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Gravity-wave detection via an optical parametric oscillator
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An active gravity-wave detector based on a two-arm optical parametric oscillator (OPO) is pro-
posed and analyzed. The signal and idler waves of a nearly degenerate parametric oscillator are
internally separated such that the signal beam propagates along one arm of the OPO and the idler
beam along the orthogonal arm. By monitoring the signal-idler beat frequency, a sensitive measure is
obtained of the differential path displacement in the two arms of this OPO interferometer. The phase
noise of the output beat frequency is calculated and is shown to exhibit time-dependent squeezing.
The detection sensitivity is limited by the signal-idler phase diffusion and photon shot noise, and is
the same as that of the usual passive Michelson interferometer or active two-laser interferometer for
a given apparatus size and detected optical power. Squeezed vacuum can, in principle, be used to
improve the detection sensitivity.

PACS number(s): 42.50.Wm, 04.80+z

I. INTRODUCTION

The detection of gravitational waves remains one of the
most challenging tasks in physics [1]. The minute strain
that is expected from a periodic gravitational source is
on the order of 10,making its detection very difBcult
and highly sensitive to environmental perturbations. One
of the promising methods is laser interferometry using a
passive Michelson interferometer [2]. The path-length
difference between test masses that are suspended in free
space is measured via the interference fringes of the inter-
ferometer. Another laser-based method is the active two-
laser detector [3] in which the heterodyne beat frequency
of two lasers is monitored to measure the gravitationally
induced phase shift of the beat frequency. The active de-
tector has the advantage of working in a spectral window
that can be chosen to minimize the effects of technical
noise. Both the passive and active laser detectors have
the same sensitivity for a given size of the apparatus and
a given amount of optical power. The sensitivity of the
passive interferometer is limited by the photon shot noise

[3, 4] and can be improved with the injection of squeezed
vacuum [4, 5]. For the active interferometer, spontaneous
emission noise of the two lasers limits its detection sensi-
tivity. The use of a correlated-emission laser [3, 6, 7] may
significantly reduce the relative phase noise of the beat
frequency in the active laser interferometer.

Here I describe a new type of gravity-wave detector
that comprises a two-arm optical parametric oscillator
(OPO) [8] whose output frequencies are nearly degen-
erate. The two subharmonic output waves, signal and
idler, of the two-arm OPO are internally separat;ed such
that the signal beam travels along one arm of the OPO
and the idler beam along the orthogonal arm. By mea-
suring the phase shift of the signal-idler beat frequency
it yields the relative displacement of the two orthogo-
nal arms. The signal-idler beat frequency can be chosen
to lie in a low-noise spectral region to minimize the ef-

fects of technical noise. Furthermore, the nonresonant

nature of the parametric interaction in a highly trans-
parent nonlinear optical crystal implies the absence of
spontaneous emission noise and low internal losses such
that the photon cavity lifetime can be made quite long.
When the total losses of the signal and idler waves are
well matched, the signal-idler beat frequency is insensi-
tive to the pump-laser frequency Huctuation, thus relax-
ing the need for an extremely stable laser pump source. It
should be pointed out that this proposed orthogonal-arm
OPO gravity-wave detector is different from a suggestion
by Bjork and Yamamoto [9] in which a parallel-arm OPO
is used and the signal-idler beat frequency is not utilized.

In Sec. II the basic OPO is briefly reviewed. In
Sec. III the two-arm OPO is analyzed classically, and
the gravitationally induced phase shift of the signal-
idler beat frequency is obtained. In Sec. IV the in-

ternal phase noise of the signal-idler beat is calculated
using the linearized quantum I angevin equations of an
above-threshold OPO. A model beat-detection appara-
tus is used for calculating the external (measured) phase
noise in Sec. V. It is shown that the external phase noise
becomes squeezed for a measurement time comparable
to the cavity lifetime. The detection sensitivity is calcu-
lated and is found to be the same as a passive Michelson
interferometer. In Sec. VI the use of squeezed light to
improve the detection sensitivity is discussed.

II. OPTICAL PARAMETRIC OSCILLATOR

An OPO converts a pump wave, of frequency ~z, into
two intense subharmonic waves, signal (~q) and idler

(~2), whose frequencies are tunable and have narrow
linewidths [8, 10, ll]. Energy conservation requires that

4li + GJg = 4)p

The phase-matching condition of the parametric process
determines the actual output frequencies of the signal-
idler pair.

