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Propagation of electromagnetic solitary waves in dispersive nonlinear dielectrics
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We have derived the wave equation of electromagnetic field coupling with TO phonons in second-
order nonlinear dielectrics. If the loss of the medium can be ignored, theoretical calculation shows that
the propagation of electromagnetic pulses without distortion in the dispersive medium is possible due to
the dependence of the index of refraction on the electromagnetic field. This electromagnetic field is
governed by a Boussinesq equation that has soliton solutions. If the loss of the medium is sufficiently
strong that the damping distance is much smaller than the signal width, we find electromagnetic shock-
wave solutions. Possible experiments in LiTaO; are discussed.

PACS number(s): 42.50.Rh, 42.65.—k

I. INTRODUCTION

The propagation of electromagnetic signals has been
studied extensively in many nonlinear systems.
Hasegawa and Tappert [1,2] first predicted the optical en-
velope soliton in glass fibers with dispersion and non-
linearity, and Mollenauer, Stolen, and Gordon demon-
strated this later in their experiment [3]. This leads to
the possibility of tens of gigabits per second data
transmission rates for optical communication. The elec-
tromagnetic shock wave and soliton in nonlinear
transmission lines were studied in both theory [4,5] and
experiment [6]. Recently, due to the rapid development
in the generation and detection of terahertz electromag-
netic signals [7-9], the study of the ultrashort- and
ultrahigh-amplitude electromagnetic signal propagating
in nonlinear dispersive dielectrics becomes possible in ex-
periments. In this paper, we discuss the electromagnetic
signal coupling with TO phonons (polariton) in a non-
linear medium [10].

If the crystal medium has a second-order nonlinearity
and the electromagnetic field is coupled to the TO pho-
non of the crystals, the electric displacement D (w) is
given by

D(w)=e@)E(0)+ [d“E(0—w)E(w)do’ ,  (11)

where

w%‘o
e(w)=¢€e(o)+[e(0)—e(x)] (1.2)

who— ' —iwg
Here €(0) is the dc dielectric constant, €( « ) is the optical
dielectric constant, wyg is the transverse optic lattice res-
onant frequency, g is the damping rate, and d‘® is the
nonlinear susceptibility.

If w <<wyq, the dielectric constant of Eq. (1.2) can be
written as

2
elw)=¢€(w)+[e(0)—e( )] {H—%-—-H—%i (1.3)

10 a10

By taking the inverse Fourier transformation and assum-
ing d'® is independent of » (d (@) should depend on  ac-
cording to Miller’s rule, but if the nonlinear term is much
smaller than the linear term and o <<wrq, this is a good
approximation), Egs. (1.1) and (1.3) give D in the time
domain:

D (= [ D(w)e'dt

2

E
—e0E(-—>-%E_ 5% 9B 4p
wfo 3t?  wpo O

where S =€(0)—e( ) and d =d'®.
Putting the D(t¢) into Maxwell’s wave equation, we
have

FE _ 1 & S |d’E, OE 2
2 =2 T dOE——— | S5 +gS— |+d(ED |,
axr  c? at? €(0) wro | Ot? a1 (

(1.4)

where ¢'>=c2/€(0), S =€(0)—€( ).

Equation (1.4) is the basic equation of this paper be-
cause it describes the electromagnetic field in this type of
medium. In the right side of Eq. (1.4), the second term is
the dispersion term, the third term is the dissipation
term, and the last one is the nonlinear term. Since this
equation is a nonlinear dispersive wave equation with
damping, it is expected to have solitary-wave solutions if
the damping term can be ignored or shock-wave solutions
if the dispersion term can be ignored.

II. SOLITON SOLUTIONS
IN THE ZERO-DAMPING CASE

First we consider the zero-damping case. So Eq. (1.4)
becomes
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=— (2.1
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Equation (2.1) is almost the same as the regular Bous-
sinesq equation

uXX + uXXXX +6( u Z)XX = uﬂ (2-2)

which describes a shallow-water wave propagating in
both directions [11] and a one-dimensional nonlinear lat-
tice [12]. But there are two differences between them: (i)
In (2.1), the nonlinear and dispersion terms are in the
form of time derivatives instead of space derivatives for
(2.2). (ii) The signs of the nonlinear and dispersion terms
are opposite and this leads to (2.1) being a well-posed
equation for linear dispersion; so we call (2.1) a well-
posed Boussinesq equation. We want to emphasize that
the well-posed Boussinesq equation rarely arise in physi-
cal problems and actually this is the first case we are
aware of. In Appendix A, we give the N-soliton solution
of Eq. (2.1) and the inverse scattering transformation for
the initial-condition problem of (2.1). In the following,
we will discuss the electromagnetic soliton governed by
(2.1).

