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Stochastic models for light-scattering noise in nonlinear optical Kerr media
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Thermal light-scattering fluctuations are examined as a fundamental noise source inherent in non-
linear optical processes involving Kerr and artificial Kerr media. Stochastic models are introduced to
simulate noise in optical phase conjugation via degenerate four-wave mixing, and in signal amplification
via nondegenerate two-wave-mixing processes. Significant noise fluctuations in the amplitude and phase
components of the processed signals are shown to occur even with incident signal powers in the milliwatt
range. For time-dependent processes, including nondegenerate two-wave mixing, the fluctuation-
dissipation theorem is shown to generalize a previously derived static susceptibility relation between
light-scattering and nonlinear optical response to media exhibiting both power dissipation and nonlocal
interaction.

PACS number(s): 42.50.Lc, 42.65.Hw

I. INTRODUCTION

Most treatments of optical phase conjugation and
two-wave mixing do not address the role of noise; others
include quantum noise in the incoming electromagnetic
fields, but neglect temperature-dependent noise arising
from fluctuations inherent in the nonlinear medium itself.
Such fluctuations are important to consider to the extent
that they reduce the fidelity of an optical signal by giving
rise to scattered light.

During the past several years we have undertaken stud-
ies of light-scattering noise for cw nonlinear optical pro-
cesses utilizing Kerr and artificial Kerr media [1—4] and
for similar processes utilizing the photorefractive effect
[5]. In the former case, a fundamental connection be-
tween light scattering fluctuations 5e in the medium and
the nonlinear dielectric constant e2 was derived in the
form of a static susceptibility relation [2] and was applied
to a study of light-scattering noise in the phase conjugate
signal obtained through degenerate four-wave mixing [3].
Time-averaged noise powers were determined and found
to be of order kTv, where k is the Boltzmann constant, T
is temperature, and v is the optical frequency. At room
temperature and visible wavelengths, kTv is in the mi-
crowatt range. The static susceptibility relation between
e2 and 5e was extended in a more recent paper and ap-
plied to four-wave mixing in Kerr media with nonlocal
interactions near a critical point [4]. Throughout the
present paper the noise arising from the fluctuations 5e is
referred to equivalently as either thermal or light-
scattering noise.

For many optical-signal-processing applications a more
complete description of noise than is furnished by the
time-averaged noise power is desired. This additional in-
formation might include, for example, the effect of light-
scattering noise fluctuations on the output light intensity
of a nonlinear optical device in real time. For image-
processing applications, such as the use of optical phase
conjugation to correct aberration, the effects of light-
scattering noise on the amplitude and phase of the elec-
tromagnetic field itself must be included. In the follow-

II. GENERAL THEORY OF LIGHT-SCATTERING
NOISE IN KERR MEDIA

An overview of light-scattering fluctuations and their
connection to nonlinear optical response may be gained
through an examination of the Maxwell equations
governing beam propagation in a nonlinear medium:

(2.1a)

V XH(r, t ) =(1/c )
at

with

(2.1b)

D(r, t)=[eo+5e(r, t)+ezE (r, t)]E(r, t) . (2.1c)

In these equations, E (H) is the total electric (magnetic)
field vector, eo (e2) is the linear (nonlinear) dielectric con-
stant of the medium, D(r, t) is the displacement vector,

ing sections, stochastic simulations for light-scattering
noise are developed; the simulations provide a direct
means through which this additional information may be
obtained. In Sec. II, the theory of light-scattering noise
in Kerr media is extended using the fluctuation-
dissipation theorem. This generalization of the static sus-
ceptibility relation is required for applications to time-
dependent processes and nonlinear optical media exhibit-
ing power dissipation. An important example of such a
process, examined in Sec. IV B, is the amplification of a
weak optical signal via the coherent transfer of energy
from a strong pump beam during nondegenerate two-
wave mixing. Section III presents the basis for stochastic
noise simulation using Lan gevin and generalized
Langevin models to relate the time decay of laser-induced
gratings to the thermal fluctuations responsible for light-
scattering noise. Applications to the nonlinear optical
processes of phase conjugation, via degenerate four-wave
mixing, and to weak signal amplification, via nondegen-
erate two-wave mixing, are presented in Sec. IV. Section
V concludes with a summary and discussion of results.
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and the overbar implies a time average that is long com-
pared to an optical period, but short compared to all oth-
er time scales that enter the problem. Equation (2.1c)
contains both the nonlinear contribution and the fluctua-
tion contribution to the dielectic constant. The symbols
5E and b,E =E2E are used throughout this paper to desig-
nate variations in the dielectric constant of the medium
due to spontaneous fluctuations and to field-induced
response, respectively. The fluctuation contribution
plays a role in nonlinear optics analogous to the current
or voltage fluctuations that give rise to Johnson noise in
electrical systems. Both sources of noise are thermal in
origin and proportional to kT. In the present case, fluc-
tuations in the linear dielectric constant give rise to noise
as they result in the formation of spontaneous gratings
that are "read" by the applied laser fields to give a scat-
tered light component that is indistinguishable from the
desired output of the nonlinear optical device.