OPO's have been widely used as tunable sources of ra-
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Myp —4)y —M2, (2)

diation, from the ultraviolet to the infrared [8). Recently,
OPO's have been utilized with much success to generate
strongly correlated twin beams whose intensity correla-
tion falls below the usual shot-noise level [12—15]. Its
use as an ultrasensitive intracavity absorption spectrom-
eter [16, 17] has been suggested to take advantage of the
strong quantum correlation between the signal and idler
photon numbers. Optical parametric amplifiers (OPA's),
or below-threshold OPO's, have been extensively used for
the generation of squeezed states of light [18—20].

The availability of high-quality nonlinear crystals and
the advances in highly stable laser pump sources and fre-
quency stabilization techniques [21] have led to new uses
of OPO's that take advantage of their unique coherence
properties [ll]. Its possible use as a tunable optical fre-
quency divider has been proposed [22] and demonstrated
[23], which makes use of the energy conservation relation
Eq. (1) and a simple beat-frequency measurement of the
signal-idler difference frequency

Ai/Ici ——A2/tcz = tang~, x/2 ) 8~ ) —z./2,
4i+4z —4p = 4, ,

rp
——/Ici Ic2 + Ai h.z / y,

r; = C/~ic;, i=1,2,
e„cos(0~ + Pp —Op) = ep (1+C /2e )
ep sin(er, + Pp —Op) = ep(Ai/rci),

(5)
(6)

(7)
(8)
(9)

(1o)

i/Ki Kp
e& ——

x
Kp

2

Using Eqs. (9) and (10), we obtain

Fp —(Ai/Ki)' —1 (12)

where Fp —(ep/ep) is the number of times above the
zero-detuning pump threshold power. The output signal
and idler powers, including losses, are given by

where the minimum zero-detuning pump threshold (6; =
0)

such that the subharmonic frequencies are precisely de-
termined:

~i g =
2 (~p +cui2) .1

Here I propose a new ultrasensitive strain gauge based
on a specially configured two-arm OPO and a measure-
ment of the signal-idler beat frequency. When the OPO
cavity is scaled to the size of the currently proposed long-
baseline interferometric gravity-wave observatory [2], it
should be capable of detecting a strain of 10 that is
expected of the weak gravity-wave induced deformation
of the space-time metric.

III. THEORETICAL FRAMEWORK

Consider a cw nearly degenerate doubly resonant
OPO, in which both subharmonic waves are nearly reso-
nant within the OPO cavity. The classical equations for
the internal modes are

P1 ——2K' r) ——P2 ——2K' r2 ——2t (13)

From the 6, definitions (4) and the constraints (1) and

(5), we obtain for the beat frequency

K i —K 2 2( K z4I i —K i 4!z )
(dy2 — 4)& +

Ky+ K2 Kg + K2
(14)

The sensitivity of the beat frequency ~~2 to the pump
frequency ~p is greatly reduced by matching the signal
and idler loss rates, Kq

A schematic for an OPO gravity-wave detector is
sketched in Fig. 1. The nondegenerate signal and idler
waves are internally separated such that the signal beam
propagates along one arm of the OPO cavity and the
idler beam along the orthogonal arm. The separation of
the signal and idler waves can be achieved with the use
of a highly eKcient dual-wavelength Mach-Zehnder inter-
ferometer [14]. For the case of a type-II phase-matched
crystal, in which the signal and idler waves are orthogo-

Ap —— KpAp —yA—iA2+ /21cpEp,

Ai ———(~i —tb. i)Ai + yApAz,

Az = —(K2 —ib, 2)Ag + yApAi,

(3)

where g is the positive coupling constant, Ez
ep exp(igp) is the input pump, A, is the internal field
mode, and K; is the field total-loss rate. The input power
e„is in units of photons per second. Here the subscript i
refers to the pump (p), signal (1), and idler (2). The cav-
ity detunings for the signal and idler modes are defined
by

i=1,2, (4)

where ~,' is the cavity resonance frequency for mode i.
The cavity is assumed to be a low-finesse type for the
pump, with Lz ——0.

