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Photon number distribution of detuned two-mode vacuum and excited squeezed states
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Lie-group methods are used for analyzing the photon number distribution of detuned two-mode

squeezed states. The effects of the detuning on the vacuum and excited two-mode squeezed states are an-

alyzed and found to be similar to those obtained previously for the degenerate case. Correlations be-

tween the radiations in the two modes are described and found to decrease as a function of the detuning

parameters.

PACS number(s): 42.50.Dv, 42.65.Ky

I. INTRODUCTION (1.3)

The problem of detuned squeezed states (SS's) was first
treated by Charmichael, Milburn, and Walls [1] and has
been developed further in various works [2]. We have al-

ready analyzed the influence of the deviation from reso-
nance on the SS photon number distribution [3] in the de-
generate case and have found that the squeezing proper-
ties are decreased as much as the detuning from reso-
nance is increased. In addition, the Schleich-Wheeler os-
cillations [4] of the excited SS photon distribution are
smeared by the cavity-mode bandwidth. This process is
similar to the "phase-jitter" [5] mechanism of Klauder,
McCall, and Yurke, where the phase difference between
the squeezed and the coherent fields cannot be locked.
However, Klauder, McCall, and Yurke referred these
phase fluctuations to the nonideal coherent source, while
in the present situation this is related to the detuning-
produced phase. In this paper we expand the previous
analysis to the general two-mode SS, which is represented
by the Hamiltonian [2]

H(t) =&Q]a]a]+&Qza2a20 f 0

(1.2)U(t) =e
which connects between the state vectors of the
Schriidinger picture (SP) and the rotated picture (desig-
nated by a tilde):

+e
(

t'{2t]t+{]) 1'ate —t{2]]t+P)) (1 1)Q )Q2e

The classical parameters of this model are c., the constant
pump amplitude (assumed to be undepleted); P, the phase
difference between the pump field and the total phase of
the two squeezed modes, and K describes an effective
macroscopic nonlinear coupling strength. The quantum-
mechanical properties of the squeezed radiation are
presented via a; and a; (i = 1,2), i.e., the annihilation and

creation operators of the cavity signal and idler modes,
respectively. 2Q and 0, are the pump and the cavity-
mode frequencies, respectively. Our model neglects the

damping mechanism, but we permit small detuning from
resonance. Following the ordinary method of nearly res-

onant interaction [6] we define a unitary operator:
—i (Ala la 1

+02a 2a2 ) t

Now, with a definition of the detuned two-mode squeez-
ing operator as the evolution operator in the rotated pic-
ture, we get

(1.5)

where the SP evolution operator is written as

U(t) = U(t)SD(t) . (1.6)

By using Eq. (1.6), the evolution equation can be easily
developed [3] as

dt
—SD= i(bQ]a]a]+EQ2aza2)

——(a]aze'~ —a, a2te '~) SD(t),

where

4O; =0;—0;, i =1,2

are the detuning frequencies and

(1.7)

(1.8)

is the squeezing frequency.
The solution of Eq. (1.7},under the initial condition

SD(0)= 1, (1.10}

1s

SD(t) =exp[i(bQ]a]a]+IsQ2a2a2)t
—(st/2)(a]aze'& —a,a2e '~)] .

So that the resonant (b,Q,. =O) expression for the two-

Using the operator-algebra theorems [6], the Hamiltoni-
an in the rotated picture is found to be time independent:

H = U(t} H(t)U(t)

=AQ]at]a]+])1Qza2a2 iR —(a]aze —a,ave ) .0 f ~ K iP t f —iP

2

(1.4)
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mode squeezing operator is just a special case of Eq.
(1.11). The detuned degenerate-squeezing operator [3] is
obtained from (1.11) by assuming a i =az,
EQ, +LQ2 =EQ.

