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Triggered superradiance
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By applying microwave pulses to the two lower levels of three-level atoms in the V configuration, the
collective state vector can be switched from forbidden to allowed transitions. This means that we can, in

effect, switch the superradiant and subradiant processes from off to on and vice versa.

PACS number(s}: 42.50.Fx

I. INTRODUCTION

Superradiance and subradiance are well-known effects
caused by constructive and destructive interatomic in-
terference, respectively. Both concepts were developed
by Dicke in his classic 1954 paper [1]. In this paper, he
introduced superradiance by means of the simple system
of two neutrons in a uniform magnetic field, one being in
the excited spin state and the other in the ground state.
He pointed out that the singlet or antisymmetrical state
does not decay and is therefore subradiant. On the other
hand, the triplet state of one excited and one unexcited
state has the double radiation rate of a single excited neu-
tron. This is a clear sign of superradiance.

Let us now consider two excited neutrons that decay
only by spontaneous emission. The corresponding state
is not superradiant but decays to the superradiant triplet
state. The whole process, the evolution to the superradi-
ant state, the superradiance, and the evolution to the
ground state is called superfluorescence. In the Bloch
space that means that the Bloch vector turns from the
+z direction in the beginning to the superradiant x-y
plane and then to the —z axis, indicating that all neu-

trons are in the ground state.
The reason for these effects and difference to fluores-

cence is the interaction of both neutrons with their com-
mon radiation field, which prevents them from being
treated independently. Dicke, however, considered only
two-level systems.

Since Dicke's paper, there has been a considerable
amount of work done on superradiance [2,3], including
subjects like multilevel systems [4,5], sudden symmetry
breaking [6], degeneracy [7,8], and statistical treatment
[9]. At this point we especially would like to emphasize
the important contributions of Crubellier, Liberman, Pa-

volini, and Pillet on superradiance and in particular
subradiance of three-level systems. They for the first
time observed the subradiant phenomenon [10] and
developed an admirable formalism, in which collective
states are described in a very advantageous way by
Young tableaus [5,8].

In the present work on three-level superradiance of the
V configuration, we show how microwave pulses resonant
with one transition can produce and destroy superradi-
ance of the other optical transition. The spontaneous de-

cay rate for this optical transition is hereby altered by
means of changing the interference among the atoms in-

stead of the number of excited atoms.
In preliminary considerations in See. II we introduce

our system and the corresponding interaction Hamiltoni-
an. This is followed in Sec. III by triggered two-atom su-

perradiance, where we introduce an appropriate two-
atom basis and explain qualitatively the triggering for
this simple case. Beginning with more general arguments
on the extension to multiatom systems, we will discuss
the ¹ tom case for the symmetrical and so-called most
antisymmetrical state in Sec. IV. In order to keep the
analysis as simple as possible, we decided not to use the
group-theoretical language of Young tableaus in the main

part of the paper. %e rather generalized Dicke's basis
states to three-level atoms and presented the advanta-
geous description of the X-atom basis in terms of Young
tableaus in the Appendix as far as it is interesting for our
problexn.

II. PRELIMINARY CONSIDERATIONS

Our interest lies in superradiance of atoms in the
quasidegenerate V configuration with a dipole-forbidden
transition ~3) to ~2) (see Fig. I). This can be achieved,
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U(t, 0)=1 ——tgi g o, a~~+A +0(t ), (2.4)

FIG. 1. The investigated three-level system. By changing the
relative population of levels 1 and 2, the interatomic interfer-
ence and therefore the spontaneous decay rate for the transition
from 3 to 1 can be driven.

r; E, (2.1)

where N3 and N1 are the numbers of atoms in the states
l3) and l 1 ) and the r, 's are the atomic r vectors. The
atoms are assumed to be close together, compared to the
wavelength A, of the field, allowing us to consider the elec-
tric field E to be equal for all atoms.

According to Ref. [3] the quantum-mechanical form
corresponding to V in Eq. (2.1) is

V=gi g (o,. +o; )(ai +a i ) (2.2)

for example, by l3) and l2) being p states and ll) being
an s state. With resonant microwave pulses v„ the rela-
tive population of atoms in the states

l
1 ) and 2) can be

changed. This influences the decay rate from l3 ) to l 1)
as well. We here evaluate the corresponding spontaneous
emission rates and shall see that microwave pulses can
switch

l 3 ) to
l

1 ) transitions from not superradiant to
highly superradiant and in some special cases even from
forbidden to superradiant. The validity of these calcula-
tions is certainly restricted to Dicke's assumptions on the
density of the atomic gas, i.e., the mean distance among
the atoms should be small compared with the radiation
wavelength but large compared with the particle wave-
length.