Writing A; = r; exp(iP;) and setting A; = 0, we obtain
in the steady state [10]:

l KH

DB C S

FIG. 1. Schematic of an OPO gravity-wave detector: sig-
nal (~q) and idler (cu2) waves are separated (S) to propagate
along orthogonal paths. cu„,pump frequency; C, crystal; DB,
dichroic beamsplitter; D, detector.
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It is customary to write the gravitationally induced strain

bli/ii —
2hg (i—), bi2/i2 —

2 hg(t),

with

(16)

hg(t) = hp cos(age) (17)

for periodic gravity waves of strain strength ho and fre-
quency ~&.

Substituting Eqs. (15) and (16) into Eq. (14) yields a
signal-idler beat-frequency deviation

Ki +2
P

K241+ +1~2
h ( )

Kl + +2 +1 + K2
(18)

If Ki — K2, the first term in Eq. (18) vanishes and
the beat-frequency shift is independent of the pump-
frequency jitter. Since the signal- and idler-loss rates (in-
verse of the photon cavity lifetimes) are functions of both
the power losses per round-trip and the cavity round-trip
times 2i, /c, the lengths of the two arms can be fine tuned
to match z~ and e~ to a high degree. Moreover, by oper-
ating the OPO near frequency degeneracy, ~1 ~2, the
signal and idler power losses per round-trip should be
about equal. We shall therefore assume that the total-
loss rates are well matched and that the pump laser is

highly stabilized so that the first term of Eq. (18) can be
neglected. The beat-frequency shift due to the gravity
waves is then

~~12 —~lhg(t) ~ Ki —&2

where we have assumed ~, )) 6;, z; .
The appearance of a time dependence [Eq. (19)] in the

steady-state solution may seem contradictory. However,

if we allow time variation in the phase but not in the
amplitude of A; in Eqs. (3), one can easily show that a

term (—P;) should be added to 4;. Therefore, the steady-
state solutions [Eqs. (5)—(10)] are valid if we identify 4;
as the instantaneous frequency detuning of the mode i
whose phase is slowly varying. Using Eq. (12) one can
verify that the variation of the amplitudes r; due to a
minute frequency shift is insignificant.

Over a measurement time t that is small compared
with the inverse of the tiny frequency shift b~l2, the

nally polarized, they can be efFiciently separated either by
a polarizing beam splitter or by spatial separation inside
the birefringent crystal through walk-off of their Poynt-
ing vectors. The lengths of the two orthogonal arms are
assumed to be much greater than the overlap region.

The three end mirrors in Fig. 1 can be considered as
test masses suspended in free space. A gravitational wave

propagating perpendicularly to the plane of the OPO in-
duces a length contraction in one arm, say the signal arm,
l~, and a length expansion in the other arm, t2. The
cavity resonance frequency is defined as w,

' = zm, c/i, ,

where m, is the number of optical half wavelengths in-
side the cavity. Therefore a length change bl, causes a
cavity resonance-frequency change, for fixed m;,

b~; = —~;(bl;/i;) .

signal-idler beat frequency accumulates a phase shift

~rn
(dy

~ihg(t) dt = —hp sin(~gt ),
4)g

(2o)

where the periodic nature of the gravity wave [Eq. (17)]
is used.

IV. INTERNAL PHASE NOISE

In this section we calculate the phase noise of the
signal-idler phase difference $12 —$1—P2 inside the OPO
cavity. As we shall see, the internal phase noise has two
sources: the pump-laser phase noise and the phase diffu-
sion noise. While the effect of the pump phase noise can
be eliminated by matching the signal- and idler-cavity
loss rates, the phase diffusion noise is unavoidable and
it originates from the input vacuum modes at the signal
and idler frequencies.

To obtain the phase noise, Eqs. (3) are modified to
include the vacuum fluctuations and the field modes A;
become quantum annihilation operators [10, 17]:

Ap
—— ~pAg —yA1A2+ /2K' Ep + /2~g ug,

Ai ———(~1 —ib. i)A1 + yA„A2 + /2K1 ui )

A2 ———(z2 —ih2)A2 + yA1, A, + i/2K2 u2,

(21)

where u; is the noise operator associated with the input
vacuum fluctuation of mode i, and they have the usual
nonzero correlations

u, t u t' =baht —5'

Writing A, (t) = r; [1 + a, (t)] exp(iP, ), where a; is the
normalized small-signal annihilation operator, the quan-
tum Langevin equations for an above-threshold OPO are
linearized about the large-signal steady-state solutions,
Eqs. (5)—(10), and solved for the time-dependent fluc-

tuations a, and at. For a state with a high mean field

A, = r;(I+ p;) exp[i(P;+ g, )], the normalized amplitude
fluctuation p, and the phase fluctuation g, are related to
a; a.nd a,. by