The Hamiltonian (1.1) describes the nondegenerate
parametric down-conversion (PDC) process [7] inside a
cavity. The cavity is used in order to avoid the frequency
broadening of its output signal and idler field (due to
parametric fiuorescence) and the spatial dispersion (light
cone). In the present nondegenerate case, two down-
converted photons with frequencies Q& and Q2
(Q, +Qz=2Q), which are fixed by the phase-matching
conditions, are assumed to leave the cavity with a direc-
tion parallel to the pump. However, the cavity-mode fre-
quencies Q& and Qz might be slightly deviated from Q,
and Q2 due to uncontrollable broadening mechanisms
(e.g., inechanical and thermal vibrations of the cavity
mirrors which charge the cavity length). In the present
article we analyze the effects of this detuning on the pho-
ton statistics (i.e., photon number distribution) of the pro-
duced squeezed light. In Sec. II we discuss briefly the
effects of detuning on nondegenerate vacuum squeezed
states. The efFects of detuning on the interference with
coherent light is discussed in Sec. III. For simplicity we
neglect in the present work damping mechanism [2] and
phase-mismatching problems [8,9].

II. DETUNED TWO-MODE SQUEEZED VACUUM
STATES

We would like to show how the detuning term
i(b,Qiatia+bQzazaz) in the exponent of the detuned
nondegenerate squeezing operator controls the photon
distribution. Our first algebraic goal is to arrange the
evolution operator to a normal ordered (NO) form, by us-

ing the Lie algebra methods (see the Appendix). We ex-
ploit here the fact that our squeezed vacuum state (SVS)
was a vacuum state initially.

We define dimensionless parameters:

where we use the Carmichael, Milburn, and Walls [1]
transformation rule

iOD
tanh —«tanh(r)e

2
(2.7)

sinh(r) —=

7
sinh

(2.8}

~+
ez =—arg cosh +i sinh

2

~n =n =n
1 2 ~+

cosh +
2 g 2

sinh2

n+1

(2.9)

From (2.9) it is obvious that the detuning phase HD does
not appear and hence does not affect the photon-pair dis-
tribution. However, we show in the next section that this
phase affects the excited squeezed photon distribution.
The effects of the detuning parameter 5+ on the photon
number distribution for the nondegenerate SVS are very
similar to those analyzed by us [3] for the degenerate
SVS. Therefore we do not repeat here the description of
these properties.

III. DETUNED EXCITED TWO-MODE SQUEEZED
STATES

The two-mode detuned excited squeezed states
(DESS's) are defined as

From (2.6), (A10), and (All}, the chaotic photon-pair
probabilities are immediately given by

n

sinh

r=st (the squeezing parameter), (2 1) ~DESS) =D(ai)D(az)SO ~0), (3.1)

EQ,5;=, i =1,2 (the detuning parameter),
S

5+ =5,+52,

(2.2)

(2 3)

where D (ai) and D (az) are the coherent state (CS) dis-
placement operators

D(a;)=e ' ' (3.2)

=5z —5, ,

and

g=(1—b+)'~ (the threshold parameter) .

(2.4)

(2.5)

S~ is the detuned two-mode squeezing operator given ac-
cording to (1.11) and (2.1)—(2.4) by [10]

Sti(t) =exp —[id+(a,Qi+QzQz+1)
2

Using the results developed in the Appendix we obtain
the detuned squeezed vacuum state (DSVS)

—(e'~a, a, —e -'~a', a', ) ) (3.3)

[tanh(r)]"e ~n ) i ~n )z
~DSVS) = y cosh(r)n=0

(2.6)

Our aim is now to study the efFects of the detuning on the
photon number distribution of DESS's. For this purpose
we rearrange the operatoric product D (a, )D (az }SD in a
NO form as we did in the previous section for SD. Here
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the relevant Lie groups are found [6] to be D 6.-Its alge-
braic representation and the Baker-Campbell-Hausdorf
(BCH) relations are developed in the Appendix. By using
these results we get for the NO expression for the two-
mode DESS's:

lDESS) =e + e ' ' 'l0), (3.4)

where the parameters A, B, C, D, and E are given in
(A20).

The expansion of (3.4) can be written as

n m

lDESS)=e'+'g g g " q &- 'a&C" "lm), ln —q), .
o q!(n —m)!(m —q)!

(3.5)

The amplitudes of the DESS's for k, and k2 photons in the first and second modes, respectively, are given by

Ck k =(k„kilDESS)

eD+E
n =k)+k2 'vrk !k I k)+k2 —n n —k2 n —k)

!t k ! (n —k2).(n —ki).(k]+k2 n).
(3.6)

Here the summation is, respectively, from k
&

or k2 when k, & kz or k2 & k
& up to n =k, +kz.