We now wish to discuss the decay of atoms from the
l3) to the l1) level, which leads us to the interaction
Hamiltonian of the atoms in the states l3) and l1) with
the corresponding field of frequency c/A, . We neglect the
interaction of

l
1 ) and l2) because the coupling constant

for microwave transitions is much smaller than for opti-
cal ones. In the dipole approximation the interaction
Hamiltonian is

N3+N)

where A represents the adjoint.
We thus realize that the change of the system by spon-

taneous emission of one photon of wavelength A, is
governed by

(2.5)

By switching on the microwave field we find by an analo-
gous calculation that the absorption of one microwave
photon by the atomic system goes along with

N

(2.6)

where r; and ~; are the operators flipping levels I2& in«
ll) and ll) into l2), respectively. In this case it was
possible to neglect the

l
3 ) to l 1 ) interaction because we

assume the microwave field to be strong.
We now turn to a discussion of the triggering effect of

the microwave field on the l3) to
l
1 ) transition in two-

atom and multiatom systems.

III. TRIGGERED TWO-ATOM SUPERRADIANCE

Analogous to the construction of the two-level Dicke
states we first find the basis of 3 =9 mutually orthonor-
mal states for two three-level atoms. Obviously the basis
is not unique, giving us the possibility to impose addition-
al conditions that turn out to be useful later on. With
each state of the basis we want it, if existing, to contain
also its decay product and the state that decays into this
state. Moreover, following Dicke, we want the basis to
include all symmetric states. And naturally we only al-
low linear combinations of states that are distinguished
from each other by their properties under permutation,
which are the numberings of the atoms or of the eigen-
states each atom occupies. This makes the orthonormal
basis for two atoms unique (see Fig. 2).

For example, beginning with l 33), necessarily a basis
state because of its symmetry, we obtain its decay prod-
uct and therefore new basis state by applying the atomic
flip operator (g2 io;):

(3.1)

where a& is the annihilation operator of photons of wave-
length A, , g& is the coupling constant, and 0.; the operator
interchanging the l3) level of the ith atom into the

l
1 )

level defined by

l1, 12. . . 1. . .1~) if I;=3
o i 1 . . .l-. . .l 0 otherwise . (2.3)

On making the rotating-wave approximation, going into
the interaction picture, and expanding the evolution
operator, we get [3]

The subspace corresponding to one atom being in the 3
level and the other one in the 1 level is two-dimensional
and the orthonormal supplement to (1/&2)( l31 ) + l 13) )
is ( I /~2)(131 &

—l13 & ).
Looking at the decay rates of the states in Fig. 2, one

can already recognize the enormous effect of microwave
pulses switching atoms from state

l
1 ) to state

l
2 ) . The

photon trapped by the state ( I/i/2)( l31)—
l13 ) ) because

of destructive atomic interference can be liberated by a
microwave pulse transforming the atomic state into
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both atoms
in upper level

one atom in

upper level

)33)

IF =2
1 1 I 1—(I»& + I»&) —(I») —I»)) —(I»& + I»)) —(I») —I»&)

Ir=2
both atoms in !11&

lower levels

FIG. 2. The nine basis states of the two-atom three-level system.

—(I31 &
—

I13 & )= —(I32& —
I23 & ) .' v'2 V'2 (3.2)

The new state (1/&2)(I32& —I23&) decays into
(1/&2)(I12& —I21&) with the decay rate of uncorrelated
atoms. Asset another effect, we see that a switching
from (1/&2)(I32&+I23&) to (1/&2)(I31&+I13&) in-
creases the decay rate by a factor of 2, converting a non-
superradiant to a superradiant state. Microwave pulses
here switch I2& to Il & by stimulated emission. The in-
verse efFects of decreasing radiation is also possible. At
this point we would also like to mention that the decay
rate of one isolated excited atom is set equal to 1 in the
whole paper.