A. Basic properties of a single electromagnetic soliton

Assume Eq. (2.1) has the traveling-wave solution
E (x —vt), where v is the velocity of the traveling wave.
Let £=x —ut, and introduce the following parameters:

20%0d _v? 1 o= Bc2wo

vis c ’ vis
By assuming the boundary condition E =E ¢=0 at
§==c0, which is due to the solitary-wave property, we
find the solitary-wave solution:

Vu
2

(2.3)

3u

E = —sech? I3 (2.4)
a

More detailed study of Eq. (2.1) in Appendix A shows
that (2.1) has an N-soliton solution and (2.4) is the one-
soliton solution. Figure 1(a) schematically shows this sin-
gle soliton with the normalized time and amplitude.
From (2.4), we obtain some basic information about the
electric soliton.

(i) The wvelocity of soliton v. By the definition
E =E(x —ut), v is the velocity of the soliton. From the
solution (2.4), u >0 must be satisfied in order to have a
finite solution. But

2 2

v
c'2 C Wt

u= BC 2(0%0 _ [
vis vis
This leads to the requirement for the soliton velocity to
be superphotonic:

c
Vel0) *

(ii) Amplitude of soliton E,. From the solution (2.4), it
is easy to see that

v>c'= (2.5)

3185
2
3 [—"54 c?
3u c
0 q 20
(iii) Width of the soliton.
2 _ 2’572
A= Vo = 73 2.7)
—’2 - 1 C(UTO
c
Now the solution (2.4) can be reduced to
E =Esech? %(x —ut) ] , (2.8)

which has the same structure as a Korteweg—de Vries
(KdV) soliton [13].

Equations (2.5)-(2.7) give us the relation among the ve-
locity, amplitude, and width of the soliton. By using
these relations, we can express the velocity and width of
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FIG. 1. Single bright (a) and dark (b) solitons with normalized
field and time: e,=—6€(0)/d, T=[S/e(0)w3o]'/%. Note that
the duration of the dark soliton is larger than that of the bright
soliton.



3186

the soliton by the amplitude of the soliton:

’

c
V=———-—"——75>c¢’,
2dE, 172
3e(0)
(2.9)
_ 6S 12 c’
A= 2 /2 -
a)To(_dEo) n 2dEO
3e(0)

v is velocity of the soliton, A is the width of the soliton in
space. The pulse duration in time is given by

6S 172

— (2.10)
CD%'()( ""dEo)

T=—
v

Figure 2 shows the amplitude dependence of the speed
and the duration of this electromagnetic soliton. From
(2.9) and (2.10), we draw the following conclusions.

(i) For the electromagnetic soliton, there is only one in-
dependent parameter. For example, if the amplitude of
the soliton is given, the speed (not the direction), the
width, and the shape of the soliton can be determined.
The larger the field E,, the shorter the soliton pulse and
the faster the soliton propagates.

(ii) dE, <0 must be satisfied to get the finite soliton
solution, so this soliton is negatively polarized and the
soliton travels faster than the speed of the low-frequency
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FIG. 2. The dependence of (a) the normalized speed (v /c’),
(b) the normalized time duration 7 on the field amplitude of the
single bright soliton.
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electromagnetic wave in the medium. On the other hand,
the speed of the soliton should be slower than the speed
of light in a vacuum. This set a limit for the amplitude of
the soliton:

3(e—1)
E <Em=W

Actually when E; is close to E,, the condition for our
model w << @ is no longer valid according to (2.10).

B. Colliding solitons

One of the most important features of solitons is that
the solitons preserve their shapes and velocities after col-
lisions. In Appendix A, we construct N-soliton solutions
for Eq. (2.1) and give the inverse scattering transforma-
tion for the initial-condition problem. By solving the
initial-condition problem, one can find the asymptotic be-
havior of the initial pulse—the initial pulse evolves to
several solitons. In the following we study the colliding
behavior of solitons by using the N-soliton solution. To
simplify, we choose N =2. We can see that the two-
soliton collision gives almost all features of soliton col-
lisions.