A. Light-scattering Auctuations
and nonlinear optical response

At nonzero temperature T, thermal fluctuations in the
linear dielectric constant of the optical Kerr medium give
rise to fluctuation gratings capable of scattering incident
radiation. More precisely, the fluctuations in the linear
dielectric constant 5(er, t) can be decomposed into grat-
ing components 5e(q, t }:

(2.2)

B. Application of the Auctuation-dissipation theorem

Preliminary to applying the fluctuation-dissipation
theorem, the appropriate conjugate variables must be
defined. For this purpose, it is sufficient to note that the
energy change in the medium due to the nonlinear polar-
ization is of the form

U(r, t)= —(1/8~)he(r, t)E (r, t), (2.8)

where Ae is the change in the dielectic constant in the
presence of an applied laser field. Accordingly, the field

energy variable u(r, t) =( I/8~)E is conjugate to be and
we may define the complex frequency-dependent suscepti-
bility g, such that

b,e(q, Q}=y,(q, Q)u(q, Q), (2.9)

with y, =y', +iy," In .particular, it follows from Eq. (2.9)
for a Kerr medium [he(q, O)=E2(q)E (q)] that

y,(q, O) = 8m.ez(q) =y', (q, O).
The power I' expended by the applied fields on the

medium electric polarization is proportional to the imagi-
nary component of the susceptibility

P =
& E d PNL/dt ) = V, Qy,"u /2, (2.10)

where PNL is the nonlinear polarization and the angular
brackets denote averaging over the beam interaction
volume V, . The fluctuation-dissipation theorem is [6]

y,"(q,Q)=(1/2')[1 exp( —fiQ/kT)]—S,(q, Q), (2.11a)

which in the classical limit (kT))fiQ) reduces to the
form

with

5e(q) =(1/V, ) f.'~'5e(r)dr,
y,"(q,Q) = (Q/2kT)S, (q, Q),

where
2.3

(2.11b)

where the summation is over all grating wave vectors q,
and the integral is over the beam interaction volume V, .

For an isotropic Kerr medium with local interactions

e(r)=eo+ezE (r)

and Fourier transformation [cf. Eq. (2.3)] gives

e(q)=eo5(q)+ezE (q) .

(2.4)

(2.5)

e(q}=eo5(q)+e2(q)E (q) . (2.7)

This result is identical in form to Eq. (2.5) except for the
q dependence in e2, which becomes important when the
range of correlations in the medium approaches the
wavelength of light [4].

The remainder of this section shows that the
fluctuation-dissipation theorem provides a fundamental
closure relation between the nonlinear coefficient e2 and
the statistical distribution determining the fluctuations 6e
for incorporation into Eq. (2.1c).

A nonlocal generalization of Eq. (2.4) may be written in
terms of the convolution integral [4]

e(r)=@0+ f ez(r —r')E (r')dr' (2.6)

for an isotropic medium. Fourier transformation gives

S,(q, Q)= V, f &5e(q, O)5e(q, t))e ' 'dt (2.12)

=(kT) 'V, &15&(q)l'&, (2.13)

where the last equality follows upon substitution from
Eqs. (2.11b) and (2.12) for the imaginary susceptibility
component and the integral is over both positive and neg-
ative frequencies. From Eq. (2.13), and the above assign-

is the spectral density of the fluctuations in the linear
dielectric constant 5e that give rise to light scattering
noise.

Each of the preceding results may readily be expressed
in tensor component form for applications to anisotropic
media. The scalar u, for example, is then replaced by the
Maxwell stress tensor in its most general form, with Ae
and y, represented by second- and fourth-rank tensors,
respectively.

Equations (2.10)—(2.12) are the appropriate generaliza-
tion of our previously derived static susceptibility rela-
tion, which was limited to degenerate beam interactions
and did not include dissipation. To recover the special
case, first note that the real and imaginary components of
y, satisfy the Kramers-Kronig relation [6]

y', (q, O)=(1/vr) f [y,"(q,Q)/Q]dQ
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ment of g,(q, O) for a Kerr medium,

y', (q, O) =8me2(q), (2.14)

response for the dielectric grating 5e(q, t). For this case
the relaxation process is Markovian and satisfies the ordi-
nary hydrodynamic mode decay from (Ref. [7])

the static susceptibility relation [2—4]

& ~5e(q)~ & =8vrkTe2(q)/V, (2.15)

85e(q, t )

at
= —I (q)5e(q, t )+F(t ), (3.4)

III. STOCHASTIC NOISE SIMULATION MODELS

Evaluation of the spectral density of fluctuations using
Eq. (2.12) requires input from the time response proper-
ties of the medium so that the autocorrelation function
&5e(q, O)5e(q, t) & may be obtained. Time-response prop-
erties are also needed to obtain the frequency-dependent
gain curve for the nondegenerate two-wave-mixing calcu-
lations presented in Sec. IV.

A. General model

The most general time evolution of 5e(q) may be
modeled using a generalized Langevin form for the decay
of a single hydrodynamic mode in the presence of a ran-
dom force F(t) representing the bath [7]:

d5e(q, t )

at
=if15e(q, t) —fK(r)5e(q, t r)dr+F(t) .—

(3.1)

Here fl is the frequency, K(r) is the memory function,
and the range of integration is from ~=0 to t. Evolution
of the autocorrelation function C(t)=&5 (qe, O)5 (qe, t)&
then takes the form

aC(r) =i flC(t ) —fK(r)C(r —r)dr,
at

(3.2)

since &5e(q, O)F(t) & =0. The random force appears im-

plicitly in the memory function to which it is connected
via the second fluctuation-dissipation theorem [7]:

K(r ) = &15e(q)l &
'& F(0)F(r ) & . (3.3)

is immediately obtained. Equation (2.15) is the closure
relation required for incorporation into Eq. (2.1c). Its
present derivation is both more direct and more general
than the thermodynamic fluctuation approach employed
in Ref. [4], which also allows for possible q dependence in
the Kerr coefficient due to nonlocal interaction.

