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Molecular scattering wave functions for Auger decay rates:
The Auger spectrum of hydrogen fluoride

K. Zahringer, H.-D. Meyer, and L. S. Cederbaurn
Theoretische Cherie, Physikalisch Chemtsehes Institut, University t Heidelberg, Im Xeuenheimer Feld 253,

D 6900-Heidelberg, Federal Republic of Germany

(Received 1 April 1991)

A numerical method for calculating Auger rates is proposed. The continuum wave of the ejected
Auger electron is computed by numerical propagation (close-coupling method) and thus accounts for the
nonspherical interaction with the molecule. The method is tested by computing the Auger spectrum of
hydrogen fluoride. Here initial cationic and final dicationic states are treated on the self-consistent-field

level.

PACS number(s): 33.80.Eh, 32.80.Hd, 34.80.Kw

I. INTRODUCTION

Auger electron spectroscopy has become a valuable
probe of the electronic structure of molecules. A careful
theoretical analysis of the Auger spectrum requires not
only the computation of the Auger energies but of the
Auger intensities as well.

The calculation of the Auger energies can be per-
formed by employing standard [1]and less standard [2,3]
quantum-chemistry methods. The calculation of the
Auger rates, on the other hand, requires the knowledge of
the continuum wave function of the ejected Auger elec-
tron. Such a molecular continuum wave function can be
evaluated by adopting methods developed for the study
of electron-molecule scattering [4-6]. We note in passing
that quite similar problems arise when studying the
(molecular) photoionization process [5,7).

In order to circumvent the somewhat elaborate calcu-
lation of the continuum wave there have been attempts to
approximate the molecular continuum wave by a plane
wave [8,9], a Coulomb wave [10], or an atomic continu-
um wave [11—13). The latter approach is a useful approx-
imation in particular for "atomic-like" molecules as, e.g.,
HF, H20, CH4, etc. The other two approximations, how-
ever, yield results that can be severely wrong. We em-
phasize that only a molecular continuum wave allows for
an evaluation of the angular distribution of the Auger
electrons.

Our approach to compute the molecular continuum
wave consists of a single-center expansion of the interac-
tion potential and the wave function. The resulting
close-coupling equations for the wave function are in-
tegrated numerically. The interaction potential deter-
mining the continuum wave was chosen to be the static-
exchange potential [4], i.e., the electrostatic and the ex-
change interaction of the continuum electron with the
"frozen" charge distribution of the final dictation. The
wave function that determines the charge distribution
may be fully correlated and is not required to be a self-
consistent-field (SCF) state. We have replaced the (nonlo-

cal) exchange interaction by a local model potential
[4,14]. A local model exchange should be sufficient be-
cause of the high kinetic energy of the ejected Auger elec-
tron. We have found in this work that the total effect of
the exchange potential is relatively small. This clearly
justifies our use of an approximate local exchange poten-
tial.

One of the first attempts to generate a molecular con-
tinuum wave for computing Auger rates is the contribu-
tion of Higashi, Hiroike, and Nakojima [15]. They ig-
nored the exchange completely and approximately solved
the coupled equations in two steps by introducing a
decoupling scheme. Larkins and Richards [16], on the
other hand, avoided the single-center expansion and com-
puted the continuum wave of linear molecules by integra-
tion over a (r, 8) grid. The exact exchange was included.
Their work concentrated on the study of Li2.

In contrast to the numerical integration methods, L-
basis-set methods have been tried as well. Colle and
Simonucci [17] determined the continuum wave by solv-

ing the Lippman-Schwinger equation within a Gaussian
basis set. Carravetta and Agren [18],on the other hand,
have tried to avoid the explicit construction of a continu-
um wave by adopting the Stieltjes imaging method [19],
which has been amply applied [19] before to the evalua-
tion of photoionization cross sections. Stieltjes imaging
cannot be used to compute the angular distribution of the
Auger electrons.

It is the purpose of the present paper to introduce and
describe the proposed method for computing molecular
Auger rates. As an example, we also present a calcula-
tion on the Auger spectrum of the HF molecule. The pa-
per is organized as follows. In Sec. II we discuss the eval-
uation of Auger rates using a nonrelativistic first-order
treatment (Wentzel's approach [20]). In Sec. III we

briefly discuss our method for determining the continuum
wave and matrix elements thereof. In Sec. IV we discuss
the Auger spectrum of HF and in particular discuss the
validity of different approximations. In Sec. V we finally
conclude our findings.
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We consider the Auger effect as a two-step process in
which the Auger decay can be treated separately from the
initial ionization. The ionization step is of no further in-
terest. The decay process can be conveniently evaluated
by employing Fermi's golden rule. As is usual in the con-
text of the golden rule it is required to split the Hamil-
tonian into two parts, Ho+ V. The interaction V accom-
plishes the decay in question. Ho is derived from the full
H by deleting all terms that lead to a decay. The golden-
rule expression for the Auger rate reads

If, ——27$~()p' " V~//(. ")( (2.1a)

Here ~%( ") denotes the initial core-ionized state and
the subscript N —1 denotes the number of electrons
where N is the number of electrons of the neutral mole-
cule. The subscript i (f) stands for initial (final). Both
the initial and final states are eigenfunctions of Ho with
total energy E. Because V =H Hp we may rewrite the
above equation to give the well-known Wentzel expres-
sion,

