/c)/(n, —1) and an optical
round-trip time of t„=2(n,+n&+ n„—1)b t. Given

t2 =2 ps, we choose n, =15 for the majority of our calcu-

1ations, so that Et=0.525 ps. %'ith the empty regions

defined by nI =7136 and n, =2378, the optical round-trip

time is 10.0044 ns, requiring a total of 19056 iterations.
The early part of the evolution of the mode-locked

laser pulse from noise is shown in Figs. 2(a) —2(f). In
these and all subsequent figures, the intracavity forward-
going field intensity at the right-hand boundary of the
lasing medium is plotted as a function of local time t„„
defined to be zero at the peak of the pumping function.
This representation provides a clearer picture of the rela-
tive timings of events within the lasing medium than the
laser output, which can be easily inferred since it is sim-

ply proportional to the displayed quantity and delayed by
the transit time from the medium to the output coupler.
Superimposed on these intensity profiles are the corre-
sponding variations of the inversion variable, Do, mea-
sured at the same point in the lasing medium. Scaled
units are used in all figures. We reca11 that one scaled
time unit corresponds to the medium transit time of 7.35
ps and that therefore one cavity round-trip corresponds
to approximately 1361 local time units. Thus each indivi-
dual picture of Fig. 2 represents the pulse evolution over
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FIG. 2. Early evolution of the mode-locked pulse train. The forward-going field intensity tI&+(n, )l'l and inv«»on [Do(n, )}at

the right-hand boundary of the medium are plotted as functions of the local time over one round-trip period after (a) 1o, (b) 2o, (c) 40.

(d) 80, (e) 150, and (f) 300 round-trips. Note the change of scales in each figure.
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a single cavity round-trip, with the pump pulse centered
on zero local time. The intracavity intensity in these and

all subsequent figures is measured in units of 2.05
kW/cm (see Appendix A), —,

' of which is transmitted

through the output coupler.
For the computation depicted in Fig. 2 the pump-pulse

amplitude was chosen to be 0.5(A,„),b, (80X lasing
threshold) and its periodicity (or transit time) t to exact-
ly equal the round-trip time t~. The spontaneous-
emission amplitude was chosen quite arbitrarily to be
A, =10, in the knowledge that the resulting noise in-

tensity (of order A, ) would be much smaller than pulsed
intensity (at least of order 1). In each of Figs. 2(a) —2(f)
the pump induced modulation of the gain is reflected in
the rapid rise of the inversion at zero local time. Because
of the strong pumping, the inversion is raised rapidly
above threshold while initially the fields remain small, as
shown in Fig. 2(a}. At this stage, the field intensity is be-
ginning to rise above the spontaneous-emission noise lev-

el but its form is still that of ampli6ed noise. From this
point on [Figs. 2(b) and 2(c)] the fields undergo rapid non-
linear arnplification which ultimately has two effects.
Firstly, the fields grow large enough to begin to deplete
the inversion significantly and it is swiftly reduced to the
near-threshold region. This rapid reduction and the asso-
ciated giant pulse envelope is reminiscent of Q switching
and occurs because the relatively long t, allows the inver-
sion to build up more rapidly than the fields. We note
that at its peak, the inversion is approximately 12 times
above lasing threshold. However, since the lasing thresh-
old is given by Do= 0.0558, which corresponds to only
1.24%%uo of the active atom density, it is not an unphysical-
ly large figure. Secondly, a pulse selection process takes
place, evidence of which is apparent after 20 round-trips
[Fig. 2(b)] and obvious after 40 [Fig. 2(c)]. As this
proceeds, the field intensity, which is initially aperiodic,
begins to develop similarities from round-trip to round-
trip.