From Appendix A, let N =2. We find the two-soliton
solution for Eq. (2.1):

E=eyu , (2.11)
where
82
u=——=Inf,
dx? f
F=14e"4e"+ g4e™m ™
t X
n=a;——w;—+§,; ,
T
w?=aiz_ai4 ’
A=1+ 12a%a3
(al"'l'az)z'_(al+az)4_(ﬂ)1+w2)2 ’
(i=1,2)
where
_ 6e(0) s |\ ,
[ d 5 2 N L=c'r.
6(0)&)’[‘0

After a simple calculation, we find the asymptotic behav-
ior of the solution (2.11):

ai L9, _
—4—sech (m+4,; )+—Z—sech (m+4Ay), t—>—o

u= 2 2
a a
—A}sechz(nl+Ar)+Tzsech2(n2+A;), t—+o .

It is easy to see this solution corresponds to the case of
two solitary pulses colliding. After the two pulses pass
through each other, the pulses keep the same shape and
velocity except for a phase shift. And a;L /w;T gives the



45 PROPAGATION OF ELECTROMAGNETIC SOLITARY WAVESIN . ..
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FIG. 3. The collision of the two solitons traveling in opposite
directions (a, =0.5, a, =0.3).

velocity of the soliton i. Usually, we assume a; >0 and
the sign of w; determines the direction of the soliton
propagation. In Figs. 3 and 4, we show the two-soliton
collision in the case of the same and opposite propagation
directions. When 77, ~0, n,~ o, we find E obtained from
(2.11) is the same as solution (2.4). So the electromagnet-
ic pulse governed by (2.4) is an electromagnetic soliton.

An important conclusion from solution (2.11) is that
the two solitons experience a phase shift after the col-
lision. Suppose two solitons collide at time ¢ ~0, then
t = — oo corresponds to the time long before the collision
and ¢ =+ oo corresponds to the time long after the col-
lision.

For soliton 1,

Af—A;7=In4 .
For soliton 2,
Af—A;y=—In4 .

The total shift is conserved during the collision, i.e.,
A;+A,=const. We also can see that the amplitude of

soliton i is a? /4. From w?=a2—a}, it is easy to see a; < 1

which is the limit of the amplitude of the soliton. This
limit of the amplitude prevents infinite propagation
speed.

/ \ A~ =250
/ e~ -150
"\ t=0
A~ \ +150
y
t ~ /\ 4250

» x

FIG. 4. The collision of the two solitons traveling in the
same direction (a, =0.5, a, =0.3).
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In order to have finite soliton solutions and finite phase
shifts, 4 >0 must be satisfied. It is interesting to note
that A <O gives rational solutions but 4 =0 gives a finite
solution which is the one-soliton solution.

C. Dark-electric soliton

In glass fibers, the optical pulse is governed by the non-
linear Schrddinger equation which has the regular-soliton
(bright-soliton) solution and a dark-soliton solution [1,2].
Recently the dark soliton was generated and studied in
optical fibers [14,15]. Similarly, it is interesting to study
the dark-soliton solution of Eq. (2.1). For a regular soli-
ton, the boundary condition is

Ei(t2)=0, E(+)=0, (2.12)

and E reaches its maximum value at the center of the sol-
iton. Since the intensity I < E2, the background of this
soliton is ‘““dark” (no field) and the center is “bright”
(high field). Another family of solutions can be defined as
a soliton solution with the boundary condition

E(t»)=0, E(+»)=E;#0, (2.13)

where E 4, is a constant. We further assume that the field
is zero at the center of the soliton: E (0)=0. Compared
with the bright soliton, this soliton has ‘“bright”
(nonzero) background and ‘“‘dark” (zero) center, so we
call it a dark soliton. It is easy to verify the existence of
dark solitons from Eq. (2.1).

Let E;=E +E, represent the traveling-wave solution
of (2.1) and put E; into Eq. (2.1), then we get

PE | 1 , 2dE4 |JE S dE
—_ = .___+ _
ax? c”? c? 3t?  wioc? art
d 9 2
+——=(E°), (2.14)
c? or?

which is still a well-posed Boussinesq equation with the
boundary condition (2.12). By using the same technique
in Sec. IT A, we find the traveling-wave solution for (2.14)
satisfies the following equation:

with boundary conditions
E(fw)=0, E(tw)=0.
By defining u'=u —aE 4, we get

with the same boundary condition as the regular soliton.
Its solution is

E= ﬁ‘—seehz Vu' J ,
a 2
which leads to
’ ‘/—7
E;=E, + 3; sech? 2“ 5) . (2.15)
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If we want the center of the soliton to have zero field, i.e.,
E,(0)=0, then (2.15) becomes

3u’

> 1 —sech?