=2/7.
[ ( (11 "(H E)y-f l ~ f (2.1b)

where A denotes the anitsymmetrizer and g, denotes
the one particle continuum wavefunction of the Auger
electron. The minus sign indicates the incoming asymp-
totic boundary condition and the subscript c denotes the
final kinetic energy of the Auger electron. The sym-
bol ~%f ") denotes the final dicationic state of the
molecule with energy Ef = ( %f '~HO

~ %f )
= (0'f '~)H~'Pf '). Because of energy conservation
we have, of course,

(2.3)c.=E —Ef
Introducing the creation operator a, for the wave func-
tion g,

a, = Jg, (x)1P (x)dx, (2.4)

where %(x) denotes the field operator [22], we can write
Eq. (2.2) more compactly as

The very use of the golden rule implies the separability of
the core and valence electrons in Ho and hence in the
wave functions. The interaction between the core and
valence electrons gives rise to the decay and is included
in V. In the following we evaluate the expression (2.1b)
for the Auger decay rate. We would like to mention that
this formula has been previously evaluated [21] without
requiring the wave functions to be eigenfunctions of Ho.
The final expression obtained is somewhat different from
ours.

The final state ~%f( ") is a continuum wave function
that is assumed to be energy normalized. Since the ener-

gy of the Auger electron is high, it is quite reasonable to
assume that this electron does not correlate with the oth-
er electrons of the dictation. Hence, we approximate") by the product

~ql(N ")=~(y ~ly(N 2') ) (2.2)

To satisfy the spin symmetry for both ~(pf( ") and

~%f ') a slightly more complicated form may have to
be used. See the Appendix for details. Note that the
neglect of correlation between the Auger electron and the
electrons of the final dicationic state implies the neglect
of final-state-channel coupling; i.e., a single-channel ap-
proximation is made. Final-state channel coupling has
been investigated by Howat, Aberg, and Goscinski [23]
for atoms and recently by Colle and Simonucci [24]. In
the latter investigation, L methods are used that allow
for treating molecules as well.

The core-valence separability assumes that the core
electron does not correlate with the other electrons and
that the core orbital is independent of the electronic state
of the molecule. For not too light atoms this is an excel-
lent approximation because of the large energy gap be-
tween core and valence states. Denoting by a, and a~&

the creation operators of the core orbital of spin a or P,
respectively, we write

~)I((N
—1) ) g t ~qg(N

—2) ) (2.6)

~1P(N
—1) ) —a tat g t ~1P(N

—4) )f a ac(gacp f
and further require that

~1II(N
—2) ) g ~(p(N

—2) ) —()

(2 7)

(2.8a)

~e'" ")=0ca f cP f (2.8b)

hold, i.e., the wave functions ~)II(, ') and ~%f( ')
contain no contribution from the core orbitals.

In order to proceed we introduce an orthogonal set of
spin orbitals [(p;]. At the present stage this set is arbi-
trary but must contain the core orbitals y, and q,&.

Corresponding to these spin orbitals we introduce the
creation and annihilation operators a,t and a; and write
the Hamiltonian in its second-quantized form

H=g Tja; aj+ —,
' g V J k(a; aja(ak . (2.9)

Here T; denotes the matrix elements of the one-particle
part (bare nucleus Hamiltonian) and

V;Jkr= x xp x +J x r r gk x+1 x

(2.10)

takes the appearance

=(1P ~a pg g Hgt ~y ) (2.11)

Using Eq. (2.9) and commuting all creation operators to
the left one arrives after a short calculation at

The symbol x stands here for a spin-space variable, the
spatial part of which is denoted by r. Atomic units are
used throughout.

We now can evaluate the Auger rate (2.1). The ampli-
tude

= (1II' "~H E~+ ")—f.l f
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Equation (2.12) is the final result for the ansatz (2.6)-(2.8).
We note in passing that this equation simplifies consider-
ably when a,J)PI ")=0 holds, i.e., when the continu-
um orbital 1[i, does not overlap with the occupied orbit-
als of the initial state. In this case (2.12) assumes the sim-
ple appearance

+f ' g I p, k l(+f
k, l

(2.13)

~f, g~ p, , k', l (q f
k, I

T pj+g Icp, l, [j,l) & Pf
j 1

VIr OCC

+P Q ~Pj, k I &qf
j k, l

(2.14)

where V, j ~k &~
—= V,.j k I ~i, j l, k denotes the antisym-

metrized Coulomb matrix element. The symbol

~cPc&(k, l]= ~, cP, c[k, l] P, ,+cPj, [k, l)( Pc ~ Pj )
J

(2.15)

is nothing but the Coulomb matrix element of a continu-
um wave orthogonalized with respect to the occupied or-
bitals of the initial state ~%I "). We remind the reader
that by a sum over occupied orbitals we denote a sum
over those orbitals that are occupied in the initial") state; e.g., ip, is an occupied orbital but ip, p is
not.

The second term of Eq. (2.14} vanishes because of the
diagonality of the Fock operator. This is obvious when

However, we emphasize that there is no reason why
a, ~%I ")=0 should hold rigorously. The orthogonali-
ty of the many-electron scattering states ~%fl ") en-
sures that the exact scattered wave )t, satisfies
i2, ~+fl 2)) =0. Due to the high energy of the Auger
electron one can safely assume that

~ ~a, ~ VI ")
~ ~

is
small but its neglect is an approximation. We, therefore,
consider the full expression (2.12}.