The latter stages of the mode-locked pulse selection
process are shown after 80, 150, and 300 round-trips in
Figs. 2(d) —2(f), where the gradual temporal smoothing of
the cavity fields as a result of their ampli6cation is evi-
dent. It is clear that those sections of the cavity fields,
both forward and backward, which are about to enter the
lasing medium as the pumping pulse acts on it, receive
preferential gain because they are subject to amplification
by the maximum inversion in any given round-trip. In
Fig. 2 these preferred forward-going features are those at
t&„=0,while the associated backward-going features
show up in the forward field at t„,= —t„!4because the
fields are folded back on themselves at the mirror boun-
daries (propagation from the medium to the output
coupler and back takes time t„l4). Figures 2(d) —2(f)
show the forward-going features being enhanced at the
expense of the backward, so that ultimately the mode-
locked pulse forms at the tail of the pumping pulse. A
simple explanation for this effect is that although both
forward and backward features undergo a simultaneous
first amplification during any one round-trip period, the
forward feature returns to the medium (now traveling in
the backward direction) before the backward (then travel-

ing in the forward direction), and is therefore subject to a
preferential second amplification. We note that once the
mode-locked pulse is formed, as in Fig. 2(f), the cavity
acts essentially unidirectionally with the pulse moving to
and fro through the amplifying medium. Thus the
second rapid downward gradient of Fig. 2(fl corresponds
to the amplification of the pulse as it moves in the back-
ward direction.

The detailed pulse evolution within a narrow local time
window in the vicinity of the pump pulse is shown in Fig.
3. The mode-locked pulse does not evolve as a single
maximum as suggested by Figs. 2, but rather the maxima
which emerge at the tail of the pump pulse are delayed
slowly with respect to it (i.e., they propagate to the right
in the local time frame}, reach maximum amplitudes
themselves, and then decay, giving way to other maxima
ahead of them. This rightward motion reflects the
group-velocity-induced time delay of the propagating
mode-locked pulse with respect to the pump pulse whose
periodicity is fixed by t =t„to the round-trip time of un-

dispersed light within the cavity. Thus there is an
e+ectiue mismatch between t~ and the round-trip time of
the mode-locked pulse, which arises from the 6nite polar-
ization response time of the color-center medium. In
essence this is analogous to the effective mismatch dis-
cussed by Catherall and New [6] which in their case
arises from the group time delay imposed by a spectral
filtering operation. However, whereas in their case it is
possible to select zero effective mismatch by choosing ap-
propriate values of t and the filter response time, the
effective mismatch in our case is unknown a priori be-
cause the group-velocity time delay depends on the actual
form of the mode-locked pulse.

After 500 (pump-pulse) transits the mode-locked pulse

go

FIG. 3. Pulse profile evolutions [ ~E+(nz)i~ ] over the first 500
transits displayed at 25 transit intervals. The pump pulse,
which is centered at tl, =0, is approximately 11 local time units
wide (FTHM). Because t~ =t„,the pump-pulse transit number
also corresponds to the cavity round-trip number, which is not
true generally.
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consists of a main maximum of width 21 ps (FWHM)
with a small trailing satellite and is situated at the tail of
the pump pulse (see Fig. 4). Beyond this point the pulse
evolution changes as shown in Fig. 5. After the main
pulse grows and its trailing satellite diminishes, it no
longer decays in favor of another leading satellite, but
remains a robust single maximum and is gradually de-

layed with respect to the pump pulse. Over the following
3000 transits the pulse remains single humped, with a
slowly varying height and width. Figure 6 summarizes
the evolution of the pulse peak intensity and position as a
function of transit number. The slight reduction in inten-

sity after approximately 2000 transits is associated with a
perturbative event (these are discussed in detail below)
However, the rightward traversal rate is almost constant
throughout this phase and corresponds to a delay of ap-
proximately —,', ps per round-trip. The final phase of the

pulse evolution ensues when this traversal is complete
after approximately 3500 transits as shown at the top of
Fig. 5 and in Fig. 6. Beyond this point, the pulse suffers a
loss in intensity, broadens slightly, and oscillates aperiod-
ically in a position delayed approximately 380 ps from
the pump pulse.