E;= £‘§ (2.16)

We call this solution a single dark soliton and Fig. 1(b)
schematically shows this dark single soliton with the nor-
malized time and amplitude. It has the following proper-
ties.

(i) Pulse width of the dark soliton.

1/2
_i =
u

(ii) Velocity of the dark soliton.

Since A; should be a real number, v <c¢’' must be
satisfied according to Eq. (2.16). This means the dark sol-
iton will move slower than the regular soliton.

(iii) Amplitude of the dark soliton. At {==t oo,

20%(28)1?
— ) 2.17)

2 coTo
c

2 e
V'

Ad:

2
31— |
3u ¢
w—E4="—= 2.18
¥ 2a 4v3%d @.18)
At £=0, E;=0. This is the dark point. For v <c’,

dE;,> 0, which means the dark soliton is positively po-
larized (assuming d >0). Now

E;=E,, |1—sech?

A_d(x —t) ]

Similar to the regular-soliton case, we can express the ve-
locity and width of the dark soliton as a function of the
soliton amplitude:
¢!
4dE
3e(0)
s |V ¢’
0ToldE ) ] 4dE 4
3e(0)

’
72 <C

(2.19)

A= 172 -

And the pulse duration in time is

128 172
(l)%o(dEo)

It is interesting to compare the dark soliton with the
regular bright soliton for the sample amplitude, i.e.,
Ey=E . By comparing (2.19) and (2.20) with (2.9) and
(2.10), we can draw the following conclusions.

(i) The dark soliton propagates with a subphotonic ve-
locity v <c’, but the bright soliton has a superphotonic
velocity v >c¢’. So the dark soliton moves slower than
the bright soliton.

(i) For the same amplitude, the dark soliton is V2
times wider (in time) than the bright soliton.

(iii) The dark soliton is positively polarized, but the
bright soliton is negatively polarized.

(2.20)

r=—=
v
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III. STRONG DISSIPATION: SHOCK WAVES

If the dissipation of the medium is very strong, we have
to keep the damping term in Eq. (1.4). There, the third
term on the right is the damping term, which is an addi-
tional term when comparing to Eq. (2.1). For a localized
traveling wave, E, /E,, ~ 1, where 1 is the duration of the
electromagnetic field. So, if 7>>1/g, we can drop the
dispersive term E,, and Eq. (1.4) reduces to

%E _ 1 3* Sg JE
ax? % ar who Ot

€(0)E —

d(El)] . @G

By assuming a traveling-wave solution E =E(§)
=E (x —ut), the equation (3.1) becomes

2 SgvE
Ep=" |d0)E— 225 4 4E (3.2
c (l)To &€
By assuming
_ 2(0%-011 =1 U2 BC O)TO
- vS ’ - c 2 0 u= v 3S ’
and the localized condition
E(t0)=0, E(+®)=0 (3.3)
Eq. (3.2) leads to
Ec+=E+2E=0. (3.4)
28 g
The solution for (3.4) is
E=——|1—tanh |— §] . (3.5)
This has a Taylor shock-wave profile. E(+ o )=0 re-

quires u /2g >0, which means v <c¢’. And it also gives
E(— o )=-—2u/a. We can obtain the following proper-
ties of the shock wave.

(i) Width of the shock wave.

3
A=2_g= 2gSv
u

2

2
1—— c wTO
C

(ii) Amplitude of the shock wave.

1———— c
2_u:_cz_

Eo=—
0 a vid

We can express the velocity and the width of the shock
wave in terms of the amplitude of the shock wave:

_ c _ 2cgS
Ve(0)+dE, wio(dEy)V €(0)+dE,
A 28 (3.6)

v B w-zl-o(dEo) '

T=

The shock wave can be rewritten in the following form:
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EO
E=—"
2

1~tanh%(x —ut) ] .

This shock wave travels with a subphotonic velocity
slower than the speed of light in the medium and positive
polarity (dE, > 0).