The result (2.12) is for general correlated wave func-
tions ~%'; ') and ~%& '). From now on we explicitly
consider the case where the initial state ~)IiI ") is given
by a single determinant of SCF orbitals. In this case the
creation operators aj are chosen to correspond to a set of
SCF orbitals of the initial state ~%'; "). Splitting the
last term of Eq. (2.12) into a sum over occupied (with
respect to ~)PI ")) and virtual orbitals we obtain

the orbitals of the unrestricted Hartree-Fock (UHF) pro-
cedure are used. Moreover, the second term of Eq. (2.14)
still vanishes when adopting the restricted Hartree-Fock
(RHF) orbitals. This can be easily proved by recognizing
that there is only one singly occupied orbital available.
All other (spatial) orbitals of the initial state are either
doubly occupied or vacant.

The last term of Eq. (2.14) yields a very small contribu-
tion because both /fa, /)pI ")

f/
and f/a [)Ill ')

/f

(j virtual) are small. In our calculations presented in Sec.
IV we have always neglected this term. For the hydrogen
fluoride this neglect is clearly justified. For other mole-
cules, in particular for cases in which aj ~)Ii& "') (j virtu-
al} becomes appreciable, one may wish to keep this term.
However, we presume that the last term of Eq. (2.14} is
negligible in most cases.

We now turn to the first term of Eq. (2.14). To evalu-
ate it one has to compute the Coulomb matrix element
V,@,k I-this is described in Sec. III-and the matrix ele-
ments (%f '~aiak~%'; '), where ~%'; ') is a one-
determinantal state and where ~qifl ') is allowed to be
a general correlated function. In case ~%f[ )) is as-
sumed to be also a SCF state, the matrix element
(%f '~alak~%' , ') can be expressed by the overlap
matrix of the two difFerent orbital sets of the initial and
final states, respectively. This is worked out in detail in
the Appendix, where the spin-free working equations are
derived.

III. CALCULATION OF THE CONTINUUM ORBITAL

As already discussed in the Introduction we have
chosen the static-exchange potential [4] (or its generaliza-
tion to inulticonfigurational states) as the interaction po-
tential between the Auger electron and the final dication-
ic ion. The neglect of the polarization-correlation poten-
tial terms is justified by the high kinetic energy of the
Auger electron. Moreover, the inclusion of these poten-
tial terms would lead to an unbalanced treatment. A bal-
anced treatment including polarization and correlation
potential terms would require one to replace the one-
channel ansatz (2.5) by a multichannel one [23,24].

We found it convenient to replace the exact exchange
by a free-electron-gas model potential [4,14]. As shown
in Sec. IV this replacement is justified. Note that the
adopted interaction potential is a local potential.

A one-particle continuum wave is not entirely specified
by its energy e.; two additional quantum numbers are
necessary. A particular useful choice is provided by the
angular momentum quantum numbers. Hence g, , is a
well-defined unique scattering state and we consider the
symbol itl, , which appeared in the preceding section, as a
shorthand notation for f, l . (We remind the reader
that the minus sign indicates incoming boundary condi-
tions [25], which are required for the computation of the
Auger or the photoionization process [26] rather than the
more familiar outgoing ones. )

It may be i11ustrative to unitarily transform the state
to a Cartesian momentum representation

g„(r)=k '"g))[, , (r)I'i (k)' . (3.1)
1,m
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Here YI denotes the spherical harmonic function,
s=k /2, and k denotes a unit vector pointing into the
direction of k, which, in our case, is the direction of the
Auger electron. The two equivalent sets of functions
satisfy the normalization conditions

(3.2)

initial derivatives. The thus obtained regular solution
matrix 4 is finally transformed to obey the correct
boundary condition (3.6). To this end we introduce the
Wronskian

d—
W((.=[GI(kr) —i'(kr)] C I I.(r)

and
(3.3)

d
[GI(kr) —i'(kr)]41 I,(r)

r
(3.7)

respectively. We will make no further use of the set

The symmetry properties of the molecule are reflected
in the scattered wave, which hence should belong to one
of the irreducible representations of the underlying point
group. For the general case it may be necessary to linear-
ly combine various P, I of the same energy e in order to
arrive at a scattered wave of proper symmetry. For a
linear molecule the situation is particularly simple. All
states with m =0 are cr states, with m =+1 being n.

states, etc. If there is an inversion center then even I' s
will give rise to gerade states and odd i's to ungerade
states.

We now turn to the computation of the scattered states
and write them in a single-center expansion:

4I I(r} ~ 0
r~0

(3.5)

(3.4)
where cr I denotes the Coulomb phase shift [28]. Inserting
this ansatz into the Schrodinger equation yields the well-
known close-coupling equations [4,25] which are a set of
ordinary differential equations for the matrix of solutions
4. For a linear molecule this set of coupled differential
equations simplifies substantially, because it becomes di-
agonal in the magnetic quantum number m. A separate
calculation for each value of m can be performed. Since
the equations are independent of the sign of m, only posi-
tive m need be considered. For the sake of notational
simplicity we shall drop the index m from all the equa-
tions to follow.

The numerical method used by us to solve the close-
coupling equations is described in Ref. [27]. The main
difference from that previous work on electron scattering
lies in the different type of boundary conditions which are
now to be satisfied. The solution matrix 4 assumes the
usual boundary conditions at small r

evaluated at the point r =r,„d, which is the point where
the integration stops. The value of r,„d has to be chosen
such that for r r,„d the interaction potential is similar
to a pure Coulomb potential. Adopting a matrix notation
it can be shown [25] that the solution matrix subject to
the correct boundary condition (3.6} is given by

4(r)=k4(r) W (3.8)

y, , 1, (r)= J dr'y, (r')gr (r)lr —r'I 'y„(r')' (3.9)

and then express the Coulomb elements by

v, , „,=&x;,i, klan, & . (3.10)

The functions y;, k are computed by introducing a
single-center expansion of the SCF orbitals and perform-
ing the r integration numerically. The overlap integrals
(3.10}are computed simultaneously with the propagation
of the wave function. Details are given in Ref. [27].