The detailed behavior of the pulse in its final evolution
stage is shown in Fig. 7 (its position with respect to the
pump is illustrated in Fig. 4). Exactly why the pulse
chooses this particular delay is difficult to explain. How-
ever, it is clear that this delay must balance two opposing
influences, on the one hand, the polarization-induced
group time delay driving the pulse to the right, and on
the other, the preferential gain experienced by the leading
edge of the pulse, which arises since there is significant
gain depletion by each amplifying pass, and tends to
move the pulse to the left. By repeating our simulations
with different seeds for the random number generator, we
verified that although the ultimate pulse dynamics are a
sensitive function of the seed, its mean position in local
time is unchanged. Moreover, the transient behavior is
similar in all cases, with the initial pulse buildup in the
vicinity of the pump pulse, followed by a translation, and
then some form of oscillation, or jitter. To verify that
this jitter is sustained, the first computation was contin-
ued to over 20000 transits during which time it showed

Oi

w

6g

FIG. 5. Pulse profile evolutions from 500 to 5000 transits at
250 transit intervals. The intermediate translational movement

corresponds to a delay of approximately ~p ps per transit.

no signs of attenuation. The mechanism of these sus-
tained perturbations is certainly driven by the spon-
taneous-emission terms. In a further computation, the ad-
dition of these terms was inhibited after 6300 transits
(i.e., well into the final phase) which resulted in a decay of
the oscillation and a return to translational behavior.
The subsequent reintroduction of the noise returned the
oscillation to its original temporal position but with a
different form to the original.

Given the association of these fluctuations in the pulse
shape with the spontaneous-emission noise, it is possible
to apply the same argument as Catherall and New [6] to
explain their origin in the different velocities of the pulse
envelope and the background noise of nonzero effective
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FIG 6 Variation of (a) the maximum pulse intensity and (b)

its delay with respect to the pump pulse vs pump-pulse transit

number. The simultaneous discontinuities in both functions

correspond to positions in which one maximum of the pulse

exceeds another.
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FIG. 7. Pulse profile evolutions in the final phase, displayed
from 6300 to 7300 transits at 50 transit intervals.

mismatch. Thus these large-scale fluctuations arise from
the amplitude and phase variations in the background
noise which are amplified during translation through the
pulse. Moreover, the second suggestion of Catherall and
New [6], that it may be possible to correlate fluctuations
in these systems with phase waves of the kind discussed in
the context of swept gain amplifiers by Hopf and Over-
man [16],does seem to be valid here. Figure 8 shows the
intensity and phase profiles along the pulse during three
round-trips during the perturbative event at the front of
Fig. 7. With each round-trip the phase curve moves
slowly backward in local time, sweeping through the
pulse as it does so. The perturbation, which rapidly ac-
celerates the pulse to shift it forward in local time, is
clearly correlated with the passage of the positive gra-
dient portions of the phase. This itself is a signature of
the electric field and polarization phases acquiring a
significant nonzero phase angle [16]. During the
remainder of the cycle the pulse is delayed relatively
slowly until the process repeats again with the next rever-
sal of the phase gradient. In common with the fluctua-
tions described by Hopf and Overman, which are identi-
cal upon variation of the initial polarization by a factor of
100, these fluctuations appear relatively insensitive to the
amplitude of the spontaneous-emission noise, which is, of
course, applied continuously in this case. However, un-
like the fluctuations described in [16] which vary pulse
power and energy, those described here are fluctuations
of power only. Although the peak power and pulse width
vary by up to 60%%uo in Fig. 6, the pulse energy remains
constant to better than 0.01%.

To investigate the effect of mismatch we first increased
the period of the pump laser in an attempt to match the
polarization-induced group-velocity time delay and there-
by eliminate the above-described jitter. The rate of
translation of —„psin Fig. 5 provided a guide for trial
mismatch values and evolutions corresponding to
mismatches (defined as t =t„t) of bt/2, b t/3, — — —
—ht/4, —ht/5, —ht/6, —ht/8, and —ht/10 were
studied. The best results from this set were obtained for

t = —ht/4, for which Fig. 9 describes the evolution of
the pulse peak intensity and delay. Both parameters are
seen to be varying very slowly during the latter stages of
this figure, indicating a near-stable pulse approaching an
equilibrium position. The pulse evolutions of Fig. 10
confirm this supposition. These near-optimum, quasista-
tionary (strictly speaking, solutions to stochastic
differential equations cannot be stationary) pulses have
peak intensities of 51 MW/cm, widths of 16 ps, and are
positioned at the tails of the pump pulses. Recalling that