IV. TRIGGERED N-ATOM SUPERRADIANCE

In the case of more than two atoms, there are states
that are neither symmetrical nor antisymmetrical. In or-
der to determine these so-called mixed symmetry states,
it is useful to divide the whole 3 -dimensional space into
the N!/(N3!Ni!N2!) dimensional subspaces, characteriz-
ing states with N3, N1, N2 atoms in the levels 3, 1, 2, re-
spectively. All subspaces together form the whole
configuration space yielding for the dimensions of space
and subspaces

3N

N3, Nl, N2

with N3+ N l
+N2 =N

N!
N3!N1'.N2I

(4.1)

A. N-atom symmetrical states

The symmetrical states have the form

The construction of a subspace (N3, Ni, N2) can be car-
ried out by calculating the decay products of the sub-
space (N3+1,Ni —1,N2), where the first, second, and
third entry give the number of atoms in the levels 3, 1,
and 2, respectively. When this subspace is empty or does
not determine the whole subspace under consideration,
the remaining states can be constructed as an orthonor-
mal supplement. It may be noted that in case of a more
than one-dimensiona1 supplement the choice of basis
states is not unique.

However, this way of constructing basis states becomes
awkward for higher numbers of atoms. In the Appendix
we introduce a technique that allows us to represent the
basis states more efficiently and is suitable to describe the
extension to N atoms. For simplicity, we restrict our-
selves in the following ¹atom treatment to the impor-
tant symmetrical and so-called most antisymmetrica1
states.

Nf

3' 1' 2'

—1/2

g l[3. . .3]N [1.. . 1]~ [2. . .2]~ &, (4 2)

where g& means that all N!/(N3!N, !N2!) different per-
mutations of [3. . .3]& [1.. . 1]N [2. . .2]N & are includ-

ed in the sum, and x in [ ]„denotes the amount of num-
bers embraced.

Such symmetrical states are very interesting because
they show the most constructive atomic interference and
therefore highest superradiance [1]. They are, moreover,
easy to prepare since a maximal excitement of all atoms
gives always a symmetrical state.

A straightforward analysis leads to the spontaneous
emission rate

2

I = g, (N —1,N, +1,N ) g o,. f, (N, N„N )
i=1

=N3(N, +1) (4.3)

of the state Ip, (N3, Ni, Nq) & into

I g, (N3 —1,N, + 1,Nz ) &. As a consequence the decay
rate I can be changed by a factor of the order of the
number of unexcited atoms, because (N, +I) can be
varied between 1 and (N N3+1) by microwa—ve pulses.



45 TRIGGERED SUPERRADIANCE 3245

B. The most antisymmetrical state

We now present a subradiant ¹ tom state in the levels
3 and 1 that traps the highest possible number of pho-
tons. The maximum number of photons is trapped if we
have the maximum number of nondecaying atoms in the
3 level.

We found out that such a state is given by

N/2

~4&—= & ( —1)"k' ——k Wkk
k=0

(4.4)

Thus, such pulses can switch states with decay rate of N
uncorrelated atoms N3 to highly superradiant states. The
highest decay rate can be achieved by selecting
N3=Ni =N/2, which gives I'=(N/2)[(N/2)+1]. This
is the typical quadratical dependence of I on N for super-
radiance.

At this point we would like to emphasize that mi-
crowave pulses converting 1 into 2 decrease the decay
rate. The simple explanation is that there is a correlation
among atoms in 3 and 1 levels as opposed to atoms in 3
and 2 levels. This correlation means constructive in-
terference for symmetrical states, and it vanishes by
switching the atoms in level 1 to level 2.

where the summation P, is only over those permutations
which have exactly k atoms of the first N/2 atoms and
N/2 I—of the second N/2 atoms unexcited. Such a state
~@) is called the most antisymmetrical state.