1
p, '= 2 a'+a, g,

= —. a' —a ~ (22)

u; =u;e i =1,2,

where H.c. means Hermitian conjugate.
The time-dependent solutions to Eqs. (21) have pre-

viously been obtained by Graham and Haken [10] and
here we will reproduce only the relevant results concern-
ing the phase diffusion of $12. The following assumptions
are taken: ~A; (, (ei —~2 ( && ~1+~2 so that only the lowest
order of 4, and Kq —K~ are retained.

There are two relevant phase parameters

For convenience we define for the real and imaginary
parts of the vacuum input modes

1-
p,
" = —(u, + H.c.), Q,

" = —.(u, —H.c.),
2

' ' ' 2i

(23)
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~1 ~2~=4i+A, ~= —4 ——A
~2 &1

batically [10] such that

44 —40 =
p 4 —

p 0 =2ppt, (25)
C, the sum of the signal and idler phase fluctuations,
follows the phase diffusion of the pump phase @& adia- where yz is the pump-laser linewidth. 4 is given by [10]

~(t) —~(0) =
t t T

(yu gu) + V» d d I —(sg+sg)( — ') (g u ~ u)
0 0

(26)

The effect of nonzero cavity detunings 6; is the coupling
of the real part of the signal and idler vacuum modes p,

"
into the phase 4. For times t longer than the photon
cavity lifetimes 1/2z;, the mean-square fluctuation of 4
is given by

where P, = Pi + P2 ——4C is the total average output
power.

From Eqs. (24) we can express the beat-note phase
fluctuation

@1+&2 &1+ &2
(28)

(27)
where relation (8) is used. The mean-square fiuctuation
of the internal phase is then obtained:

~~l (t) =([~»(t) - ~ (0)]')

K1 —K2 16~2ia22 f b, 2i + b, 22

(Ki + +2) Ps(icl + ic2) E (ai + a2)
(29)

The first term on the right-hand side of Eq. (29) is
due to the phase diffusion of the pump laser, while the
second term is the intrinsic OPO phase difFusion noise
that is very much like the Schawlow-Townes laser phase-
diffusion-noise term [10, 24]. For ~i a2, the effect of
the pump-laser phase diffusion is much reduced and one
obtains

&0»(t) = ~1+, It, ~i =~2. (3o)
4~', ( b, ', l
P, ( K, j

The phase diffusion can be further minimized by operat-
ing the OPO close to cavity resonance, in which case the
phase noise gi2 is mainly caused by the imaginary parts
of the input signal and idler vacuum modes Q,

" [Eq. (26)):
4K2

Ag,', (t) = ' t, b„«~; .
P,

to yield the phase of the optical field E(t).
As in the usual heterodyne detection [25], it is neces-

sary to include the image-band vacuum modes u3 and u~
in order to obtain the correct shot-noise level. We as-
sume in this case that the beat frequency is much larger
than the cavity linewidths uri2 » Ic; so that the image-
band vacuum modes are not affected by the parametric
interaction. We further assume negligible internal losses
so that lc; is the output-coupling loss rate and P, is the
total detected power. The field external to the OPO cav-
ity

cos(co„t-p»)

LP

V. EXTERNAL PHASE NOISE
In calculating the external phase noise it is useful to

specify the phase-measuring apparatus. Figure 2 shows a
schematic of a synchronous detector that is suitable for a
high-intensity field E(t). Direct detection of the optical
field is followed by a bandpass filter that centers at the
beat frequency ~12. The bandpass-filtered photocurrent
i(t), which contains the heterodyne beat of the signal
and idler frequencies, is synchronously demodulated at
the same beat frequency, and then lowpass filtered. The
two quadrature signals x(t) and y(t) are then processed

BP

D
LP

sin(co»t -p»)

FIG. 2. Schematic of phase-measurement apparatus. D,
detector; BP, bandpass Alter; LP, lowpass filter. The
bandpass-filtered photocurrent i(t) is synchronously demod-
ulated at (wrist —Pig) to yield the amplitude s(t) and phase
y(t) quadratures.
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E(t) = /2K' pqP+ nq)e '~~" &&~+ /2K2 p2(1+. g2)e '~~& &2)

ule u2e —u3ee
—z M 2 5 —z (2' 1 —u) 2 )& —z (2u) 2 —cu 1 )4

The bandpass-filtered photocurrent is then given by

4(t) =2C e '~ '" 4"~ (lyacya ) yH. c. —/2C e '~ '" 4"~(u yu yu yu )+H.c.