of the intracavity intensity is output coupled and

presuming a spot size of coo=20 pm at the crystal, the in-
tegrated pulse areas give output pulse energies of approx-
imately 2.2 nJ per pulse. There appear to be no noise-
mediated perturbations in this case, presumably because
the relative velocities of the mode-locked pulse and the
background noise are equal. Furthermore, there is al-
most negligible variation of the phase of the electric field
along the pulse, as shown in Fig. 11. The pulse intensity
in this figure is plotted on a natural logarithm scale to
emphasize its smooth nature and to show there are no
perturbations in its wings. The linearity of the wings in-
dicates that it can be well fitted to a sech (t/t ) shape
with different t describing the rising and falling edges,
since these clearly have different slopes. It compares
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FIG. 8. Pulse profile evolutions together with variations of
the field phase after (a) 6300, (b) 6440, and (c) 6550 transits. The
phase wave moves slowly through the pulse profile, whose dis-

tortion and acceleration are correlated with the passage of the

positive gradient of the phase.
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and (c) t = —ht/2.

the noise-induced perturbations through the pulse in-
creases with t ). Thus the same type of response extends
over a range of approximately At/5 &—t &2ht, within
which the mode-locked pulse can be far removed from
the pump pulse, and delayed by as much as 2 ns when
t =2ht.

In the above discussion, t has been measured in units
of ht, because for our calculations the mismatch is most
conveniently generated in fractional values of the discret-
ization interval. However, in terms of the laser system
under study, ht is meaningless of course, and the relevant
physical quantity is the polarization decay time t2
( =46,t ). To verify that this is indeed the case, we repeat-
ed a number of calculations with n, =22, i.e., ht
~2/3ht These sh.owed a rightward traversal and subse-
quent oscillation for t ) —t2/18, in agreement with Fig.
14 above. In addition, equivalent calculations to those
generating quasistationary solutions in Fig. 14 gave stable
pulses with the same characteristics (to better than 5%).

Thus far, we have described two regions of mode-
locking behavior on variation of cavity mismatch: a rela-

FIG. 15. Variation of the average peak pulse delay with
mismatch, t

tively narrow region of quasistationary pulses bounded at
high t by the optimum pulse shape, and a wider region
of nonstationary pulses for t greater than optimum.
Strictly speaking only the stationary pulses of the nar-
rower region can be described as truly mode locked, but
nevertheless, many of those nearby within the wider re-
gion are also well localized in time and space, and may be
of greater peak intensity and shorter (on average) than
some stationary ones. For instance, all the nonstationary
pulses described in Fig. 14 are shorter than the stationary
pulse for t = b, t/2. In —addition, they are predom-
inantly single peaked. However, as t is increased within
the wider region, mode locking gradually breaks down.
Figure 16 shows the final stage of pulse evolution for
t =26,t. Although still apparently localized in time, the
pulse form now consists of multiple maxima, evolving rel-
atively quickly as the noise-induced perturbations are
swept backward in local time through it. In addition, the
logarithmic plot of Fig. 17(a) shows that a substantial
fraction of the cavity Geld is above the spontaneous-
emission noise level, as compared to the optimally mode-
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FIG. 14. Variation of average peak pulse intensities (~ ) and
pulse widths ( + ) with mismatch, t . The three leftmost points
correspond to stationary pulses. The remaining nonstationary
pulses are obtained from averages over thousands of transit
periods, during the final pulse evolution stage.
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FIG. 16. Pulse profile evolutions displayed from 5000 to 5400
transits at 20 transit intervals for t =2ht.
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locked case [Fig. 17(b)] for which the coherent part of the
cavity field comprises but a few percent. With still fur-
ther increase in t, the pulse form loses its positional sta-
bility in local time and begins to zigzag about a position
corresponding to t&„=t/4 as shown in Fig. 18. Thus
the loss of mode locking to positive mismatch may be re-
garded as a gradual process in which the ever increasing
sweep rate of the perturbations through the pulse struc-
ture causes increasing disruptions eventually leading to
complete breakdown.