From the Appendix it is obvious that the N/2 photon-
trapping N-atom state is described by the Young tableau
with N/2 3's in the first row and N/2 1's in the second
row. It becomes also clear why this state is called the
most antisymmetrical state. However, the formalism
given in the Appendix is quite complicated to explicitly
construct ~g) in Eq. (4.4) out of the known Young ta-
bleau. Without using any group theory, we here directly
show that the operator g+ io; applied to ~g) gives zero,
meaning that ~g) does not decay by a 3 to 1 transition.
To begin with we find

N/2

X ~i Pk, k (k+1M«+1, « (4.6)

In order to understand the factor k+1 we consider one
arbitrary summand of ltik+, k which has by definition
k+1 1's on certain positions of the first N/2 atoms.
Whenever we have a summand of fk k that has its k 1's
of the first N/2 atoms on any k of the k +1 positions of
our arbitrary summand of gk+, k and a 3 on the remain-
ing position j, cr~ applied on the first gives our summand
of gk+, k. This always happens exactly k+1 times in
the sum on the left side of Eq. (4.6). Similarly we get

with

@k,l
—= & ~l 1 ilkt 3 3liv/2 —kl 1' ' ' 1 lN/2 it 3 3ll &—

N

X +i Pk, k 2
k+ Pk, k —1

i =N/2+1
(4.7)

(4.5)
l

Returning to the object of main interest, we have with
Eq. (4.4)

N N/2 —1

g cr;~Q)= g ( —1) k! ——k !(k+1)its«+i k+ g ( —1)"k! ——k ! ——k+1 itikk i=0,
i=1 k=o k=1

(4 &)

where we have split g+, cr; in two parts and dropped the terms with k =N/2 and k =0 since their contributions van-
ish. Having then applied Eqs. (4.7) and (4.8) and having carried out an index transformation has thus shown that ~g)
does not decay. And since at least one excited atom is needed to prevent one unexcited atom from decaying via antisym-
metration, ~P) traps the most possible number of photons.

C. Switching from subradiant to superradiant transition

By applying resonant pulses for the ~1) to ~2) transition as represented by the operator (g~, rt)N/ on the state ~P)
of N/2 trapped photons, we get apart from a constant factor

N/2

2lk(3 3liv/z —«(2 2IN/2 —kf3 3lk & ~

k=0 P
(4.9)

which is in the Young tableau notation, the tableau with N/2 3's in the first row and N/2 2's in the second (see Appen-
dix).

Thus, for the sake of simplifying the analysis, we consider the case of full inversion of ~1) and ~2). This cannot be
realized with the three-level system introduced in Sec. II, since the microwave pulses can achieve only equal population
of (1) and )2). However, adding a fourth level (0), lower than the other three and only coupled to level ~2), accom-
plishes our wish to empty level

~
1 ) and to shift its population to other levels that do not influence the spontaneous emis-

sion from ( 3) to ( 1). Including the population of level ~0) into that of (2) allows us to keep our notation.
Since, as mentioned, atoms in level ~2) (and )0)) do not influence the spontaneous decay from [3 ) to

~
1), [@) should

radiate like N /2 atoms in state ~3 ). However, because of its importance, we will turn to the detailed calculation of the
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decay of 1f), with the additional wish to give a relatively simple example for this kind of decay-rate determination.
We first obtain a general formula for calculating the decay rate of unnormalized states of k1$), where 1P ) is a nor-

malized state. We then calculate the decay rate of 1' ) of Eq. (4.9) and show that it radiates like N /2 atoms in level 3.
The state k1$) decays to the state g+,0;k1$), which we may write in the form k1$), where 1P) is a normalized

state. The decay rate then is
2 2

&= ~X ~', = —~Z, k~
Wk, ,

' k k
(4.10)

Thus we see that the decay rate is just the square of the ratio of the lengths of the final state to that of the initial state.
Applying the operator g+ icr; exactly Ni times on 1g ), we get, apart from a factor,

N/2

2]A;[1 1 3 3]xn —A:[2 2]xz2 —i [1 1 3 . 3]a &

k=0 s a

which decays by applying g+ io; once again into the state

N/2

(N, +1) g (
—1) k! ——k !g g 1[2. . .2]„[1.. . 1 3. . .3]~gz i, [2. . .2]~y~ „[1.. . 1 3. . .3]i, ~

k 0 2 P P

(4.11}

(4.12}

where in carrying out the sum over P, the 1's have to be treated like 3's, and P, now stands for all distinct permuta-
t'ons among all the 1's and all the 3's. The number of atoms in level 1 of the states in Eqs. (4.11) and (4.12) is Ni and

N, + 1, respectively. Using Eq. (4.10) we obtain the expected spontaneous decay rate of N/2 superradiant atoms:
r '2

N/2 N/2 N/2
(k!)z[(N/2 —k)!] (Ni+1)