For the case of photorefractive media, dielectric fluc-
tuations arise from thermal fluctuations in the space-
charge field through the electro-optic effect [5]. In this
case the fluctuation variance is given by an expression

& ~
5e( q)~' &pR=(4m kT/eoV)[1 +( q/k n) ] '(e' ')

(2.16)
which differs from the right-hand side of Eq. (2.15) only
by the nondimensional factor (s' ') /2eoez(0), where s' '

is the Pockels coefficient and the q dependence takes the
same form as that obtained previously for the nonlocal
interaction described in Ref. [4], with the range of corre-
lations set by the Debye screening length (ko ').

where F(t) is the Langevin random force and I (q) is the
first-order rate constant for the grating decay. [For a
diffusive process, such as the relaxation of a particle den-
sity grating in an artificial Kerr medium, I (q)=Dq
where D is the diffusion constant. ] Equation (3.4) is a
special case of the generalized Langevin form [Eq. (3.1)]
achieved by setting fl=O and K(t)=2I (q)5(t), where
5(t ) is the delta function. Substitution into Eq. (3.3) gives

& F(0)F(r) & =2& ~5e(q) ~'&1(q)5(t) (3.5)

& 5e(q, O)5e(q, t ) &
=

& ~ 5e(q) ~' & exp[ —I (q)t ] . (3.6)

Since, according to the Onsager regression hypothesis,
the same relaxation processes govern both spontaneous
fluctuation and field-induced grating decay [7], Eqs. (3.4)
and (3.6) also describe the relaxation of the field-induced
grating b,e(q, t).

For the Debye relaxation model, substitution of Eq.
(3.6) into Eq. (2.12) and carrying out the integration give

S,(q, fl)=2rV, & ~5e(q)~ &/[1+(fir) ]

=2m. V, G,(fl), (3.7)

where the second equality defines the power spectrum of
the time correlation for fluctuations in the dielectric grat-
ing 5e(q, t ),

G, (fl)=(2~) ' f &5e(q, O)5e(q, t)&e '"'dt, (3.8a)

together with the inverse relation

C(t)=&5e(q, O)5e(q, t)&= fG,(fl)e' 'dfl . (3.8b)

From Eq. (3.7) we obtain

fG,(fl)dfl=& ~5e(q)~ & . (3.9)

Integrations are from —~ to + ~ in Eqs. (3.8) and (3.9).
Equations (3.4)—(3.6) describe an Ornstein-Uhlenbech

process similar in form to the relaxation of the velocity of
a particle undergoing Brownian motion [8—10]. This
process may be simulated [with 5e(q, t ) = u (t ) ] using

Pr bo[ (tu, +))lu(t„))

=[o(h)] '(2')

Xexp{[v(t„+,) —&v(t„+,)&] /2cr (h)J, (3.10a)

where

as the fundamental connection between the decay con-
stant and the mean-square fluctuations of the random
force. Similar substitutions using Eq. (3.2) result in the
autocorrelation function for stationary fluctuations of
e(q, t) givenby

8. Debye relaxation model

To simplify the present treatment, a single relaxation
time Debye model is used to describe the medium time and

o (h)=o (~)[1—exp( —2I h)] (3.10b)
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FIG. 1. Stochastic simulation of grating amplitude decay.
The noise curve was obtained from the Langevin model de-
scribed in the text. The smooth curve describes pure exponen-
tial decay.

wave-mixing processes. For calculations in the time
domain a sequence of values of 5e is generated numerical-

ly, as described above in connection with Fig. 1, and a
solution to Eq. (4.1) is obtained for each member of the
sequence. The resulting fluctuations in the electromag-
netic field describe the effects of light-scattering noise in
the time domain. An important point is that the field
fluctuations will track the dielectric fluctuations 5e adia-
batically, since the latter vary on a time scale (r=l ')
set by the medium response, which is slow compared to
the transit time of light through the medium. According-
ly, only the instantaneous value of 5e is required to ob-
tain a solution valid over a time interval that is short
compared to the response time of the medium. This adia-
batic approximation provides the physical basis for the
stochastic simulations presented below.

A. Optical phase conjugation
via degenerate four-wave mixing

Figure 2 shows a standard four-wave-mixing geometry
used to obtain optical phase conjugation of a probe signal
E . For this case, the total electromagnetic field entering
into Eq. (4.1) takes the form

(u(t„+,)) =v(t„)exp( —I'h ), (3.10c)

E(r, t)= —,'[(e E e'~'+e, E,e

+e,E&e'+'+e2E&e ' ')e ' '+c.c.],
(4.2)

where ej Ej Kj and co are, respectively, the unit polar-
ization vector, electric-field amplitude, wave vector, and
frequency for wave j. Here the two counterpropagating
pump beams are taken to have equal amplitudes,
E&=E2=EO, and E~ and E, are the slowly varying en-

velopes of the probe and conjugate waves. The figure
also shows transmitted probe at z =L and a set of signal
[b,e(q)] and noise [5e(q)] gratings, represented respec-
tively by the solid and dashed sinusoidal curves, contrib-
uting to the conjugate wave. Here q=K —Q for the
field-induced grating formed in the interaction volume of

with stationary variance o2(00)=(~5e(q}~ ). The left-
hand side of Eq. (3.10a) gives the probability of finding
the particular value v(t„+&) at time step n + 1 given that
U =v(t„}at time step n Sinc.e the process is Markovian,
there is no dependence on the time origin and Eqs. (3.10)
may be solved in succession for a sequence of small time
steps t =0,h, 2h, 3h, ... separated by h «1