In contrast, as t is decreased from optimum, the
breakdown in mode locking occurs via a different mecha-
nism. Firstly, as the stationary pulse broadens, there is a
rapid broadening of the coherent background, so that for
t = —At /2 the background noise occupies barely half of
the intracavity field. Then, as t is further decreased the
pulse loses stability and begins to switch between two
temporal positions, t&„=0and —t /4, as shown in Fig.
19 for t = —ht. As described earlier in Fig. 2, the latter
position corresponds to the amplification of a pulse trav-
eling in the backward, rather than forward direction, on
arrival of the pump pulse. The frequency and form of the
switches is random, and although the greatest pulses still
occur in the vicinity of t&, =0, a large fraction of the
pulse energy is periodically switched to the earlier oc-
currence time. In the laser output, this action manifests
itself as an interruption of a train of single pulses per cav-
ity round-trip, with a train of double pulses per round-
trip, separated by —,

' of the round-trip time.
The origin of the switching behavior is the forward

&oo
C'~y (./~

FIG. 18. Pulse profile evolutions displayed from 11000 to
15 000 transits at 200 transit intervals for t =4ht.

drift (right to left in Fig. 19) of both the main pulse struc-
ture and the perturbations caused by the negative
mismatch. As for positive mismatch, this dictates the
continual reshaping of the pulse structure, though it now
occurs in the opposite direction. However, more impor-
tantly, in the vicinity of t&„=0,the leading edge must be
diminished as it drifts forward of the pump pulse to posi-
tions where it experiences negative gain. It is as this pro-
cess occurs that the simultaneous backward-going field
may experience preferential gain and briefly overcome
the forward-going Geld to yield the switching action.
With further decrease in negative mismatch, the switch-

/ ?
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/~c ] /~~

FIG. 19. Pulse profile evolutions displayed from 19000 to
29000 transits at 200 transit intervals for t = —ht.
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ing behavior becomes less distinct and the pulse form is
less strongly restricted to the two preferred positions, as
shown in Fig. 20 for t = —4ht. In addition, the field no
longer falls to spontaneous-emission noise level during
any part of the cavity round-trip, indicating the complete
collapse of mode locking.

In the above, we have concentrated on the effects of
cavity mismatch because variation of this critical param-
eter, which must be possible in any experimental system,
gives a wide range of dynamical responses. To complete
our discussion, we briefly consider the lesser effects of
pump-pulse amplitude and duration, and spontaneous-
emission amp1itude. For the first of these, we used the
same parameters as above, set t =0, and varied A

from 0.1 to 1.0( A,„),h, . In each case, the behavior was
qualitatively identical to that detailed above for
0.5(A,„),z„resulting in slowly oscillating mode-locked
pulses. The average parameters describing these pulses
varied as follows: peak intensity ~ A,„,pulse duration
~ 1 iA,„,and delay ~ 1/A,„.A slight deviation from
these laws was apparent for lower pump powers, prob-
ably due to the proximity of the mode-locking threshold.
However, an exact determination of the threshold was
not possible, because the pulse evolution slowed with de-
crease in pump power, taking in excess of 20000 transits
for A,„=0.1(A,„),„,. This latter figure indicates an

upper limit for the mode-locking threshold, which corre-
sponds to a modulation depth of 10% of lasing threshold,
and a cumulative pump rate 16 times above first lasing
threshold, in reasonable agreement with experiment [2].

To consider the effects of pump-pulse duration, we re-
turned to the original parameter values and varied tFwHM
from 70 to 140 ps, keeping the total pump energy (prod-
uct A,„tpwHM }constant. The resulting pulse evolutions
showed little variation. Although the ultimate oscillatory
behavior became slightly more erratic with increase in

tFwHM, the average parameters describing these pulses
varied by less than 10%. This weak dependence probably
arises because for these examples in which t =0 (see Fig.

4} the mode-locked pulse is remote from the pump pulse.
A stronger dependence, such as that described in [5],
would be expected if the mismatch was adjusted to bring
the mode-locked pulse forward to directly interact with
the gain modulation. Lastly, on the subject of pump-
pulse shape, we note the almost negligible difference be-
tween pulse evolutions driven by Gaussian or sech (t)
pulses of the same energies.