Let us see how the detuning phase (2.8) enters into Eq. (3.6). We substitute
—i(i —i/2', g=g)+g, —p, (3.7)

where g, and g2 are the phases of the coherent fields in the two modes, respectively. By using these definitions Eq. (3.6)

is transformed into the form (for the case k i & k& ):

Ck k
= V'k, !kq!exp

lail'+ la2l' i (8~+/)—
la&l lazltanh(r)e [cosh(r)]

2

I!(I+k i k2 )!(k2—I—)!
[la2l —la, ltanh(r)e ]'. (3.8)

k
eD+Ek ) y [(It)2(k I))]

—1 g k —!IIlCc
1=0

(3.11}

Explicit expressions for the amplitude Ck k are obtained
1 2

by substituting the parameters A, 8, C, D, F. from (A20)
into Eqs. (3.9)—(3.11). By using the definitions (3.7) in a
similar way to the derivation of (3.8) we find that the
phase dependence of the photon number distribution
enters only via the phase Oz+g. Equations (3.9}—(3.11)
are convenient for numerical analysis especially for low
values of k& and k2.

Equation (3.4) can be expanded also in another form,
which leads to analytical expressions for the amplitude
Ck

1 k2 &

Ck k =e + Qk, !k,!
I 2

k2

X g [I!(I+i,—k2)!(k~ —I}!]
1=0 'n

Here we have ignored out of the summations (n indepen-
dent) phase factors that are cancelled for the probabilities

lCk k l
. From (3.8) we immediately find that the proba-

1 2

bilities depend explicitly on the phase factor 8&+f This.
is in contrast to the SVS in which the phases were can-
celled for the photon number distribution. That is an ex-

pansion to the same result obtained for the degenerate
case [3].

We arrange the summation of (3.6) according to the
following three cases.

(a) By substituting I =n —k „for k
&

& k 2, we get

XA Bk2 —I 1+kl —k~ (

(b) By substituting I =n —kz for kz & k„we get

C„k =e + Qk, !k~!

(3.9)
QQ j

lDESS) =er g A" a, +-
n! A

a,'+ — lo),B

(3.12)

kl

X g [I!(1+k,—k, )!(k,—I)!]
—'

1=0

XA ' B'C (3.10)

(c) By substituting I =n —k for k2=ki =k, we get

where

BCy=D+E—
A

(3.13)

By using the binomial expansions in (3.12) and after
straightforward (although tedious) algebra we get
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C„„=(k,k, iDESS)
'k~

e~ A A

Qk )!k~! C k, B

oo n!
X

(n —k, )!(n —kz )i
1' 2

CB (3.14)

By rearranging the summation of (3.14}we get analytical
expressions for the above three cases.

(a} For k, & k z, we substitute I =n —k „and after a
straightforward algebra we get

k~B k1 —k2
' 1/2

C =e~
k2! (k, k2)!—

treated by us for the one-mode DESS [3]. Other effects
related to these oscillations have also been treated in re-
cent articles [12,13,14]. We would like to discuss here
the effect of the detuning on the correlation between the
number of photons in the two modes. In Fig. 1(a)—1(e)
we show the probability Pl, „=~Cz I, ~

as a function of

number of photons k& and k2 in the two modes for five

different values of the detuning 5+ with the common pa-
rameters )a, ~=~a2)=3, v=2 0, $. =0. We find that zero
or small values of detuning (5+ & 1}the excited SS shows

a strong correlation between the number of photons in
the two modes. For larger values of detuning (6+ »1}
these correlations vanish.

For example, in Fig. 1(e) (for 6+ =2) the probability

P(k&, kz) corresponds already to a multiplication of two
separate distributions of Poissonian shape (including
small oscillations}.

BC
X,F, k, + l, k, —k~+1; (3.15)

IV. SUMMARY AND CONCLUSIONS

where &F&
is the confiuent hypergeometric function [11]:

&F&(u + l, v+1;w)= (I +u)!
(I +U)!