Another type of shock-wave solution can be found by

assuming the boundary condition
Eftw)=0, E(—x)=0, (3.7)

instead of (3.3). The shock-wave solution with this
boundary condition is

=4 u
E= " 1+tanh 5 I3 (3.8)
where
= =—=—1>0, = .
a °S B 2 0, u 33 (3.9)

This shock wave is negative polarized (dE <0) since the
amplitude is given by

Ey=E(+o0)=2%
a

And the relations among the pulse width, propagation ve-
locity (superphotonic), and the amplitude are

- 4 ' _ 2cgS
V= —F—/———>C Y N
V' e(0)+dE, oto( —dEy)[e(0)+dE,]
A 2gS (3.10)
T:——:—————— .
v a)%o(-dEo)

It is interesting to solve the initial-condition problem
for Eq. (3.1). Under the slowly varying approximation,
Eq. (3.1) can be reduced to Burgers’s equation (see Ap-
pendix B) which can be solved analytically for the initial-
condition problem. To simplify, we study the evolution
of a shock wave whose initial waveform is a Taylor
profile with a wider pulse duration than (3.5). We find
that the shock wave will be sharpened and the sharpening
effect will be stronger if the amplitude of the shock wave
is larger.

IV. SOME EXPERIMENTAL CONSIDERATIONS
FOR ELECTROMAGNETIC SOLITARY WAVES
IN NONLINEAR CRYSTALS (LiTaO;)

From the discussion in Secs. II and III, the media with
second-order nonlinearity can be used for the propaga-
tion of electromagnetic solitons (if the loss of the media is
small) or electromagnetic shock waves (if the loss of the
media is large). However, it is easier to obtain a strong
nonlinear effect if we choose the media with large non-
linearity due to the difficulty of obtaining a long propaga-
tion distance in the experiment and generating an ul-
trahigh electromagnetic field in a very short time period.
For LiTaO,, the second-order nonlinear coefficient d in
the microwave region is quite large compared to other
crystals, which is the main reason to choose it as a first
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experiment candidate. Before we put numbers of LiTaO,
into the solutions which we derived in the previous sec-
tions, it is important to discuss some general features of
the nonlinear dispersive wave equation. The nonlinear
term in the wave equation will sharpen the pulse, and the
dispersive term will broaden it. When the nonlinear and
dispersive effects are balanced, the pulse will keep its
shape, which is the property of the solitary wave.

If we consider only the nonlinear term, Eq. (2.1) be-
comes

FE _ 1 &

d 2
ol o7 3,2 E+ (E*)

€(0)

We can rewrite the above equation as

#E_& [ E
ax2 3t |cXE) |’
where
”
2 )= 4
c“(E) o dE
€(0)
If dE <<€(0), then
vy _dE_
c(E)=c'|1 26(0)]. 4.1)

We could regard c(E) as the field-dependent velocity of
propagation. If we have an electromagnetic pulse, the
center part of the pulse with E, >>0 will move faster (be-
cause dE;<0) than the wings due to the nonlinearity
(4.1). This nonlinearity becomes important when the
center of pulse catches up with the front edge of the
pulse. More precisely, the center moves a longer distance
A than the edge, where A is the width of the pulse. Sup-
pose this process takes a time T, then we have

A=[c(Ey)—c(0)]T,
A
A —dE,
T= = c
c(Ey)—E(0) 2€(0)

At the same time, the pulse travels a distance L, and
T~L/c(0)=L /c'. Now we have

A _L —_ A
—aE, o o F= g (4.2)
2¢00) ¢ 2¢(0)

When dE, is small, L ~(dE;) %/ or L ~(A)3 because A
depends on dE [see Eq. (2.9)]. The physical meaning of
L is that the pulse experiences a strong nonlinearity after
it travels a distance L. When the electromagnetic field is
small, L will be very long. In an experiment, L is limited
by the size of the sample and the dissipation distance of
the material, so it is desirable to use an electromagnetic
field as high as possible for the experiment. For most ma-
terials, the dissipation length is much shorter than L.
For this strong dissipation situation, we will expect a
shock wave. But if the dissipation distance is much
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longer than the nonlinear distance L, we should obtain
the soliton.
We use the following parameters for LiTaO; [16,17]:

=—3.2X10"8m/V (ds;),
€(0)=43, €(©)=20, §=23,
w1o=4.0X1083 s~ 1|
g=8.16X10"2%s7 1.