Finally, we return briefly to the source of the large-
scale fluctuations described in this paper, i.e., the
spontaneous-emission noise, the emphasize their very
weak dependence on the noise amplitude. Variation of
A, over four orders of magnitude from 10 to 10
showed pulse evolutions with final oscillations becoming
slightly more erratic with increase in A„but with negli-

gible variation in the average peak pulse powers and
durations. A weak dependence was noted, however, in
the pulse delay which increased from approximately 310
to 450 ps on decrease of A, over this range.

IV. CONCLUSIONS

In this paper, we have presented a simple model based
on traveling-wave equations to study the mode-locking
dynamics of color-center lasers. Our computationally in-
tensive approach differs from most others in its simula-
tion of the mode-locking process using a one-dimensional
partial differential equation, defined throughout the laser
cavity. We have confirmed that fluctuations originating
from spontaneous-emission noise, far out in the pulse
wings, cause large-scale perturbations to the pulse
profiles, and have established that these are indeed associ-
ated with phase waves [16] as suggested in [6]. However,
unlike previous studies, we have shown that it is possible
to minimize these perturbations by adjusting cavity
mismatch, without destroying pulse quality, and thereby
obtain an optimized, quasistationary, mode-locked pulse
train. Such pulse trains were observed in a narrow win-
dow of mismatch values, within which their peak intensi-
ties and durations were seen to vary substantially. On
further mismatch adjustment, the familiar asymmetric
response characteristic of mode locking by synchronous
pumping was obtained; however, to positive mismatch,
the mode-locked pulses were established remote from the
pump pulses, with a relatively slow decay in their quality,
whereas to negative mismatch, a novel switching behav-
ior, associated with the Fabry-Perot geometry, was ob-
tained.
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APPENDIX A
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FIG. 20. Pulse profile evolutions displayed from 11000 to
15000 transits at 200 transit intervals for t = —4ht.

To demonstrate the scaling of our equations, we begin
with the two-level Maxwell-Bloch equations for a materi-
al subject to counterpropagating electric fields of the
same carrier frequency (co),
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+ c BE BE —scoNp
az Bt ge

ap+ = —y2p++ (E+n +e n +, ) (q 0),2'
B

q y2—pq + (e nq'+e+nq*+, ) (q 0},
2A

anq
y—, n + (e+'p++e *p,—e p

"—e+p *,} (q&0),
Bt

Bno = —yi(no no—)+ (e+'po++e 'po —c.c. ) .
at

(A 1)

These equations are derived by the usual method of semiclassical laser theory, by coupling Maxwell's wave equation of
the electric field with the two-level density matrix equations and requiring the resulting set to be self-consistent. Thus
we have assumed plane-wave solutions of the form

+ i(,cot —kz)+ — i(cot+kz)+c
~ ~ J

p ~ ~ (
+ i (cot —kz) —2iqkz+ — i (cot + kz) +2iqkz+

q=0
(A2)

n =no+ g (n e 'q"'+c. c),
q=1

where e+—, p*, and n are the slowly varying envelopes of the forward and backward fields, off-diagonal matrix elements,
and difference in diagonal matrix elements (n =p22 —p, i). yi (1/ti ) and y2 (1/t2) are the phenomenological damping
constants for n and p, which are taken to be equal for all Fourier components. N is the density of atoms and p is the
modulus of the transition dipole moment strength. g and e are the material refractive index and permittivity. The term
n o in the zeroth-order equation for n is a phenomenological pumping term.

There are, of course, many ways to scale these equations. Firstly, we write,
' 1/2

)(/2 ' (A3}

to give

c aE+- aE+-+— + = —gp*
()z ()t

apq = —y2(pq++E+nq+E nq+, ) (q 0),
at

a
q = —y, (p +E n,'+E+n'+, ) (q &0),

at

Bn = —y) [nq '(E+"p++E——p i +E p «+E+p «i )] (q & 0),

(A4)

Bno = —y, [(no no) —
—,'(—E+'po +E *po +c.c.)],

where

culV p
2geky2

is the unsaturated gain constant per unit time. It is related to the cross section for stimulated emission (o ) by

c No
2

(A5)

(A6)

This scaled system is tidy because all terms of each of the material equations are multiplied by the same damping con-

stant. However, we can do a little more. Following the standard approach when dealing with partial differential equa-

tions on a finite interval, we scale the longitudinal coordinate to the length of the laser medium (L) and the time to l.
divided by the phase velocity (c/2) ),
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Z, C
Z L' gL