Results from a simulation of grating decay are shown
in Fig. 1. The figure shows a simulation of b,e(q, t ) over a
time period of five reduced time units (r=l ') with the
initial condition be(q, 0)=10.0 standard deviations [in
units of o ( ~ ) ] from the uniform distribution
(5e(q)) =0. At each time step, with h set equal to
0.0025 reduced time units for the calculation, the proba-
bility distribution defined by Eq. (3.10a) was sampled us-
ing a standard computer subroutine incorporating the
Box-Muller transformation for the generation of normal
deviates from random numbers sampled uniformly on the
interval (0, 1) [11]. Superimposed on the stochastic simu-
lation is the function ( he(q, t ) ) = ( he(q, 0) ) exp( I t)—
shown as the smooth curve in the figure. This function is
seen to provide a good description of the average grating
decay. At long times, memory of the initial grating is lost
and the typical stationary grating fluctuations due to
thermal noise may be seen.

IV. APPLICATIONS
TO NONLINEAR OPTICAL PROCESSES

The simulation of noise in nonlinear optical processes
requires that the fluctuations 5e(q, t ) be incorporated into
the Maxwell equations governing beam propagation in
the nonlinear medium. The general wave equation for
the nonlinear medium, with the noise fluctuations 5e in-
cluded, follows from Eqs. (1):

E

V E(r, t)= (co Ic )(ee+ezE—+5e}E(r,t), (4.1)
E2

where E(r, t) is the total electric field. The solutions to
Eq. (4.1) will now be obtained for two-wave- and four- FIG. 2. Four-wave-mixing geometry.
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the incident probe and one of the pump beams (Ei). For
parallel beam polarizations there will also be an orthogo-
nal grating, of wave vector q=K —Q, not shown in the
figure. Only those thermal gratings (such as the one de-
picted in the figure) that give a scattered-light component
in the direction and frequency range of the conjugate
wave (so as to be indistinguishable from the conjugate
wave) constitute a true source of noise [3]. Solid (dashed)
arrows represent the signal (noise) contribution to the
conjugate and to the transmitted probe.

Solutions to Eqs. (4.1) and (4.2) that include the effects
of light scattering both on beam attenuation (nonsatur-
able background loss) and on noise are given in Ref. [4]
for a Quid medium near its critical point. To simplify
matters, the solutions are given here first neglecting beam
attenuation as was done in Ref. [3] for calculations of the
time-averaged noise power. In addition, we shall assume
that the medium is isotropic and that all of the incident
radiation is linearly polarized in the same direction. The
role of nonsaturable background loss is discussed further
at the end of this section.

Substitution of Eq. (4.2) into Eq. (4.1) and use of the
slowly varying envelope and phase approximation give

dE'(z)
i sp(E~'—+E, ) iL, —

dz
(4.3a)

dE, (z )
imp(E~'+E—, ) iX—,

dz
(4.3b)

where the positive z coordinate is taken to lie in the direc-
tion of the probe wave vector Q. In Eqs. (4.3),

~p=e2QE p/2' is the four-wave-mixing coefficient and

X=QEp [5e( —K—Q)+ 5e( K—Q) ]/26p (4.4)

E~*(z)=e ' cos(irpz)E~'(0)

ie ' s—in(spz)[E, (0)+(X/xp)], (4.5a)

E, (z ) =e cos(apz )E,(0}

ie ' sin—(spz )[E*(0)+(X/sp) ], (4.5b)

as may be readily verified by differentiation. The bound-
ary conditions are determined by the values of the in-
cident fields, which are E*(0)at z =0 and E,(L ) at z =L,
where L is the beam interaction length. From Eq. (4.5b}
we obtain

is the noise operator [3].
Equations (4.3) were previously solved for the conju-

gate and transmitted probe intensity after a time averag-
ing of the fluctuations appearing in Eq. (4.4) was per-
formed [3]. However, the solutions to Eqs. (4.3) for the
probe and conjugate field at fixed X are also readily ob-
tained. These are

E,(0)=E,(L )e sec(tcpL )

+i tan( ~pL )[E*(0)+(X /sp) ] . (4.6)

Substitution of this last result into Eqs. (4.5) yields ex-
pressions for E'(z) and E,(z) in terms of the incident
fields In the present analysis we consider the solution for
the conjugate field E,(0) subject to the usual boundary
condition E,(L ) =0 for which case

E,(0)= [E'(0)+X/Kp]l tan(KpL ) . (4.7)

Equation (4.7) gives a recovery of the usual noise-free re-
sult for X=0 [12].