(32)

where „,—( o -s.)u3 = u3e „,—(».-~ )u4 ——u4e

1
z(t )=—

1
y(t )=—

dt ~(t) cos(cuq2t —Pq2),

dt i(t) sin(u)2t —Pqq) .

(34)

(35)
and we assume unity detector quantum efficiency and
set the electron charge to unity for convenience. The
synchronously demodulated signals are defined by

By retaining only the dc terms, the demodulated,
lowpass-filtered quadrature signals are obtained:

1
&(t ) = «2C'(1+S~+S~) —~~C(Vi+t~+Vs+) ~)

tm 0

1
y(t ) = dt 2C'g» —v2C(g»+g,",)

tm Q

(36)

(37)

where @,". = @,
"—)I))" and g," is defined by Eqs. (23). The

mean quadrature signals are easily obtained:

(.(t-)) = 2C', (y(t )) = 0. (38)

Figure 2 indicates that the local oscillator for demod-
ulation includes gqq, as in the usual phase-locked loop in

which the phase of interest is tracked. This choice per-
mits the out-of-phase quadrature to have a zero mean.
For a large in-phase signal (z)s )) (b,z ), (b, y ) the
mean-square fluctuation of the measured phase is given

by

of g&2. Therefore one cannot simply add the phase dif-
fusion noise and the photon shot noise, which is caused
by g,", as if they were independent noise sources.

It is useful to evaluate the above phase-noise result for
a limiting case: a signal which consists of two uncorre-
lated coherent states of equal amplitudes at the frequen-
cies ~i and ~2, plus the two image-band vacuum modes
u3 and u4. This can be represented in our analysis by
setting K, = 0, i.e. , the cavity is totally reflecting and
the internal field is completely isolated from the external
field. Equation (42) then yields the simple result

(t ) = (& (t ))/( (t )) (39) &&'»(t ) = 2/P. t (43)

Assuming that the OPO is operated at cavity resonance
and with equal cavity-loss rates, i.e. , 6; = 0 and ~i ——K2,

the minimum internal phase noise [Eq. (31)] is obtained.
We can then write, using Eqs. (26) and (28), 2 N'(t )b.P'„(t ) = 2, ~; = 0 . (44)

The mean-square photon-number fluctuation in this case
is well known and is given by AN2(t ) = N(t ) = P, t
which yields a number-phase uncertainty product

y(t ) =

which yields

&m

dt dr 2K& 12 r
m 0 0

—&4"4(') —&ee(') ) (40)

The above uncertainty product is four times larger than
the usual single-mode homodyne case [26] because there
are four modes in this heterodyne measurement: two sig-
nal and two image-band vacuum modes.

Returning to the main result of the external phase
noise, Eq. (42) can be written as

(»'(t-)) = (y'«-))
2C2

(1 —K, t+s2 K', t' ) . . (41)
&&i2(t-) =

p [s+ s(K~t- —4)']Al p t 8 3 (45)

The phase noise is then given by

b, P, ~(t ) = (1 —~)t + s~,t„,) .
8 tTA

(42)

From Eqs. (26) and (28) one observes that the inter-
nal phase fluctuation gq2 depends on the time history

At vqt =
4 the minimum phase noise is obtained with

a mean-square phase fluctuation

AP&2(min) = 5/4P, t —3&atm= 4. (46)

This minimum phase noise is smaller than the shot noise
of two uncorrelated coherent states, Eq. (43), indicating
a time-dependent squeezing of the external phase noise of
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the OPO's signal-idler beat frequency. For times longer
than the cavity decay times rqt )& 1 the phase noise
is primarily due to the internal signal-idler phase diffu-
sion and is equal to (4zzi/3P, )t, which is smaller than
the internal phase noise [Eq. (31)] by a factor of 3. For
times shorter than the cavity decay times ~qt &( 1 the
internal phase diffusion is frozen and the external phase
noise is simply the usual photon shot noise 2/P, t . The
I/t dependence for short times and the t dependence
for long times suggest that the minimum phase noise is
obtained in the intermediate region of Kqt 1. Indeed,
the shot noise and the phase diffusion noise interfere to
yield the minimum phase noise Agi2(min) at Kit