Introducing

gL
~L.2=

c

and

(A8)

(A9)

we further simplify the system by combining the gain and pump quantities to yield a single pump parameter. The fol-

lowing set of nonlinear, coupled partial differential equations is then in a form suitable for numerical solution and pro-
vides the basis for our investigations,

BE BE+-
0

dp,+ = —I (P++E+D +E D, ) (q)0),Bt'

Ba, = —I (P +E D +E+D, ) (q)0),Bt'

D = —I [D '(E+—'P—++E 'P: +E P '+E+P ' )] ( )0)t'

Do = —I,[(D —A) —
—,'(E+'P+ +E 'P +c.c. )],

(A10)

where

r, =(qL/c)), , r, =(q L/)cy, . (Al 1)

S+= ,'ec
I

e+
I

(—W/m ), (A12)

for the positive traveling field. Applying the above scal-
ing gives

To obtain Eqs. (1) we add the phenomenological source
terms representing spontaneous emission S—+ to the
right-hand sides of the equations for Po, let A —+ A (r),
and truncate this infinite system, retaining only terms for
q=0 (higher level truncations can be similarly obtained).

The average power per unit area carried in the direc-
tion of propagation is given by the Poynting vector,
which for the harmonic fields assumed above is

and

t
E+n+ I E+n — (P+n 1+P+nj j-l 2 Oj Oj —1 (B1)

P+"+'=C P+" I (A E+"D—" +8 E+"+'D"+')
Oj 2 Oj 2 2 j Oj 2 j Oj

-y+n+1
+A, e (B2)

where
—r sf'

C2=e

backward-going electric fields. To numerically solve
these equations we applied the second-order, finite
difference scheme of Fleck [8] to obtain a system of five

implicit difference equations. Examples of the two types
of resulting equations, for E+ and Po+, are given by

S+= IE+I (W/m )20.t,
(A13) 1 1 -r,a~ -r,~~32= , (1—e '

) —e2 r2 r2b, t' (B3)

in terms of the scaled electric field. Similarly, one can ob-
tain the energy in a given pulse from

E~ = I IE+(z', t')I dt' (J/m ) .
20 t l c Pulse

of which the fraction (1—rz ) is output coupled.

(A14)

APPENDIX B

Equations (1) are a pair of advective partial differential
equations coupled through their source terms to a set of
stochastic, ordinary differential equations. Thus the lon-
gitudinal variation of the medium variables is mediated
only through the propagation of the forward- and

1 1 —I zhf'B~= 1—,(1—e '
)r, rat'

D".+' =2D" —D".
Oj Oj Oj (B4)

and n and j are the time and longitudinal grid point in-
dices, respectively. The coefficients (C&, A &,B &

) for
differencing the popu1ation difference equation are given
by C2, A2, and 82 with I 2 I,.

To solve the implicit difference equations we used ei-
ther the explicit method suggested by Fleck [8] or a sim-
ple Newton iteration. In the former scheme, the forward
extrapolated variables,
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were substituted into the equations for the fields and po-
larizations, which were solved simultaneously for E*-"+'.
The E*-"+' were then substituted back into the original
polarization and inversion equations (without forward ex-
trapolation) to obtain Po-"+' and Do+' I.n the latter
scheme, the Newton iteration was performed on a system
of equations of the form

e" +'=. A '(vj". +')[8(u,". , u", , uj". +, )+C(v,"+')], (B5)

iterated variables which converges to u"+', A is a 5X5

matrix, and 8 and C are 5-vectors. Starting with a set of
initial guesses for v -, this system is iterated until the devi-
ations from the true solutions, e"+'=u". +' —u"-, are
suf5ciently small. The random number generator used in
each scheme was the routine RAN1 from Ref. [15].

A computation of 500 transit times for the discretiza-
tion described above takes approximately 11 000 CPU
seconds on an Intel i860 using the explicit scheme. The
equivalent computation is between five and ten times as
expensive using the implicit scheme, depending on the re-
quired accuracy. %e note that for any given set of pa-
rameter values the computation time varies as I/b t .
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