As mentioned above, the e appearing in Eq. (3.10) is a
shorthand notation for the set (e, l, m). The Coulomb in-
tegrals that involve the scattered wave should carry the
angular momentum quantum numbers 4 and m, in addi-
tion. The same is true for the Auger amplitudes [see Eqs.
(2.14) and (A14)—(A16)]. For each final dicationic state
we hence do not obtain a single Auger amplitude
A =—Af, but a family of amplitudes t Al ]. These am-
plitudes can be combined to yield an angle-dependent
amplitude

To evaluate 8'I I a knowledge of the Coulomb wave func-
tions F& and G& and their derivatives is required. Howev-
er, it is sufficient to know these functions only at r =r,„d.
At this point kr is a large number and we hence could use
an asymptotic expansion [28] to evaluate the Coulomb
wave functions.

To determine the Auger rate we have to compute
Coulomb matrix elements of the scattered wave. This is
done in the following way. We first introduce the func-
tions

but for large r it is now required to behave like

4, 1,(r) ~ —
[ [GI(kr)+i'(kr)]—ol I.

r —woo 2

A (Q)=g Ai Fi (Q), (3.11)

+[G~(kr) —iFI(kr)]S~~ ] . (3.6)

Here Fi(kr) and GI(kr) denote the regular and irregular
Coulomb waves [28] and S& &. denote the matrix elements
of the S matrix [25]. In order to compute a solution ma-
trix 4 that satisfies these boundary conditions one solves
the set of differential equations as an initial-value prob-
lein with the initial condition (3.5} and arbitrarily chosen

where Q=—k denotes the direction in which the Auger
electron is ejected. The differential Auger rate (for a mol-
ecule with fixed orientation) is given by

(3.12}

and integration over all angles yields the total rate for
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production of the dicationic state under consideration

r/, —= cr =2m g ~ AI
l, m

(3.13)

IV. AUGER SPECTRUM OF HF

F; k
= T, +Ig n/( V; i k 1

—
,
'

V; )/ k ) . — (4 1)

Here the indices i, j, and k refer to spatial orbitals rather
than to spin orbitals. The Symbol n stands for the num-

ber of electrons in the jth spatial orbital; i.e., n =0, 1, or
2. (To ensure the correct spatial symmetry in case of de-
generate orbitals, fractional occupation numbers n may
have to be used. ) This method is called the spin-averaged
Hartree Fock (SA.HF) method because Eq. (4.1) can be
obtained from the UHF equations by assuming that the
orbitals are independent of the spin. Note that the Fock
matrix (4.1) does not depend on the spin of the electronic

We have calculated the Auger spectrum of hydrogen
fluoride in order to test and illustrate the procedure out-
lined above. The particular example was chosen because
there exist experimental data [29] as well as theoretical
calculations [13]on the Auger spectrum of HF.

Since the present calculation is the first of its kind we
have chosen to treat not only the initial state but also the
various final states on the SCF level. Albeit that we are
thus neglecting correlation we do describe the relaxation
of the orbitals of the initial state and each final state. The
consideration of the initial-state relaxation is of particu-
lar importance when computing Auger rates [30].
Adopting a Gaussian basis set consisting of Ss/2p uncon-
tracted functions centered at the H nucleus and 20s/11p
[10s/6p] functions centered at the F nucleus we have
performed these SCF calculations in two different ways.
In the first we have used the conventional restricted
Hartree-Fock procedure [31]. In our second approach
we define a model closed-shell Fock matrix by

state to be computed. One obtains the same Fock matrix,
for e.g., computing the 'X+(2cr ', 3o ') or the
X+(2o ', 3o ') state (these symbols indicate that the

particular state is—when compared to the neutral ground
state —characterized by a missing electron in the 2o. orbit-
al and in the 3o. orbital). Equation (4.1) is considered as
an orbital generator where the orbitals are found by di-
agonalizing F. The SAHF energies are defined as the ex-
pectation values of the Hamiltonian with respect to the
SAHF determinant (or linear combination of deter-
minants, when a linear combination is required to satisfy
the spin symmetry). The Fock operator (4.1) is, of
course, not new; it is often referred to as the half-electron
Fock operator [32]. For core-ionized states it is better
known as the transition state -Fock operator [33]. The
SAHF calculations are simpler than the RHF ones, be-
cause the convergence of the SAHF procedure is better.
Furthermore, there are fewer calculations because there
is only one orbital set for both the singlet and the triplet
states. The use of the SAHF procedure hardly affects the
quality of the energy and Auger rates. If anything, we
find the rates to be improued (see below). We recommend
the use of the SAHF rather than the RHF method; in
particular, in case of a larger system.

In Table I we show our RHF and SAHF energies in
comparison to the RHF energies obtained by Faegri and
Kelly [13]. Surprisingly the SAHF energies are lower
than the RHF energies for those singlet states that have
an electron missing in the 20. orbital. This is because for
dicationic states with an inner-valence vacancy the sta-
tionary point of the RHF energy functional is a saddle
point rather than a local minimum. Enforcing the energy
functional to leave the saddle point it will converge to a
lower-lying state. We also show in Table I the energy
differences between the initial and final states, i.e., the
b SCF Auger energies and compare them with the experi-
mental data of Shaw and Thomas [29]. The missing
correlation in the hSCF calculations makes the span of
the computed Auger energies too large by about 10%%uo.