Let us consider an electromagnetic pulse of 1 ps duration,
ie., 7=10""s. With (2.10)

A _ 6S
w%‘o( _dEo )

172
=== =10"1
v

we find the electric field to be E,=27 kV/cm. From
(4.2), the nonlinear characteristic length is

_4a
—dE,
2¢€(0)

For a 1-ps pulse, the dissipation length L ,=1 mm [17],
which is 43 times shorter than nonlinear distance L. So
there is no significant nonlinear effect but very strong
damping for a 1-ps pulse in a LiTaO,; crystal. Because
the soliton exists when there is no significant damping
but strong nonlinearity, a 1-ps soliton cannot exist in Li-
TaO,.

To understand the interplay of the nonlinearity, the
dissipation, and the solitary-wave amplitude in a non-
linear crystal, we introduce a parameter L, /L, which is
the ratio of the damping length to the nonlinear charac-
teristic distance of the material. When L /L >>1, the
soliton solution is a good approximation due to the weak
damping; when L,/L <1, the soliton is impossible to
propagate while the shock wave is possible due to strong
damping. Figure 5 shows L /L as a function of the am-
plitude of the solitary wave for some nonlinear media.
From this figure, we found the basic limitation to the ob-
servation of an electromagnetic soliton is the huge dissi-
pation and weak nonlinearity in the LiTaO; crystal. If
we can find some material with two orders of magnitude
larger nonlinearity or two orders of magnitude less loss
than LiTaO;, the electromagnetic soliton should be ob-
served in experiment. On the other hand, we know that
the shock-wave solution can be found for the material
with large loss, which fits the case of the LiTaO; crystal.
If we choose

L= =4.3X107? m=4.3cm .

=1 ps==10"]2 s,

g=8.16X10" (s71), 1/g=1.23x10"1,

we find 7>>1/g which is the shock-wave condition in

Sec. ITI. The shock-wave amplitude is given by Eq. (3.6):
2gS

w%o(dT)

E,= =64 kV/cm for LiTaO; .

For this field, the nonlinear distance L is about 1.8 cm.
The 7=10 ps case also satisfies the shock-wave condi-
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T T Ty T TT

1 10 100 1000
Amplitude of Soliton (kV/cm)

FIG. 5. The ratio L,/L as a function of the solitary-wave
amplitude. When L, /L >>1, it is possible to observe the elec-
tromagnetic soliton; when L, /L <<1, it is possible to observe
the electromagnetic shock wave. The solid line is for the Li-
TaO,; crystal and the dashed line is for a material with two or-
ders of magnitude larger nonlinearity or two orders of magni-
tude less loss than LiTaO;.

tion 7>>1/g for LiTaO,. This requires E,=6.4 kV/cm,
but the nonlinear effect can be seen after 18 cm propaga-
tion which is difficult in experiments. In Fig. 6, we show
the nonlinear sharpening effect for a 80-kV/cm shock
wave with 5 ps initial rise time after 2 cm traveling in Li-
TaO;. The nonlinear sharpening effect is more obvious

E
=
-4 2.0+
2 (a)
S 1.5+

4]
2
2
)
E’ 0.5+
i
g 0.0 T L 1 T
g 0 5 10 15 20
m Time (ps)

€
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N (b)
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1<}
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2

e

."‘—‘.?. 0.5

in

8 0.0 T T T T
g 0 5 10 15 20
m Time (ps)

FIG. 6. The sharpening effect for the 80-kV/cm shock wave
in LiTaO;. (a) The initial shock wave with 5 ps duration at
x =0. (b) The final shock wave at x =20 mm is sharpened to 3

ps.
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for a higher field shock wave.

Another important consideration for the observation
of these solitary waves is that the pulse shapes of elec-
tromagnetic transients generated experimentally do not
match the soliton or shock wave perfectly. However, it
can be demonstrated by solving the initial problem (see
Appendixes A and B) that the initial pulse which does
not match the solitary-wave shape will change its shape
and finally match the solitary wave if the pulse propa-
gates a long enough distance. As to electromagnetic am-
plitudes of electromagnetic transients, over 100 kV/cm
electromagnetic pulses with a few picoseconds transient
time have been achieved [9] due to the rapid progress in
switching technique. So the basic requirements for the
generation of an electromagnetic solitary wave are avail-
able now and the experimental demonstration of the elec-
tromagnetic solitary waves should be in the near future.