I =
N/2 N/2 N/2
g (k!) [(N/2 —k)!]

k=0 1

N/2
N)+1

=(Ni+1)
N/2

. ' =(Ni+ 1)(N/2 —Ni )=N3(N, +1), (4.13}

where, for example, the binominal coefficients

'2
N/2 N/2

k Ni

in the denominator, respectively, are the numbers of ele-
ments of P, and P, for the initial state. This then shows
that a nondecaying state can be switched to a
super6uorescent state, which becomes superradiant after
the first emission of a photon. If we switched half of the
atoms in 11 ) to 12 ), what is possible by keeping the
three-level system is an analogous but more complicated
calculation, which would lead to a decay of N /4 symme-

tricaBy coupled atoms. For high enough N, this still
means switching from a forbidden to a superradiant tran-
sition, though the radiation is substantially smaller than
that of N/2 symmetrically coupled atoms.

Some time ago Crubellier, Liberman, and Fillet and Al-
icki, Rudnicki, and Sadowski pointed out the strong rela-
tion, almost equivalence, between the statistical mixture
and the symmetry of a state for two- and N-level atoms,
respectively [9]. This has been taken advantage of when
Pavolini et al. observed the above discussed most an-

tisymmetrical state 1f) [10]. They prepared gallium

atoms in a j=
—, level in a full statistical mixture and thus

most likely in an antisymmetrical combination [9] of all
four Zeeman sublevels (as prepresented by a density ma-

trix, which is a multiple of the unitary matrix) and ob-
served that only half of the atoms decay to the j'= —,

' lev-

el. For an experimental implementation of our effect,
atoms in levels 1 and 3 should be prepared in a full sta-
tistical mixture along the lines of Ref. [10] to obtain 11( ).
The application of the microwave and the detection of
the superradiant radiation should be less problematic. As
a concrete situation we could think of the
(5S,~~, 5P, q~, 6P3/p) configuration of the very handy ru-

bidium atoms, where driving on the infrared 5P&/2 to
5S

~ /2 transition could inhuence the interatomic interfer-

ence on the ultraviolet 6P3/2 to 5S»2 transition. Accord-

ing to Refs. [5] and [8] the atoms should be placed in a
so-called pencil-shaped volume in order to secure invari-

ance of the Hamiltonian under atomic permutation.
The most antisymmetrical state 1g) has a simple inter-

pretation that arises at a glance from the corresponding
Young tableau (see Appendix) but also from the fact that
just two two-level atoms can form a fully antisymmetrical
state and therefore trap a photon. Similar to a system of
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N/2 Cooper pairs, ~g) represents a system of N/2 bo-
sonlike coupled small systems of two fermionlike coupled
atoms. The two-atom pairs consisting of one excited and
one deexcited atom cannot decay because of their an-
tisymmetry, and that is why the whole system does not
decay either. The switching of unexcited atoms to a level
not coupled to the excited state then leaves behind
symmetrically coupled excited atoms thus developing
constructive interference.

V. CONCLUSION

For the V configuration we have seen that microwave
pulses switching atoms from 1 to 2 can change the decay
rate of 3 to 1 drastically by means of altering the intera--
tomic interference. Especially, we have shown that the
state with N/2 trapped photons can be switched to a su-
perradiant state, and the decay rate of symmetrical states
can be changed by a factor of the order as high as N due
to switching superradiance from off to on and vice versa.
This can also be looked on as a device that triggers the
release of very high energy by low-energy pulses.
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APPENDIX: A CONSIDERABLE HELP:
YOUNG TABLEAUS

The following group-theoretical discussion is intended
to explain how an N atom n-level system can be described
in a complete and effective manner by standard Young
tableaus. We consider n-level atoms in the first part since
it does not require any extra effort. The connection of
atomic states with well-defined symmetry properties and
Young tableaus that characterize the irreducible repre-
sentations of the S~ XSU(n) group was first formulated
by Crubellier et al. Their justification is based on the
fact that the N atoms can be considered as indistinguish-
able and that the atomic operators are infinitesimal
operators of the SU(n) group [5,8]. We here concentrate
on showing that standard Young tableaus corresponding
to the SNXSU(n) group describe a basis of the n

dimensional configuration space and that they indeed are
a convenient notation for our problem. They especially
allow us to recognize the decay rate and the maximal
number of photons that can be released at a glance. Thus
it becomes easy to find states with many trapped photons
and to determine the new Young tableau and its decay
rate after the microwave pulses.