(3.16)

BC
X,F, k2+ l, k2 —k, +1; (3.17)

(C) For kz = k&, we get
I

Ck k
=e A,F& k+1, 1;k BC

(3.18)

Using the transformation (1.3) from the rotating pic-
ture into the SP the DESS is given as

(b} For k2&k& we substitute I =n —k2, and then we

get

1C 2 1
1/2

y

In the present article we have analyzed the detuning
effects on the photon number distribution of two-mode,
vacuum, and excited SS's. The use of the Lie-group
methods, and the BCH relations, which were developed
in our previous work [3] for the degenerate SS's, have
been generalized here to the two-mode SS. The present
generalizations are important since most of the experi-
ments on SS's correspond to two-mode SS's.

We have developed analytical expressions for the am-
plitudes of the two-mode DSVS and DESS's. The main
physical effects of the present two-mode case are similar
to those described by us for the degenerate case [3].

One of the most important properties of SS's are the
correlation between the radiations in the two modes [15].
We have calculated the photon number distribution as a
function of the detuning between the frequencies of the
down-converted photons and the cavity two-mode fre-
quencies. We have shown that the correlations between
the two modes are decreasing as a function of the detun-
ing parameters.
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The photon number distribution of the ~DESS's) are
given as

(3.20)

The effects of the detuning on the Schleich-Wheller os-
cillations for the two-mode DESS's are similar to those

APPENDIX: NORMAL ORDERING OF
THE TWO-MODE EVOLUTION OPERATORS

i. DSVS

Since we would like to operate with the evolution
operator Sz(t) of (1.11) on the vacuum state, it is
worthwhile to rearrange it in a NO form. For this pur-
pose we define the operators:
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3 a, x4=a&a2 ~

Lie algebra, gen-
Th ob h fo6] SL(2,R). T eycrating the group [

tion relations:commuta io

X =0)] [X )= X3,X)X)) 2 X

—2X4Xi)X42X3,[X),X3 =
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We use the following Lie algebra matrix representa-
tions:

—1 0
x] +X] 0

e ~=cosh
2

sinh(gr/2 }

T

—i 5+sinh

cosh
2

1

x2~X2 =
0

0

(A3)

1
i—6 sin h+

—ipe

0 1

x3 +X3
Q Q

J.

0 0
We use the following transformations:

r

(A9)

x4 —+X4 = —1 0 7
sinh

SD(r) =exp
a

ll
x2

X exp —(b, +x &

—e'~x3+e '4x4) . (A4}

By using the definitions (2.1)—(2.4) and (Al) the detuned
two-mode squeezing operator of Eq. (1.11}can be written
as [10]

=sinh(r),

sinh( gr/2 )8&=arg cosh +ih+h
2

(A10)

from the transformations (A10) and the relations (A9), we
get

—i8D
e ~=cosh(r)e

SD(r) =exp x2 exp(ax4)exp(Px, )exp(yx3) .

The NO form of SD can be written as
'2

sinh (gr/2)
g2

T

~+
cosh r =cosh +

2

i (8D —p)a=tanh(r)e, y =—ae '~ .

(A 1 1)

(A5)

Our purpose now is to find the relations between the NO
parameters a,P, y and the physical parameters, i.e., 6+,

and 7 These .relations are the Baker-Campbell-
Hausdorff {BCH) relations [16]. The BCH theorem en-
ables us to substitute the Lie algebra operators with their
related matrix representations in order to find the desired
relations. Using this theorem we can write the BCH
equation as

exp(aX4)exp(PX& )exp(yX3)

=exp (b, +X, e'~X—3+E '~X—
4 } . (A6)

lf

By expanding (A6} and by following a straightforward

algebra, we get

By using the NO form of Sn given by (A5), and by using
Eqs. (Al) and (All) the DSVS in the rotated frame is ex-
panded into the form:

~DSVS) =e ' 'e~~0)

i 8~

g tanh"(r)e ~n ), ~n )2 .
cosh r „0

(A12)

The states an ), ~
n )2 represent states with the same num-

ber of photons n in the two modes, which are denoted by
the subscripts 1 and 2. The SVS given by (A12) is an
eigenstate of the operator f2 with a zero eigenvalue.
Therefore this state is not changed by multiplying it on
the left side with the operator exp[(ir/2)h Xz]. By us-

ing the transformation (1.3) from the rotated picture into
the SP the DSVS of (A12) is transformed into Eq. (2.6).

e~ y-~
=cosh I+—ae ~ e~—aye

sinh

(A7)