The analytic solutions given above were obtained as-
suming fixed values for the amplitude and phase of the
complex noise operator X. However, Eqs. (2.15) and (4.4)
show that X undergoes Gaussian fluctuations in time
with

& I& I'& =(O'Ep /4ep) & lfie( —K—Q)+8e(K —Q) I'&

=2(Q E p/4 ep)8n. kT e2(q)/ V, (4.8)

and random phase. The factor of 2 in the last equality
arises because we are computing the variance of a sum of
two independent variables having the same density distri-
bution. Inspection of Eqs. (4.7) and (4.8) reveals that the
noise properties of the conjugate wave are largely in-
dependent of specific physical properties of the nonlinear
medium, but are dependent, instead, only on the general
conditions of optical frequency, probe beam total power,
temperature, and phase-conjugate reflectivity (R )

through the relation R = tan (i~pL ).
To make further progress, we observe that the Auctua-

tions in X (due to fluctuations in 5e) vary on the time
scale set by the medium response, which is slow com-
pared to the transit time of light through the medium.
As indicated at the beginning of the section, this adiabat-
ic approximation provides an especially convenient basis
for utilizing the stochastic models presented in Sec. III to
simulate the effects of light-scattering noise. As the prin-
cipal method employed in the calculations that follow,
the generated sequence 5e(t ) is sampled at time intervals
that are long compared to the medium response time (r}.
Each sampled value is then statistically independent from
the preceding one. Specifically, this approach consists of
obtaining the solution to Eq. (4.1) separately for each
fixed-5e or, equivalently, fixed-5 member of a statistical
ensemble. The ensemble itself is defined to consist of the
collection of solutions obtained for a representatively
large sample of statistically independent values of 6e for
each noise grating. (In the present case both the K+Q
and the K—Q gratings contribute separately to the signal
and to the noise components of the conjugate wave. )

Each set of 6e values is generated through computer sam-

pling to have Gaussian statistics characterized by Eqs.
(2.15) and (3.7), and to satisfy the condition of random
phase. Corresponding L values have Gaussian statistics
characterized by Eq. (4.8). The sampling procedure em-

ploys the same random number generation algorithm as
previously used for the simulation of grating decay in
Sec. III B [11]. The interaction volume V, appearing in
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FIG. 3. Fluctuations in the real and imaginary components
of the conjugate field due to light-scattering noise. Simulation is
for a wavelength of 1.06 pm, incident probe power of 1 mW,
temperature of 300 K, and phase-conjugate reflectivity near uni-
ty. The incident noise-free probe wave is taken to be real and is
represented by the single dot appearing in the lower right-hand
corner of the figure. Note that the conjugate wave, represented
by the cluster of points in the figure, is shifted in phase from the
probe by 90 . Field amplitudes are expressed in cgs units.

Eq. (4.8) is obtained as the product of the probe-beam
cross-section area ( A }and the interaction length (L ).

Results from stochastic noise simulation for the conju-
gate field are shown in Figs. 3 and 4 for a wavelength of
1.06 pm and phase conjugate reflectivity near unity. As
noted above, these results are independent of changes in
the pump power, provided that &co and I. are chosen such
that the phase-conjugate reflectivity is the same. Figure 3
shows the distribution of amplitude and phase fluctua-
tions in the conjugate field due to light-scattering noise.
Without loss of generality, the incident probe field is tak-
en to be real and is represented by the single point ap-
pearing on the real axis in the figure. A representative set
of 500 values of X were generated in the manner de-
scribed above, and the real and imaginary components
for the corresponding E-field solutions given by Eq. (4.7)
were plotted in the figure. The resulting cluster of points
is centered on the noise-free (zero-temperature) solution
obtained by setting X=0. The latter lies on the imagi-
nary axis due to a phase shift of m. l2 incurred in forming
the conjugate wave. The variance of the scatter is direct-
ly proportional to temperature (here set at 300 K) and in-
versely proportional to total probe power (here set at 1

mW), but is not dependent separately on the probe-beam
cross-sectional area (A) or probe intensity. A useful
figure of merit is the dimensionless ratio F=P&lkTv,
where I' is the total probe power. For constant values of
F and phase-conjugate reflectivity, probability scatter
plots of the type shown in Figs. 3 and 4 (below) appear
identical except for scaling.

The scatter shown in Fig. 3 implies a corresponding
level of noise in the conjugate wave form itself. Restor-
ing the exp( icot) te—mporal dependence from Eq. (4.2)
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FIG. 4. Wave forms for the noise-free probe and conjugate
waves under the same conditions as for Fig. 3.

gives

E,(0}=Es cos(cot )+EI sin(cot ), (4.9)

where Ez and EI are the real and imaginary components,
respectively, whose distribution is shown in Fig 3. If we
neglect quantum noise fluctuations in the incident beams,
the wave form for the monochromatic probe beam at
z=0 has pure cosine form with fixed amplitude and is
plotted as a function of the phase angle (cot) in Fig. 4.
For the conjugate wave, on the other hand, each set of
coordinates (E„,EI) from Fig. 3 produces a separate
wave form in Fig. 4. Rather than drawing many such
complete wave forms to represent the noisy conjugate
wave, we instead randomly select a single point on each
wave form, through a random selection of phase over the
interval (0,2m ), and plot this point alone. A 1000 point
sampling (one point from each wave form) generates a
probabilistic representation of the conjugate wave ampli-
tude and phase as shown in Fig. 4. Note that while ex-
hibiting considerable uncertainty in its amplitude and
phase, the conjugate wave-form distribution remains sta-
tionary in time. Thus, instead of a pure sinusoidal form,
the E-field vector for the noisy conjugate wave lies within
a stationary probability distribution centered on the
zero-temperature conjugate wave form. Applying the su-
perposition principle, we see that a complicated probe
signal, represented as a sum of sinusoidal waves with
different amplitudes and phases, will give rise to a conju-
gate signal consisting of a sum of correspondingly
broadened wave forms and consequent information loss.
In addition, the repassage of such broadened wave forms
through an aberrator would clearly result in less-than-
perfect correction of image distortion. These results
highlight the importance of light-scattering noise in
four-wave mixing.