To make our discussion self-contained we introduce a
few well-known facts about Young tableaus.

1. Mathematical background [11—13]

A pa«ition &=[X,A,,. . .A,z] of the integer N fulfills
g,"=~&;=N and k; ~ k, for i )j. A set of N squares ar-

ranged in h lines placed one above the other, the ith hav-
ing A, squares (i = 1,. . . ,h ) represents the Young dia-
gram Y& corresponding to the above partition. The
scheme of numbering the N squares of a given Young ta-
bleau from left to right and up to down in increasing or-
der is not unique. Each configuration gives rise to a stan-
dard Young tableau 8, (s E [1,. . .,f ] ), where f" is the
number of those different configurations and therefore
the number of standard Young tableaus belonging to the
Young diagram Y&. The operators cr transform one
standard Young tableau to another belonging to the same
Young diagram.

o'k eA, —OA, (r g E [1 fk] ) (Al)

The symmetrizer of the rows of O„P, , is defined by the
sum over all A, &!A,2! A,&! permutations that leave the
rows of 8, invariant. In analogy, the antisymmetrizer of
the columns of e„g, , is the sum over all permutations
that only permute inside the columns, times the sign of
the respective permutation. Finally we need to define

gk gkPA, A,
( gE[1 fA, ]) (A2)

The f values for s lead to the f permutations belonging
to the standard Young tableau characterized by r and

According to Ref. [11]the system

EA, )
rsvp, E(l, . . ,f ),AE((N), .. . . ,(1!! (A3)

(124.. .1~iI3 2) —lh3 ] 2)

(12)„„es~l)l3l2)= ~12l3l) )

(A4a)

(A4b)

shows that different results are possible. In order to
avoid ambiguity we decide to interpret the permutations
in the following as indicated by (A4b), where the indices i
of the levels l; are the objects under permutation.

2. Application to the N n-level system

Analogous to Eq. (4.1) we divide the n -dimensional
configuration space in N!/(g" &N!) dimensional sub-
spaces characterized by N . atoms in the jth level

(j E [ l, . . , n ], g" &.N =N), and we have

n

N!/ (A5)
j=1(N!, g". ~N =N.

i.e., the sum over the dimensions of all disjoint subspaces
gives the dimension of the whole configuration space.
For the sake of generality, all parameters N, n, Nj and I;
are arbitrary natural numbers apart from the above given

is a basis of the ¹tdimensional vector space spanned by
the elements of S~ and E„,J E~„ for A+p and arbitrar
r, sE [1,. . . ,f"} and v, w E [1,. . . ,f"].

In order to construct quantum-mechanical states, these
permutations must be applied on the ket ~I

&
l2. . .lz )

defined as usual as the state in which the ith atom occu-
pies the level l, (i E [1,. . .,N] ). There are two possibili-
ties in principle: permuting the numbering of atoms or of
the states the atoms occupy. The example
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restrictions and n ~N, what can be realized easily by
omitting the levels that are not occupied by any atom.

We now describe how to obtain the basis states for
these subspaces. In the case that all the N atoms occupy
different levels (N~ K [0,1] for all jE [l, . . . , n] ) desig-
nated by the indices from 1 to N, the system

(A6)

consists of all Nt linearly independent states of the corre-
sponding subspace [compare with the set of permutations
(A3)].

The situation of different atoms in the same level
(N ~2 for at least one jC [1,. . , n ]. ) leads to states in
(A6) being equal or vanishing. Neglecting double and
vanishing states, we find that the maximal number of
N!/(QJ, N !J) linearly independent states remains. It
cannot be less because taking all subspaces into account,
there must be altogether n linearly independent states.
This can be understood considering that all basis states
are obtained from the different possible Young diagrams.
Those are characterized by the so-called outer product of
N single squares, which is n Xn X . n =n dimensional
[12,14].