APPENDIX A: N-SOLITON SOLUTION
OF EQ. (2.1) AND THE INVERSE SCATTERING
TRANSFORMATION

We have Eq. (2.1) for an electromagnetic field in non-
linear dispersive material without dissipation:

82E= 1 6 S J‘E j_i(Ez)
ax? ¢ 3?  whroe? At c? ar? ’
This equation can be rewritten as
E,—aE,,—BE*),=c"E,, , (A1)
where
a=—S 50 pm——t g,
E(O)COTO €(0)

For convenience, we want to normalize E, x, and ¢ so that
Eq. (A1) becomes a dimensionless equation:

Now (A1) becomes
Uy~ Upgrgrgrg—6(u 2 gt =Upy
To simplify the notation, we drop the prime in the above

N N
fat= 3 exp | 3l uip;+ 3 pm; |
=01 ii,=jl i=1

i<j
7, =Px —€Q;t —), €==1
Q,=P,(1—P})'?,
12P?P}

equation. Finally we reach the normalized equation for
Eq. (2.1):

Uyy —Uyexy —6(u z)xx Uy - (A2)

Equation (A2) is almost the same as a Boussinesq equa-
tion (2.2) except for the different sign for the second and
third terms of the left side. The linear dispersion relation
of (A2) is w*=k?+k* where k and o are real and so (A2)
is called a well-posed Boussinesq equation.

On the other hand, the Boussinesq equation (2.2)

2 —
Usx + Usxxx +6(u )xx Uy

has the linear dispersion relation w*=k*—k* When
k <1, Im(w) >0, which gives instability and (2.2) is called
an ill-posed Boussinesq equation. For most physical situ-
ations, we obtain (2.2) instead of (A2) even though it is an
ill-posed equation; usually they are prohibited by the
asymptotic derivation of the long-wavelength limit. And
now (A2) is a well-posed equation, so we do not have to
worry about the long-wavelength limit.

A very important technique to analyze Eq. (A2) is the
inverse scattering transformation (IST) which is a non-
linear Fourier analysis to solve the initial-condition prob-
lem for some nonlinear equation. The IST technique was
first developed by Gardner, Greene, Kruskal, and Miura
[18] to solve the initial-value problem for the KdV equa-
tion. This method was soon expressed in general form by
Lax [19]. Zakharov, Ablowitz, and Haberman extended
IST theory to multidimensions and found the IST for the
ill-posed Boussinesq equation [20]. One can easily find
that the IST for the well-posed Boussinesq equation is the
same as the ill-posed one if we choose B2= —1 here in-
stead of B>= +1 in the paper [20].

IST is a very powerful mathematical method to analyze
nonlinear differential equations. But in the practical situ-
ation of studying Eq. (A2), IST is too complicated a
method to find some important features of the solution
(like the soliton). Actually there is a class of special solu-
tions for these nonlinear differential equations: the N-
soliton solution, which gives a convenient way to study
the soliton properties. For the Boussinesq equation, the
N-soliton solution was found by Hirota [21]. By a similar
method, we find the N-soliton solution for this well-posed
Boussinesq equation (A2):

2
u (6, 0=-Inf (x,1) , (A3)
ox

where

_ (v;—€v; 2 —3(P;—P;)?

expl(i,j)]=1+

b =(1—P})'2.

(P +P) 2= (P,+ P — (e, + 0,2 (ev;—€,v;P—3(P,+P))? ’



3192

L. XU, D. H. AUSTON, AND A. HASEGAWA 45

Here P; and ), are the real constants relating to the amplitude and phase of the ith soliton, respectively. 3,_o ; implies

the summation over all possible combinations of p;=0,1; 4,=0,1; . .
summation over all possible pairs chosen from N elements.