2. DESS

In this case the operatoric product D(a, )D(az)SD is
needed to be reorganized in a NO form. The relevant
eight algebraic generators of the Lie group are

where

(1—6+)=g, A=

From {A7)we get

—ib, +
—e

—e'&

(A8)

x, =a,a(+a2a2+1, x2=a, a2, x3 =a )a2,
(A13)

x4=a], x5 —a2,

These operators obey the following commutation rela-
tions:
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[x ] yx3] 2X3$ [x3$X3 ] 2X3$ [X3$X3) x
$

I
—— [, ]——,[, ]-

[x»X7] x7y [x3y 6] x5, [x2,x7]—x4, (A14)

[x3yx4] x77 [x3yx5 ] X6

[x4,x, ]=[x„x,]=x, .

curled brackets the matrix elements that are difkrent
from zero (all other matrix elements vanish).

By using the definitions (2.1)—(2.4) and Eqs. (A13),
(3.1), and (3.2), we get [10]

~
DES ) =D (a& )D (a2)S& ~0)

Xexp(a, x6 —a fx4)exp(a2x7 —a2x5)

We use 6 X 6 matrix representation for these operators:
Xexp —(ih+x, —e'&x, +e '&x3) ~0) .

x, X"'=—[X,",'=X,",'= —1],
x, X"'-=[X,",'=X,",'=1],
x, X"'=—[X,",'=X,",'= —1],
x, X"'—= IX,",'=X,",'= —1},
x, X"'=—[X,",'= —X,"5'= I ],
x 7~X' '= IX3,= —Xs4=1],
xs~x"'—= [X„=—2] .

(A15}

We use here a short notation by which we give in the

(A16)

The NO form of the product D (a& )D (a2)SD can be writ-
ten as

(A17)

Our purpose is now to find the relations between the NO
parameters A, B,C,D, E,F, G, H and the physical parame-
ter a„a2, b, +, P, and r By su.bstituting the I.ie algebra
matrix representations we can write the BCH equation
as:

exp(a&X~ —a (X4)exp(a2X7 —a2X5)exp —(ib, +X& e'&X2—+E '~X3)

=exp( AX3)exp(BX6)exp(CX7)exp(DXs)exp(EX, )exp(FX4)exp(GX5)exp(HX2) . (A18)

By expanding (A18) and by following a straightforward lengthy algebra we get the matrix identity P—:Q, where P and

Q represent, respectively, the left- and right-hand sides of (A18):

P= [Pll = I;P2( =al, P31=a2,'P41=a2,'P51=al

isa —i8D
P22=P33 cosh(r)e;P44=P55=cosh(r)e;P24=P35 sinh(r)e

iBD
P42 =P53 sinh(r)e'; P62= a &

cosh(r)e —a2sinh(r)e '

iHD —iOD
P63= —a,'sinh(r)e'~+a[cosh(r)e;P64=a& sinh(r)e '~ —a2cosh(r)e

—i8D
P65= —a,cosh(r}e +a2sinh(r)e ';P6&=1]:—Q= [Qt t =Q66=1;Q2&=B —AGe;Q3& =C —AFe;Q

&

= —Ge;Q5, = Fe;Q22—=Q33=e —AHe

Q44=Q55=e, Q34=Q3 = ~e ', Q43=Q53

Q6( = 2D +(GC+BF—)e;Q62=HCe F;Q63=HBe ——G;Q64= —Ce;Q65= —Be (A19}

In deriving the matrix elements of P we used the transformation (2.8). We have used here again a short notation by
which we give in the curled brackets the matrix elements, which are difFerent from zero (all other matrix elements van-
ish).

By comparing the matrix elements in P and Q, we get the relations

sinh(r)e i (OD —P)e =cosh(r)e, A = =tanh(r)e, H = —Ae '~,—E

i (0~ —P)B =a, —a2 tanh(r)e
i(OD —&) l 2 2 i (OD —P)C =a2 —a;tanh(r)e, D =—

—,'( Ia, ( + (a2~ )
—2a', a2 tanh(r)e

a 1

—Ee

iO—a*, e G=
cosh(r)

—a2

e

i8—a*e
2

cosh(r)

(A20)

By substituting (A17) into (3.1) [with the parameters of (A20)] we get the NO expression for the two-mode DESS as
given in (3.4).
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