One aspect of the present paper is to investigate the

TABLE I. Total energies (in atomic units) and Auger transition energies (in eV). RHF and SAHF stands for the present results
obtained with RHF and SAHF orbitals, respectively. FK stands for the RHF results of Faegri and Kelly [13]and Expt. denotes the
experimental results of Shaw and Thomas [29]. The internuclear distance in our calculations is R = 1.7329 a.u.

State RHF
Total energies (a.u. )

SAHF FK RHF
Auger transition energies (eV)

SAHF FK Expt.

'X (1~ ', 1m ')
d(1 —

)

'

II(3cr ', lm. ')
X.(1--',1-- )

'II(3~-', ~-')
ly(3 —2)

'II(2o. ', 1~ ')
X(2o ', 3' '

)
'II(2o.
'X+(2o. ', 3a '

)

1y+(2 —2)

2m+(1~-')

—98.4128
—98.3045
—98.2942
—98.1983
—98.1801
—97.9986
—97.5307
—97.4130
—97.1648
—97.0470
—96.3274
—74.5786

—98.3933
—98.2928
—98.2773
—98.1923
—98.1719
—97.9986
—97.5187
—97.3944
—97.1667
—97.0473
—96.3274
—74.5714

—98.4140
—98.3056
—98.2952
—98.1994
—98.1805
—98.0005
—97.5318
—97.4141
—97.1662
—97.0810
—96.3270
—74.5878

648.53
645.58
645.30
642.69
642.19
637.25
624.52
621.32
614.57
611.36
591.78

648.19
645.46
645.03
642.72
642.17
637.45
624.39
621.01
614.82
611.45
591.98

648.31
645.36
645.08
642.27
641.96
637.06
624.30
621.10
614.36
612.04
591.52

644.28

642.35'
642.35'
636.92
625.1'
625.1'
616.2
614.1

595.6

'Assigned to two lines, since experimentally unresolved.
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dependence of the computed Auger rates on the approxi-
mation for the wave function. Table II shows the Auger
rates computed by assuming the continuum orbital to be
a plane wave, a Coulomb wave, or a molecular scattered
wave. For each state there are two entries in the table.
The lower (upper} entry refers to a calculation where the
continuum orbital is (not) orthogonalized to the occupied
orbitals of the initial state [i.e., V,Ii, k I( V,&, „I ) is used

in Eqs. (2.14} and (A14)—(A16)]. The calculation using
plane or Coulomb waves yields reasonable results for
singlet states with vacancies in the outer valence orbitals.
The rates for the corresponding triplet states are always
severely too large. For the final dicationic states that
contain a 2o hole the rates are unequivocally very unreli-
able. Generally, the rates computed using plane or
Coulomb waves vary strongly according to whether or
not these waves are orthogonalized to the occupied orbit-
als of the initial X( lcr '} care-hole state. This fact again
emphasizes the poor quality of plane or Coulomb waves
for the coinputation of Auger rates. In high-quality com-
putations the final continuum state should a priori be
nearly orthogonal to the initial state.

We now turn to the Auger rates computed with molec-
ular continuum waves. To investigate the dependence of
the computed rates on the potential used to determine the
continuum orbital we have listed in Table II the results
obtained with three different potentials. The third and

the fourth columns of Table II show the results obtained
with the static potential and the static-exchange potential
of the 'X+(3cr ) final state. The inclusion of the ex-
change interaction changes the rates by typically 5%
[12% for the II(3cr ', lm. ') state]. Hence the contribu-
tion of the exchange potential is not negligible, but it is
small and the use of a local model exchange seems to be
appropriate.

Turning to discuss again the effect of the orthogonali-
zation we remark that the quality of the continuum orbit-
al is quite directly indicated by the difference caused
upon orthogonalization (i.e., the difference between upper
and lower entries). This difFerence monotonically de-
creases when the quality of the interaction potential (no
potential, static potential, static-exchange potential) is
improved.

To be consistent one should compute the continuum
wave with respect to that static-exchange potential that is
defined by the charge distribution of the particular final
dicationic state under discussion. Thus one should com-
pute as many static-exchange potentials as there are final
states. Luckily it turns out that a single potential is
suf6cient to compute the molecular continuum waves for
all final states. The last two columns of Table II show
Auger rates evaluated with scattered waves that are corn-
puted by assuming two different potentials; namely, the
static-exchange potential of the 'X+(3o ) and

TABLE II. Calculated Auger transition rates of HF (in 10 a.u.). Test of different potentials. The

rates are computed using for the continuum orbital a plane wave, a Coulomb wave, or a scattered

molecular wave. The latter wave is calculated on the static or the static-exchange level. Results are
shown for the potentials obtained from RHF calculations on the 'X+(30 ) and 'X+(2' ) states. For
each final state there are two entries. The lower (upper) entry indicates that the continuum orbital is

(not) orthogonalized to the occupied orbitals of the initial state.