Figure 5 shows the effect of including light-scattering
attenuation in the equations for four-wave mixing. The
resulting gain curves for phase-conjugate reflectivity are
centered on the usual noise-free results. The figure indi-
cates that the largest effects of beam attenuation are a
reduction of the overall gain in a manner that is largely
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FIG. 5. Noise fluctuations in the conjugate power as a func-

tion of the beam interaction length. Conditions are the same as

for Fig. 3 with K0 2. 18 cm '. The two simulations compare
the effects of including, vs not including, beam attenuation due

to scattering for an isotropic Kerr medium.

how the theoretical framework developed in Secs. II and
III is applied to the two-wave-mixing noise case.

A schematic illustration of the two-wave-mixing
geometry for amplification of a weak signal is shown in
Fig. 6. Two laser beams of frequencies co, and
co2=~& —Q propagate through the nonlinear medium and
create a moving density grating response that preferen-
tially deflects energy from the high-frequency to the low-

frequency beam. The solid lines depict the crests of the
field-induced grating of wave vector q=K& —K2. Dashed
lines represent a spontaneous moving grating arising
from thermal fluctuations in the medium. Some of these
thermal gratings will be in a proper configuration to
defiect energy from the high-frequency to the low-

frequency wave, in a manner that is indistinguishable
from the signal, to give a noise component represented by
the dashed arrow in the figure. For two incident plane
waves the total field is of the form

E(r, t ) =e,E, (r) cos[K, r —co,t+ 8,(r)]

+ezEz(r }cos[Kz r —cozt +Oz(r) ], (4.10)

independent of the noise. Thus light scattering has two
effects: (1) It limits gain due to reduction in signal and

pump beam intensities through attenuation. This has
been shown to result in an optimum beam interaction
length for maximum phase-conjugate reflectivity. (2}
Light scattering is the manifestation of thermal noise in-

herent in the medium. Since these effects are essentially
independent of each other, light scattering may be treated
as a contributory source of beam attenuation (beam loss
due to absorption may also occur), without including
light scattering as noise. Similarly, e.g., at longer wave-

lengths, the effects of light-scattering noise may be in-

cluded and beam attenuation may be neglected if the
scattering losses are small. This separation is possible be-
cause the scattering attenuation and noise properties each
have different dependences on the wavelength of light.

B. Nondegenerate two-~ave mixing

Qe(r, t)=a, cos(q r Qt. )—+b, sin(q r —Qt), (4.11)

where

&[ =(e]'ez)&zE]Ez&[i+(«) ] (4.12)

and

b, = —(e, ez)ezE, Ez«/[I+(«) ] (4.13)

are the in-phase and ~/2 out-of-phase grating
coefficients, respectively, for a Debye relaxation medium.

For the noise gratings, the coefficients az and bf, are
statistically distributed and may be obtained through an

where e., E (r), and 8.(r) are the unit polarization vec-

tor, slowly varying amplitude, and slowly varying phase
of wave j.

The signal and noise gratings depicted schematically in

Fig. 6 are quantitatively described as follows: For the
signal grating [13]

For the treatment of light-scattering noise in degen-
erate four-wave mixing, it was sufficient to use the static
susceptibility relation given by Eq. (2.15) to evaluate the
thermal fluctuations. The analogous treatment for non-

degenerate two-wave mixing requires a more detailed
rnode1 in order to include the time-dependent response
properties of the medium and of the fluctuations that give
rise to noise. Thus, to obtain the noise in two-wave mix-

ing, the general fluctuation-dissipation relation embedded
in Eqs. (2.10)—(2.12} is required. Results are presented in
this section for the case of a Debye relaxation Kerr medi-
um with time-dependent dielectric response characteris-
tics described in Sec. III B. As a more complete discus-
sion of light-scattering noise incurred during two-wave
mixing gain is planned for future publication, the treat-
ment given below will be limited to sho~ing specifically

Kq ~ Co)

jr

I

/
(

J
C

FIG. 6. Two-wave-mixing geometry.

K2 ) u)2
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analysis of the dielectric fluctuations 5E(r, t). For this
purpose, a grating fluctuation, with time correlation func-
tion given by Eq. (3.6},may be represented in the form

fluctuating grating coefficients az and bo are immediate-
ly obtained:

(4.21)
5e(r, t }= A ( t ) cos(q.r ), (4.14)

&an &
= &bzn & =(r/~)& I5E(q)l'&/[I+(Qr)'] (4.22)

where A (t ) is a stationary random variable in time whose
time-correlation function

& A(0)A(t) &
=

& l
A

l & exp[ —I'(q)t]

with

(4.15)

& I
A I'& =2& l5~(q ) lz & (4.16)

follows from a comparison of Eqs. (3.6) and (4.14).
The properties of random variables of the type de-

scribed by Eqs. (4.15}and (4.16}are well known. In par-
ticular, A (t) may be decomposed into temporal Fourier
components with amplitudes whose statistical properties
are given in Ref. [14]:

Comparison with Eqs. (3.7) and (3.9) shows that the
right-hand side of Eq. (4.22) gives the noise power on a
per unit angular frequency basis. To obtain the noise
power per hertz, simply multiply this expression by 2~.
It is useful to express the fluctuation variance in a
manner that is independent of medium response time v.
To do this, we express frequency shifts nondimensionally
in units of Qr and, in place of Eqs. (4.21) and (4.22), in-
troduce scaled noise grating coefficients a& and bz with
the properties

(4.23)

and

A (t ) = f d Q[an cos(Qt )+Pnsin(Qt )] . (4.17) &a'„&=&b'„&=&l5e(q)l'&/[I+(Qr)]

Integration is over positive values of the frequency 0 and
the coefficients a and P are Gaussian random variables
with [10]

(4.18)

and

&ati&=&pti&=(2r/~)& IA lz&/[I+(Qr) ], (4.19)

where ~=1" ' is the response time of the Debye relaxa-
tion medium.

To accomplish the decomposition of Eq. (4.14) into
moving gratings, simply substitute for A(t} from Eq.
(4.17) and use standard trigonometric identities to obtain

5e(r, t)= JdQ[ancos(q r —Qt)+bn sin(q r —Qt)],

(4.20)

where an =a n =an/2, bn = b ti =Pn/2, a—nd the in-
tegration is now over both positive and negative frequen-
cies. From these relations the mean and variances for the

=(8nkTEz/V, )/[I+(Qr) ], (4.24)

where the last equality follows from Eq. (2.15). Compar-
ison with Eqs. (3.7) and (3.9) shows that the right-hand
side of Eq. (4.24) gives the fluctuation variance for a sig-
nal collection bandwidth b,Q=rt/r. Upon setting the
beam interaction volume V, equal to the product of the
cross section area ( A ) and interaction length (L ), each of
the quantities appearing in this expression is determined.

Having obtained expressions for the field-induced and
the fluctuation grating components, we turn now to the
solution of the Maxwell equations for the two-wave-
mixing case. For this purpose, Eqs. (4.11) and (4.20) may
be combined to obtain an expression for the total varia-
tion in dielectric constant from both signal and noise.
When the result is substituted into the wave equation, the
various terms in the displacement vector give rise to
scattering of electromagnetic energy into different modes,
characterized by specific wave vectors and frequencies.
The most significant contribution results from those
terms that have minimum phase mismatch. Denoting
these by D(r, t), we find

D(r, t ) =EpE(r, t )+—,'(a i +an )Ei (r) cos(Kz r —cozt +8z)ei+ —,'(a i+an )Ez(r) cos(K& r coit+ 8i )ez-
—

—,'(b, +bti)E, (r) sin(Kz r — pthz+8)ez, +, (b, +b„)Ez(r)si—n(K, r —co,t+8, )ez, (4.25)

where a& and bj are fixed and field dependent, while a&
and bz are field-independent fluctuating quantities.
Equation (4.25) describes an instantaneous polarization,
or snapshot of the medium, that includes contributions
from both signal and phase-matched noise gratings. Ac-
cording to the adiabatic approximation, described above;
the polarizability will remain constant over time periods
that are short when compared with the medium response
time ~=I ', yet long when compared with the transit
time of light through the medium.

Inserting Eq. (4.25) into the wave equation [Eq. (4.1)],

(K, V)E, =(K /4Ep)(b, +bti)(e, .ez)Ez —(ap/2)E, ,

(K, .V)8, =(K /4Ep)(a, +a„)(e,ez)Ez/E,

for the pump wave and

(4.26a)

(4.26b)

I

making the slowly varying amplitude and phase approxi-
mation, and equating the in-phase and out-of-phase
terms, one finds
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(K2.V)E2= —(E /4')(bi+bn)(ei e2)Ei —(ae/2)E2, 10—
x10

(K~ V)82=(E /4')( 2(i+an)(e, .ez)E, /E2

(4.26c)

(4.26d)

1.0

for the signal. These equations are identical to those ob-
tained previously [13,15] except for the presence of the
new noise terms, which result in fluctuations in both am-
plitude and phase. When the pump is much stronger
than the signal (Ei ))E2), these ffuctuations are much
more important for the signal than for the pump beam.
The last terms in Eqs. (4.26a) and (4.26c) include the
effect of nonsaturable background loss, where eo is the at-
tenuation coefficient for loss of light intensity. For a
nonabsorbing medium in which losses are due to scatter-
ing alone,

UJ
4—

E

0—
I

0

00

I

0 8

4

0.6

P

0 3

0, 1

Re (E)

I

1 0x10

a()=((o /6mc )V, ( ~5e(q)~ ) = —', (2mv /c) kTE2 (4.27)

for an isotropic medium [16].
Finally, an expression for the power dissipated in the

medium during two-wave mixing may be obtained [15].
For a uniformly moving grating, the stored energy in the
medium is constant and the dissipated power per unit
volume is

P:(E' =
( /)16w)b~(c~'Gp)E~Ep ()dp

dt
(4.28)

where Eqs. (4.10), (4.25), and (4.26) have been used. As
expected, the fluctuating noise gratings make no contri-
bution to power dissipation.