In the following, for convenience, we substitute the
numbers i (i E [ 1, . . . , N ] ), with which Young tableaus
are usually characterized, by the corresponding eigen-
states I; and may refer to these standard Young tableaus
as collective atomic states. Then the most transparent
description of N n-level atoms is in terms of these stan-
dard Young tableaus rather than in considering the expli-
cit basis states. However, when the explicit f states cor-
responding to a standard Young tableau are of interest,
the E„'s of (A3) have to be evaluated where r and A, are
determined b~ the corresponding standard Young ta-
bleau. The f operators then have to be applied on the
ket ~l&lz. . .lz) according to (A4b) after the I s in the
Young tableau have been replaced by their indices i.

The f states corresponding to a standard Young ta-
bleau have the same symmetry and the same radiation
rate and are thus physically identical. Therefore, the cal-
culation of mostly not more than one state [r=s is the
easiest because of o =1, see Eq. (Al)] is necessary. For
qualitative considerations it is already enough to look at
the standard Young tableau. Thus, back to our system of
Fig. 1, a 3 and a 1 in one column is an indication of a

trapped photon since two 1's in one column would give
states equal to 0 because of the antisymmetration in the
columns. Moreover, the radiation rate increases general-
ly with the symmetry of the state. So the symmetrical
state, where the Young tableau consists of just one row,
has the highest decay rate, and the antisymmetrical state
(if existent, then its Young tableau is just one column)
does not decay at all.

The spontaneous decay rate can be evaluated from the
Young tableau as follows. At first all squares denoted by
levels being neither the upper nor the lower level of the
considered transition can be omitted. Then all pairs of
antisymmetrically coupled atoms can be omitted as well,
so that one row of say k excited atoms and l unexcited
ones (level 1) remains. The corresponding spontaneous
decay rate as determined in Sec. IV B is k(1+1) times the
spontaneous decay rate of one independently radiating
atom (set 1 in this paper).

In the final section of the Appendix, we present the
simple basis for two three-level atoms in terms of Young
tableaus and present a helpful way to construct the corn-
plete set of N three-level atoms.

3 1 and
3
1

characterizing the states (I/v 2)(~31)+~13) ) and
(1/~2)( ~31)—~13) ), respectively. The higher trans-
parency of the Young tableau notation becomes more evi-
dent for multiatom systems.

We now display how to construct the whole set of stan-
dard Young tableaus of the subspaces mentioned above,
which altogether form the whole configuration space.

3. The basis for the n =3 problem

in terms of Young tableaus

The basis for two three-level atoms in terms of stan-
dard Young tableaus is given in Fig. 3. Again for con-
venience, we have substituted the numbers i of the
squares, which were mentioned in Sec. IIIA, by the
atomic states 1;, where (l&, lz, l&)=(3, 1,2). We here
selected level 2 to be last in the ordering so that it can
easily be omitted when the 3 to 1 collective decay is of in-
terest. For instance, the subspace with one atom in level
3 and the other one in level 1 delivers the Young ta-
bleaus:

N 0
2 N

2
N 2

2

/3[3)1

I31211 3
—12

11I2I1

FICx. 3. The basis for two three-level atoms in terms of standard Young tableaus.
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Thus imagine the number of atoms in the levels 3, 1, and
2 (N3, N„and N2, respectively) to be fixed after being
chosen arbitrarily. The N3 squares marked with a 3 have

to appear in the first row on the left. The squares with
1's are to be placed right or under these 3's. The symme-
trical combination with the highest decay rate is obtained
when all 1's are situated in the first row. Taking these 1's

successively and placing them under the 3's leads to more
and more antisymmetrical Young tableaus. If there is a 1

under every 3 or if all 1's are in the second row, the most
antisymmetrical combination has been obtained in the
corresponding subspace. The squares with 2's have to be
placed right or under the 3's and 1's in a similar manner,
keeping in mind that not more than one 2 is supposed to
appear in one column, and no row should be longer than
the one above it.

As a general feature, each 3 that has a 1 in the same
column stands for an excited atom that is prevented from

decaying via destructive interatomic interference. We
therefore, understand at this point that the most an-
tisymmetrical state of Sec. IV C can be described and cal-
culated via the Young tableau:

3 3 ~ ~ ~ 3
] o ~ e ]

It stands for a system of N/2 symmetrically coupled
small systems consisting of two antisymmetrically cou-
pled atoms. The Young tableau reveals the whole physics
of the state, whereas the explicit representation of Eq.
(4.4) hides it.

Young tableaus allow us to recognize the decay rate,
the number of trapped photons, and its decay product
immediately and are, therefore, a helpful notation.
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