State Plane Coulomb Static

'X+(3cr )

Static
exchange

1++(2~ 2)

Static
exchange

II(20. ', 1m ')

X+(2' ', 3' ')

'II(2o ', 1m ')

'X+(20. ', 3o ')

Iy+(2 —2)

0.0
2.3305
2.3305
0.2848
0.1598
0.5755
0.3934
1.9356
1.9385
0.6197
0.5419
3.6060
1.9728
1.6078
0.9691
0.2427
0.3167
0.1027
0.1218
0.6326
0.2419

0.0
2.0878
2.0878
0.1820
0.1204
0.3531
0.5038

7AAA

1.7471
0.4923
0.5410
2.3220
1.5136
1.0307
0.7198
0.5734
0.6403
0.2579
0.2537
1.1146
0.0327

0.0
1.8702
1.8702
0.0487
0.0471
0.5583
0.5778
1.5719
1.5720
0.5093
0.5191
0.6398
0.6187
0.2775
0.2679
1.2724
1.2767
0.5492
0.5469
1.0064
0.8583

0.0
1.8461
1.8461
0.0436
0.0433
0.5459
0.5573
1.5584
1.5585
0.5077
0.5135
0.5744
0.5697
0.2507
0.2473
1.3017
1 ~ 3027
0.5605
0.5587
0.9568
0.8692

0.0
1.8335
1.8335
0.0434
0.0430
0.5419
0.5537
1.5590
1.5588
0.5119
0.5162
0.5733
0.5665
0.2508
0.2481
1.2996
1.3013
0.5611
0.5603
0.9548
0.8668
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'X+(2cr ) states, respectively. The differences are al-
ways below 1%, and we have found similar results by us-

ing static-exchange potentials created by the charge dis-
tribution of other dicationic states.

Closing the discussion of Table II we conclude that the
total neglect of the interaction potential (i.e., using plane
waves} or the use of a Coulomb wave are not justified for
computing Auger rates. On the other hand, the depen-
dence of the rate on the interaction potential is not so
strong that small changes in the potential matter. This
insensitivity originates partly from the high energy of the
Auger electron. More important seems to be the fact
that the Auger process probes only that part of the scat-
tered wave that is spacewise close to the core-hole orbital
of the initial state. The use of the correct potential will
become important when the angular distribution of the
Auger electron is investigated. The angular distribution
is determined by the asymptotic part of the scattered
wave, which, in turn, is quite sensitive to the potential.

Having found that it is suScient to use one single po-
tential to compute the scattered waves for all final states,
we have used the static-exchange potential of the
'X+(3o ) state in the calculations to be discussed
below. In Table III we investigate the in6uence of some
approximations on the formulas of the Auger rates. The
first approximation ignores the inhuence of the overlap
matrix S (not to be confused with the scattering S matrix}
between the sets of orbitals of the initial and final states,

i.e., we replace S by the unit matrix [see Eqs.
(A12)—(A16)]. The second (already mentioned) approxi-
mation ignores the orthogonalization of the continuum
wave. The thus obtained Auger rates are given in Table
III, together with the results of Faegri and Kelly [13].
The dependence of the Auger rates on both the overlap
matrix and the orthogonalization is rather small except
for the rates of those states that contain a 2' hole. We
presume that the small in6uence of the overlap matrix is
peculiar to the HF molecule. The Auger rates of mole-
cules with a more covalent rather than ionic bond might
show a more pronounced dependence on the neglect of
the overlap matrix. Indeed, Jennison [30] has found the
inclusion of the overlap matrix to be important when in-
vestigating the Auger spectrum of ethane.

The rather small dependence of the Auger rates on the
orthogonalization of the continuum orbital shows that
the scattered wave is almost orthogonal to the occupied
orbitals of the initial state. This is partly due to the large
energy separation between the occupied orbitals and the
continuum wave. We recall that a rigorous formulation
for the continuum wave requires a, ~%f ') =0 but
there are no physical reasons why a, ~+I ")=0 should
hold rigorously.

Faegri and Kelly have ignored the overlap matrix in
their calculations and they have approximated the molec-
ular continuum wave by an atomic one. For the HF mol-
ecule these approximation are not severe, and one finds a

TABLE III. Calculated Auger transition rates of HF (in 10 atomic units). Test of different evalua-

tion formulas. The static-exchange potential of the 'X+(3cr ) state is used to compute the molecular

continuum wave. Shown are the results obtained with the RHF and SAHF approaches using the full

overlap between the orbitals of the initial and final states and also neglecting the overlap (indicated by
no overlap). For each final state there are two entries. The lower {upper) entry indicates that he contin-

uum orbital is {not) orthogonalized to the occupied orbitals of the initial state. The results of Faegri
and Kelly [13]are shown for comparison.

State

II(3o' '
1m ')

'X+(1m ', 1m ')

'II(3o ', 1~ ')

'X+(3o )

'II(2o ' 1n. ')

X+(2o ', 3o ')

'II{2o ', le ')

'X+ (2o ', 3o. '
)

'r(2o ')

FK

0.0
1.986

0.021

0.594

1.692

0.564

0.574

0.302

1.288

0.642

0.983

RHF
no overlap

0.0
1.8607
1.8607
0.0274
0.0272
0.5504
0.5619
1.5757
1.5758
0.5128
0.5186
0.5927
0.5879
0.2540
0.2506
1.3123
1.3133
0.6559
0.6450
1.0748
0.9734

RHF

0.0
1.8461
1.8461
0.0436
0.0433
0.5459
0.5573
1.5584
1.5585
0.5077
0.5135
0.5744
0.5697
0.2507
0.2473
1.3017
1.3027
0.5605
0.5587
0.9568
0.8692

SAHF
no overlap

0.0
1.9019
1.9019
0.0215
0.0213
0.5707
0.5717
1.5968
1.5969
0.5187
0.5213
0.4548
0.4509
0.1957
0.1930
1.0689
1.0702
0.5321
0.5266
0.8008
0.7519

SAHF

0.0
1.8739
1.8739
0.0196
0.0194
0.5623
0.5633
1.5737
1.5738
0.5143
0.5169
0.4362
0.4325
0.1920
0.1893
1.0557
1.0569
0.5220
0.5166
0.7121
0.6703
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reasonable agreement between the Auger rates computed
by Faegri and Kelly and our RHF results (see Table III).