Since az and b& are fluctuating amplitudes, a
computer-generated ensemble of solutions [one solution
for each sampled (an, bn) pair] is required to obtain a
good statistical representation of the amplitude and phase
fluctuations present in the propagating fields during two-
wave mixing. The calculations presented below were car-
ried out using Runge-Kutta integration of Eqs. (4.26) for
each sampled Gaussian coefficient pair. Sampling was
performed as previously described with all results ex-
pressed in terms of the scaled noise variables (an, bn)
defined by Eqs. (4.23) and (4.24).

The effect of light-scattering noise during the
amplification of a weak signal field via two-wave mixing
is shown in Fig. 7. The figure shows the real and imagi-
nary components of the transmitted signal for several
different interaction lengths (L) ranging from 0 to 1.0
cm. The simulation does not include any noise present in
the incoming signal (at z =0), so all of the scatter seen in
the figure is due to noise generated in the medium itself.
Thus there is no noise for the trivial case (L =0) of a van-
ishing beam interaction length. The specific conditions
chosen for the calculation are indicated in the figure cap-
tion, although it will be shown elsewhere that the results
are largely independent of the specific properties of the
medium, depending instead on such general properties as
temperature and power present in the incoming signal
beam. (Similar properties have already been found for
the four-wave-mixing case as noted above. ) Note that the
Kerr coefficient @2=1.0X10 cm /erg (n2=7. 3X10
m /W) is typical of that for an artificial Kerr medium.

FIG. 7. Noise fluctuations in the probe amplified by two-
wave mixing for several different beam interaction lengths.
Specific conditions chosen for the calculation are incident signal
power P2(0) = 1 mW, @2=1.0X 10 cm /erg, A, =O. 5 pm,
I

p p
10 kW/cm, and T=300 K. Values of the beam interac-

tion length (in cm) are indicated in the figure. Field amplitudes
are expressed in cgs units.

The amount of scatter is dependent on the signal observa-
tion bandwidth. Since the scaled noise variables defined
by Eqs. (4.23) and (4.24) were used, the figure depicts
noise fluctuations for an angular-frequency signal collec-
tion bandwidth equal to m/r For eac.h sampled pair of
noise grating coefficients (an, bn) incorporated into Eqs.
(4.26), a unique and separate solution to these equations
is obtained. For each of the five interaction lengths in-
cluded in the figure, 100 sampled values of the coefficient
pairs az and b„were used. Each of the resulting clusters
of points is centered on the usual solution for the noise-
free (T=0) case. To preserve the generality of the re-
sults obtained, the effect of beam attenuation was not in-
cluded in the calculation; i.e., czo was set equal to zero in
Eqs. (4.26). Thus the results shown in Fig. 7 scale for a
wide range of different conditions and are largely in-
dependent of the specific physical parameters of the non-
linear medium.

Experiments designed to verify these theoretical pre-
dictions are underway using an artificial Kerr suspension
of shaped polytetrafiuoroethylene (PTFE) microparticles
as the active nonlinear medium [17].

V. SUMMARY

A general treatment of light-scattering noise in Kerr
media has been developed based on the fluctuation-
dissipation theorem and has been applied to the nonlinear
optical processes of two-wave and four-wave mixing. The
most general finding is that light-scattering noise is the
manifestation of thermal fluctuations inherent in the non-
linear medium, while the fluctuation-dissipation theorem
provides the quantitative relation between these fluctua-
tions and the size and frequency dependence of the Kerr
coefficient ez. General numerical methods for the corn-
puter simulation of beam propagation in nonlinear media
have been presented using a stochastic model to incorpo-
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rate the effects of noise. In the absence of thermal noise
( T=O), the usual solutions to the Maxwell equations for
two-wave- and four-wave-mixing processes are recovered.

In the case of four-wave mixing, conjugate-wave fideli-
ty has been shown to be reduced by amplitude and phase
fluctuations due to light-scattering noise. These fluctua-
tions, seen clearly at 1-mW signal power levels in Figs.
3—5, are dependent on the total power in the probe beam
and on other general characteristics of the phase-
conjugate mirror, such as its temperature and
thickness —corresponding to the beam interaction length
I.. A future publication will show that the stochastic
noise models developed here can be readily used to obtain
quantitative light-scattering noise limits to squeezed light
generation via four-wave mixing in Kerr media.

Simulations of light-scattering noise in nondegenerate
two-wave mixing also show significant amplitude and
phase fluctuations at I-mW signal power levels (Fig. 7).
As was found for four-wave mixing, the noise levels ob-
tained from two-wave mixing are largely independent of
the specific material properties of the nonlinear medium.
Simulation of light-scattering noise in two-wave mixing
requires an additional model for the time-dependent
response properties of the nonlinear medium. The result-

ing level of noise is dependent on both the frequency
difference between the two beams and on the bandwidth
of observation. For the calculations presented in this pa-
per, a single relaxation time Debye model for the medium
response was employed.

In addition to these specific applications to optical
phase conjugation and two-wave mixing, a more univer-
sal role for classical light scattering in nonlinear optical
processes is implied by the results of the present study.
Specifically, light-scattering fluctuations have been intro-
duced directly in the Maxwell equations governing beam
propagation, and have been shown to have a much more
significant role than just as a source of beam attenuation.
These fluctuations have now been related quantitatively
to nonlinear optical response through the fluctuation-
dissipation theorem and, as such, are the manifestation of
thermal noise in all nonlinear optical processes based on
Kerr-type nonlinear media.
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