Equation (20) shows that the optimum integration
time t z/2~& yields a signal Pz

——(~i/~z)h0 Th.is
optimum measurement time is chosen to be about a quar-
ter of the expected period of the gravity waves. For
shorter times the induced phase shift has not been ac-
cumulated. For longer times the phase shift has already
reached its maximum value and in order to maintain the
minimum phase noise (at zit = 4) the cavity finesse has
to be increased (smaller rci) without additional benefits.
For a unity signal-to-noise ratio, the minimum detectable
gravity-wave strain is given by

urgt - z/2 . (47)

By choosing a cavity-loss rate given by K~t = 4, the
phase noise is minimized to yield

Noting that 2ai is the cavity power-decay rate, Eq. (48)
shows that the OPO cavity interferometer has the same
sensitivity as either a passive Michelson interferometer
[4, 5] or an active two-laser interferometer [3] for a given
size and finesse of the apparatus and detected optical
power. For example, if we take ~z/2z = 100 Hz, ~i/27r =
3 x 10 Hz, h~iP, =1 W, output coupling of 1%, and an
arm length of 2.5km, then we have 2K' —600 s ', andh;„3x10

VI. DISCUSSION

An above-threshold OPO has the following quantum-
noise characteristics for the output intensities [12—14).
The signal and idler intensities, when measured by sep-
arate detectors, are strongly correlated and yield a sub-
shot-noise difference intensity spectrum for frequencies
within the cavity linewidth. Within the same frequency
bandwidth there is excess noise in the individual and
summed intensity spectra. For frequencies large com-
pared with the cavity linewidth, however, both the sum
and difference intensities are shot-noise limited. For the
proposed OPO gravity-wave detector with its long arm
lengths, the cavity linewidth is assumed to be much

smaller than the signal-idler beat frequency. Therefore
it cannot take advantage of the sub-shot-noise intensity
correlation between the signal and idler beams nor is it
affected by the excess noise in the sum intensity at low
frequencies.

Implicit in our OPO analysis is that the internal losses
of the OPO cavity are much smaller than the output-
coupling losses. In the case that the internal losses
are not negligible, the internal phase diffusion is caused
by the vacuum modes that enter through the output-
coupling mirror and those that enter through the inter-
nal losses. The output power that is detected through
the coupling mirror is reduced by the ratio of the in-
ternal losses to the total losses. Consequently, the phase
noise is increased and the detection sensitivity is reduced.
This is similar to squeezing experiments in which internal
losses reduce the correlation that is detected through the
output-coupling mirror [12—15, 17, 27].

In obtaining our result, Eq. (42), the near-resonance
condition 6; 0 is assumed. Equation (26) shows that
a nonzero 6; couples the real parts of the vacuum modes
p& and p& into the internal phase noise. This leads to an
increase in both the internal and external phase noise.
Therefore, the near-resonance condition is required for
obtaining the lowest phase noise of the OPO interferom-
eter.

For the passive interferometer, it is known that, in
principle, the detection sensitivity can be enhanced by
injecting squeezed vacuum into the unused input port [4,
5]. The spontaneous emission noise in the active two-
laser interferometer can be suppressed if a correlated-
emission laser is used, which reduces the phase diffusion
between the two emitted radiations [3]. For the pro-
posed OPO gravity-wave interferometer, it is also pos-
sible to improve the phase-measurement sensitivity by
using squeezed light.

Under the ideal conditions of negligible internal losses
and near-resonance operation, the external phase noise
is entirely due to the input vacuum phase noises gi2 and

$34 [Eq. (40)]. By injecting quadrature-squeezed vacuum
at the four frequencies into the OPO, such that g",
and @s Q4, the external phase fluctuation can be much
reduced. For a 10-dB quadrature-squeezed vacuum in-
put, this yields about a tenfold improvement in the de-
tection sensitivity. The two pairs of vacuum modes 1-2
and 3-4 are symmetrically displaced in frequency about
the degenerate frequency (&ui + ~z)/2. Therefore, the
quadrature-squeezed vacuum can be generated with a
similar but much smaller OPA [19] that is pumped by
the same laser with frequency ~&. The squeezed spec-
trum of a small OPA can extend to several tens of MHz
and hence overlap the required beat-frequency range of
the proposed OPO gravity-wave detector. In this way a
single OPA can be used to generate all four quadrature-
squeezed vacuum modes.