All the Auger rates discussed so far have been evalu-
ated by using the RHF orbitals. The last two columns of
Table III depict the Auger rates computed with SAHF
orbitals for both the initial and the final states. We have
found the rates to be very insensitive to the choice of the
specific Hartree-Fock procedure applied to the final
states; only the Hartree-Fock procedure of the initial
state matters. There is a noticeable effect only on the
rates of those final states that contain a 20. hole; these
rates are decreased when using the SAHF procedure.
This is mainly due to the fact that the SAHF lcr core or-
bital of the initial state is slightly more compact than the
RHF one.

All the data on the rates reported so far were obtained
by employing the first term of Eq. (2.14) only. As already
discussed in Sec. II the third term of Eq. (2.14) yields a
contribution that is negligible in the case of the HF mole-
cule, and we presume this to be true for most other mole-
cules as well. The second term of Eq. (2.14) vanishes
identically when using the RHF orbitals. For SAHF or-
bitals, however, this term does not vanish but reduces to

Vl

O

Cioc 4—

590 600 610 620 630 640 650

ENERGY (eV)

FIG. 1. Comparison of the computed Auger spectrum with
experimental data. The computed stick spectrum is convoluted
with normalized Gaussians of widths ['X(2cr ), 6.0;
'X(2o ', 3o ') 5 O' X(2a ' 3o ') 'H(2o ' 1m ') and
II(2' ', 1m '), 4.Q; 'X(3o ), 4.5; 'II(3o ', 1m ') and

'X(1m. ', 1m '), 3.8; II(3' ', lm ') and 'b(1n. ), 3.1; in eV,
full width at half maximum] to be more easily compared to the
experimental data. The energies and rates employed for the
theoretical curve are those obtained by using the SAHF orbitals
(see Tables I and III, intensities in arbitrary units).

j,k

This term is usually small because the overlaps ( g, ~pk &

(k occupied) are small. However, the overlaps are not
small if a scattered wave of low quality (e.g. , a plane
wave) is used. In this case (4.2) leads to a spurious contri-
bution and the second term of Eq. (2.14) should be dis-
carded.

Using the SAHF orbitals and the molecular scattered
wave we have found that the inclusion of (4.2) always in-
creases the rates; however, this effect is worth mentioning
only for those final dicationic states that contain a 2'
hole. By far the largest effect is found for the 'X+(2o )
state. Here we computed a rate of 0.7574X10 a.u.
when including the term (4.2). This rate lies right in be-
tween the rates computed with the RHF orbitals
(0.8692X10 a.u. ) and the rates computed with the
SAHF orbitals, while ignoring (4.2) (0.6703X10 a.u. )

(see Table III).
The use of the SAHF orbitals yields the best results for

the rates when compared to experiment. In Fig. 1 we
compare our final results (last column of Table III) with
the experimental data of Shaw and Thomas [29]. All
features of the experimental spectrum are nicely repro-
duced by the calculation. Only the small peak at -630
eV, which is visible in the experimental spectrum, does
not appear in our calculation. This peak can be attrib-
uted to shake-off satellites. We computed the ASCF en-
ergies of the 'II(lo ', lm. ')~ II(lm ) and the
II(lo ', lvr ')~ II(lm ) transitions to be 627.9 and

631.3 eV, respectively. This nicely explains the small
discrepancy, even though we have not computed the
Auger rates of these transitions.

In Fig. 1 and all other figures we have convoluted the
computed stick spectrum with Gaussians to make the
comparison with the experimental data more vivid. The

I ' I

590 600
I I I

6&0 620

ENERGY(eV)

I I I l
630 640 650

FIG. 2. Comparison of the Auger spectrum obtained by us-

ing SAHF orbitals (solid line), RHF orbitals (dotted line) with
the data computed by Faegri and Kelly (dashed line). The
Gaussians used for the convolution are the same as in Fig. 1.

other way around, namely, the deconvolution of the
Auger rates from a spectrum consisting of overlapping
peaks, is a very unstable procedure and we thus do not
compare those numbers. (The experimental determina-
tion of the Auger energies, as given in Table I, may also
suffer from this instability. )

In Fig. 2 we compare the results of Faegri and Kelly
with our results obtained with both the RHF and the
SAHF orbitals. This figure also illustrates the difference
in the rates caused by adopting different sets of orbitals.

We finally want to demonstrate the already discussed
failure of the use of plane or Coulomb waves. Figure 3
compares our final results with the rates computed by us-
ing orthogonalized or nonorthogonalized plane or
Coulomb waves. The high-energy peak of the Auger
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spectrum (corresponding to the ground and the first three
excited dicationic states) is fairly well reproduced by
these approximations but all the rest of the Auger spec-
trum is in error.

V. CONCLUDING REMARKS

In this paper we proposed a method to calculate Auger
rates. The approach is based on three assumptions,
namely, the following.