.; uy=0,1. The second summation implies the

The proof that (A3) is the solution of (A2) is similar to the proof in Hirota’s paper [21]. It is easily seen that u (x,?)
defined by (A3) is a solution of (A2) provided f (x,t) satisfied the following equation:

2 2 4
a a a a a a g — ’
at ot’ dx Odx’ dx dx’ ] S 0f (x4t x=xe=r 0. (A2)
Substituting f (x,¢) in (A3) into (A2'), we get
N 2 N 2 N
S 3 S eQu—v) | — |3 Pilu,—v, | +|3)P(u;—v, )4|
1=0,1v=0,1 i=1 i=1 i=1

Following Hirota’s method [21], this identity can be
proved by mathematical induction. So (A3) is a solution
of Eq. (A2). It is easy to show u(x,t) splits into N soli-
tons in the limit |¢|— o, i.e., u (x,¢)—(P; /2)*sech?[1/2
(m; =71,

Because (A2) has the N-soliton solution, it should have
infinite numbers of conservation constants. We find some
conservation constants by breaking (A2) into two cou-
pling equations by introducing a new function w (x,¢):

= A
ot ax ’ (Ad
aw a 2

—_— = - j— p— A
Y ax(u 6u—u,,) (AS)

When |x|,|t|— o, u(x,t),w(x,t) and their derivatives
are zero. From (A4), [T %(du /3t)dx =—w|XZ=0, we
get one constant I, = f f:u dx.
In the same way, we can find more constants. Here is
the list of some conservation constants:
I,= f +wu dx ,

L=[""wax,

—

I3=f+wuwdx ,

— ®©

+ u2 w 3 u)%
L=[ |5+ wmy i,

D1=f+wwdt R

— ®©

D,= [ ""(u—6u—uy)dt ,

— ®

D3:f+w

— ©

2 2 u?
u w
_2__+_2_+__2L_4u3_uuxx

D4=f+w(—wu +6wu+wu,, —w,u,)dt .

— 0

dt ,

Finally we want to mention that under the weak non-
linearity and long-wave length condition, Eq. (A2) can be
reduced to the KdV equation by the reductive perturba-
tion method. Importantly, we can apply a lot of well-

N
Pl ) pptvivi)+ 3 (pitv)n; |=0.

i=1

‘M=

Xexp

WAS
—_—

known properties of the KdV soliton to our electromag-
netic soliton under this limit.

If we introduce a small parameter € and choose the
new ‘“‘space” and “‘time” variables

§=€(x —vt), 7=1€t, (A6)
we can expand u by the power of €:
u=eu'V+eu'?+ - | (A7)

By taking p=1, ¢ =3 (A2) is reduced to
(n (1)y2 () —
iug.r +6(u )§§+U§§§§—o .

If we take an integral about £, we get the exact KdV
equations:

+uV+ 120V’ +ull =0, (A8)
where the + and — sign correspond to two KdV equa-
tions which can propagate in “right” and “left” direc-
tions.

Here, we only consider the u'" term, which means
there is only a weak nonlinear effect. Because p <gq, the
“time” will change slower than “space” from (A6). But 7
corresponds to the space scale x in (2.1), so we have a
slow changing in real space which means the long-
wavelength situation.

APPENDIX B: INITIAL-CONDITION
PROBLEM FOR SHOCK-WAVE EQUATION 3.1)

When the dispersion of the medium is much smaller
than the dissipation, the equation for the polariton is
given by (3.1):

Sg OE

2

+d(E?) | .
WTo at

To simplify (3.1), we normalize the equation by rescaling
the variables:
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ot ,_x _E
T ) L b EO ’
where
r=—%__ =71, E,=—59 (B1)
6(0 )(OTO d
Now (3.1) becomes
uTT_u‘TTT_(uz)T‘T=uZZ . (B2)

If the solution of (B2) is a slowly changing function, we
have u(z,7)=u(ez,7—z) where € is a small parameter.
Introducing £=7—z, ignoring the € term, and taking an

integral about §, (B2) becomes
2y —
2u,—uge—(u”)=0, (B3)

where we assume the boundary condition u =const when
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§==o. (B3) is almost the same as Burgers’s equation
[22] which is a famous nonlinear diffusion or heat equa-
tion except that the “diffusion constant” is negative. By
the Cole-Hopf transformation (B3) can be linearized as

fe=3f¢ - (B4)
where u =(3/36)Inf (z,{) is the Cole-Hopf transforma-
tion. The initial-value problem of (B4) is easy to solve. If
uo(7)=u(0,§) is known, u at any time and position can
be expressed as

-9
u aé_lnf(zﬁg) b
-1 +eo _(&—1)
f@8)=— [ Cr©mexp = ar.
f(0,7)=exp fTu(O,r’)dr’
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