In practice, however, the use of quadrature-squeezed
vacuum inputs presents some severe technical challenges.
As the input vacuum phase noise is squeezed, the cor-
responding input amplitude noise increases [19]. There-
fore it is necessary to maintain a tight cavity resonance
4; = 0; otherwise, a significant amount of the input am-
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plitude noise would be coupled into the phase fluctuation
of the beat frequency [see Eq. (26)]. In addition, the in-
ternal losses of the OPO interferometer have to be much
smaller than the output coupling, as is required in most
squeezing experiments [12—15, 27].

Another source of phase noise is the fluctuations of ra-
diation pressure on the mirrors (radiation-pressure error)
[4, 5]. In the two-arm OPO this radiation-pressure error
is proportional to the fluctuation in the internal signal-
idler intensity difference. (Strictly speaking, the propor-
tionality is only approximate for equal end-mirror masses
because the signal and idler frequencies are slightly dif-
ferent. However, if the end mirrors have slightly differ-
ent masses in the same ratio as that of the signal and
idler frequencies, the proportionality is exact. ) It is well

known that the signal and idler intensities are perfectly
correlated outside a lossless cavity, but the maximum
amount of difference intensity squeezing is only 50% in-

side the cavity [28]. Therefore the radiation-pressure er-
ror in the two-arm OPO is unavoidable and, unlike the
two-frequency interferometer analyzed by Bondurant and
Shapiro [5], the two-arm OPO cannot surpass the stan-
dard quantum limit in position sensing [4, 5]. Under nor-
mal operating conditions in which the available optical
powers are far below the optimal amounts [4], the sensi-
tivity of the OPO interferometer is primarily limited by
the photon shot noise and the signal-idler phase difFu-

sion and is worse than the standard quantum limit. The
sensitivity can be improved with the use of quadrature-
squeezed vacuum inputs as discussed above, but at the
expense of increased amplitude noise which leads to an
increase in the radiation-pressure error. The tradeoff is

optimized when the two noise sources become equal. This
is basically the same situation as in the passive interfer-
orneter [4], and hence one expects that in principle the
standard quantum limit can be reached by both types of
interferometer at about the same average photon num-

ber.
As in all interferometric gravity-wave detectors, the

proposed OPO interferometer requires that the arms'

lengths be highly stabilized. While its detection sensitiv-

ity is the same (assuming no squeezed light or correlated-
emission laser is used) as that of the passive Michelson in-

terferometer and the active two-laser interferometer, the

OPO gravity-wave detector has some practical advan-
tages. The use of beat-frequency detection reduces the
effects of certain technical noise sources that have a high
noise content at low frequencies. The phase noise is im-
mune to the pump-laser frequency jitter and phase fluctu-
ation if equal signal- and idler-loss rates are maintained.
In a practical system, a pump linewidth of less than 1 Hz
should be adequate. The nonresonant parametric inter-
action in a highly transparent nonlinear crystal means
that the OPO can have very low internal losses and a
high finesse of the OPO cavity can be obtained. Remain-
ing losses are primarily due to scattering and absorp-
tion losses at the crystal and mirror surfaces. Current
optical-coating capability shows ( 10 fractional scat-
tering and absorption loss per surface for mirrors. Suit-
able nonlinear crystals such as potassium titanyl phos-
phate (KTP), which can be type-II phase-matched, has
a high nonlinearity, a high damage threshold, and very
low losses at the 1-pm-wavelength region. In addition, it
has been demonstrated that a cw doubly resonant KTP
OPO can be continuously tuned [23], even through the
frequency-degenerate point, suggesting that, the disad-
vantage of added complexity in this OPO arrangement
can be overcome.

In summary, we have shown that an OPO with or-
thogonal signal and idler paths can be utilized as an
active gravity-wave detector. The gravity-wave induced
phase shift of the beat frequency is monitored by syn-
chronous detection and a comparison with a stable rf
source. The external phase noise is calculated using a
linearized quantum analysis and is shown to exhibit time-
dependent squeezing. The phase fluctuation is found to
be comparable to the usual passive Michelson interfer-
ometer and the active two-laser interferometer, and the
detection sensit, ivity can be improved with the injection
of quadrature-squeezed vacuum.
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