FIG. 3. Comparison of the Auger spectra obtained by using
plane or Coulomb waves with the one obtained by using the
wave scattered by the static-exchange potential ( — ). Plane
wave ( . . ), plane wave orthogonalized (———), Coulomb
wave (-~ ~—~ ~ ), and Coulomb wave orthogonalized (- - -).

final dicationic state can be accounted for in a rather
straightforward way. Since we are dealing with numeri-
cal wave functions for the Auger electron, the treatment
of the final-state-channel coupling [23,24] is more in-
volved technica11y.

When performing the numerical calculation of the
Auger spectrum of hydrogen fluoride our emphasis was
not only to interpret an experiment, but in particular to
investigate the importance of different terms. We have
found that the Auger rates change very little when using
a single-interaction potential to compute the scattered
waves of all final states, rather than using a different
static-exchange potential for the computation of the scat-
tered wave of each individual final state.

We further have found that ignoring the overlap ma-
trix between the orbital sets of the initial and final states
introduces only small changes into the compound Auger
rates. We assume that this weak dependence on the over-
lap matrix is peculiar to hydrogen fluoride. The depen-
dence on the overlap matrix may be stronger [30] for
molecules where the bond has a more pronounced co-
valent character.

Finally, it has turned out that the orthogonalization of
the scattered wave with respect to the occupied orbitals
of the initial state changes the Auger rates only slightly.
Only states with inner-valence holes [in particular the
'X+(2o } state] show a noticeable effect. This, we

presume, might be true for other molecules as well. On
the other hand, for scattered waves of poor quality —like
plane or Coulomb waves —the orthogonalization changes
the Auger rates substantially; however, not always im-

proving them.
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APPENDIX: SPIN-FREE WORKING EQUATIONS

In this appendix we specify the final states and derive
the spin-free working equations for the Auger rates. An
index in Latin letters refers in this appendix to the spatial
part of an orbital only. The spin part is denoted by
Greek letters, where a stands for spin up and P for spin
down. Since the orbitals of the final states are different
from those of the initial state, the prior orbitals and their
creation operators are denoted by y and b rather than
byyanda .

In order to satisfy the spin symmetry one cannot al-
ways write the final state as a single determinant but must
represent it as a sum of several determinants. We found
it convenient to define these determinants with respect to

N

~+0™&=II bk.bkp~0&
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where ~0& is the vacuum and each final state is assumed
to have its own set of creation operators.

We now define the final dicationic states of correct spin
symmetry and consider the three cases possible for a
closed-shell target.

Case a. Singlet, both electrons are removed from the
same orbital:

ing equations expressed in the original orbitals may then
contain additional terms.

The initial state is a doublet state of spin a [see Eq.
(2.6)]. The (N —1) final state (i.e., including the continu-
um wave) must hence also be a doublet state of spin a. A
short calculation shows that the (N —1) final state of
correct spin symmetry takes the form

~q/{N
—2)

&
—b b ~q)(N)

& (Al) ~ql(N
—1)

&

1'
~qg(N

—2)
& (A5)

Case b. Singlet, two electrons are removed from
different orbitals:

(A2)

~ql'" "M =1&=b„pb 4' '& . (A4)

Here Ms denotes the eigenvalue of the spin operator Sz.
We have assumed that the orbitals y satisfy the correct
spatial symmetry requirements; e.g., in case of a linear
molecule one may have to unitarily transform the degen-
erate m orbitals, such that the new orbitals are eigenfunc-
tions of the angular momentum operator Lz. The work-

Case c. Triplet:

ftqlf ', M =0& =2 ' [b„b p+b„pb I i'' '& (A3)

and

if the final dicationic state is a singlet and

lq'"-"
&
=(-')'"a' lq ' -"M =1&~~P f S

+ (
1 )1/2a i' ~ill(N

—2) M —0 &apa f y S (A6)

/1 f, QV, ', k, l ( pf "lai.akplq '"
k, 1

when the final state is a singlet and

(A7)

for a final (N —2) triplet state. For a linear molecule the
spatial symmetry of the final (N —1) state must be X+.
The scattered wave g, must hence have cr, m, or 5 sym-
metry when the final dicationic state is of X+, H, or 6
symmetry, respectively. A X state is dark.

Our equation for the Auger amplitude [Eq. (2.14) first
term] now reads

/1 =g V [(—')'/ (%1 ', M = 1~a pa» ~%' '&+( —')'/ (~P" ' M =O~al ak ~%' '&]
k, 1

(A8)

g nm —( @(, —
~
b tp t

~

y(N —
)

& (A9)

when the final dicationic state is a triplet.
In order to proceed we introduce the following ma-

trices:

n, m n, m n, m
7 )

(A13)

Now we can write the Auger amplitude for the three
cases introduced above as the following.

Case a (singlet),

and

0"m=(q)& )~btpt/ @ ~ill&. 1& (A 10)
Af 1

=g Vc, c&, k, IQk, l

k, I

(A14)

where 4I1 '& denotes a determinant similar to ~4I) '&

but with the two core orbitals removed.
Using the technique of biorthogonalized orbitals, as de-

scribed in the Appendix of Ref. [7], it is easy to express
these matrices in terms of the overlap matrix

Case b (singlet),

—2
—1/2y V gnm

k, l

where V;, I k I I

= V; j k I + V; j

(A15)

&;, =&y;Iq, & (Al 1) Case c (triplet),

between the sets of orbitals of the initial and final states.
After some algebra one arrives at

—
( 3 )+1/2 y V gnm

k, 1

(A16)

and

Qk 1
=(S ')„„(S ')l [det(S)] (A12) where V, ~ [k I] V jk I V jI k This concludes our devi-

ation. The working equations are (2.15), (3.13), (A12),
and (A14)—(A16).
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