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Nonlocal cancellation of dispersion
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Classically, two coincident light pulses propagating through two dispersive media will become
broadened and their degree of coincidence will be reduced. When entangled photon pairs from paramet-
ric down-conversion are considered instead, it is found that the dispersion experienced by one photon
can exactly cancel the dispersion experienced by the other in such a way that their coincidence is main-
tained. The dispersion cancellation is independent of the separation between the two photons and pro-
vides a further example of the nonlocal nature of the quantum theory.

PACS number(s): 42.50.Wm, 03.65.Bz

I. INTRODUCTION

A classical pulse of light propagating through a disper-
sive medium will experience a broadening that depends
upon the local properties of the medium. If two such
pulses are initially coincident but propagate in different
directions through two separate media, then the disper-
sion of one pulse will be independent of the second. As a
result, neither pulse represents a precisely defined time,
and their degree of coincidence will be reduced. The in-
dependence of the two pulses follows directly from the lo-
cal nature of Maxwell’s equations and would hold equally
well for any local theory.

In quantum optics, however, a coincident pair of pho-
tons produced by parametric down-conversion [1] corre-
sponds to an entangled [2] state whose wave function
cannot be factored into the product of two independent
wave functions. This results in a variety of nonlocal
effects, including violations [2,3] of Bell’s inequality [4]
for local hidden-variable theories and other inequalities
satisfied by any semiclassical field theory [5,6]. Such
effects have been observed in recent two-photon inter-
ferometer experiments [7-11] as well as earlier experi-
ments [12,13] based upon the polarizations of the down-
converted photons.

The propagation of a pair of entangled photons
through two dispersive media will be considered here. It
will be found that the dispersion experienced by one pho-
ton can be canceled out by the dispersion experienced by
the other photon in such a way that the two photons
remain coincident. This dispersion cancellation is in-
dependent of the separation between the two photons and
provides a further example of the nonlocal nature of the
quantum theory when dealing with entangled states.

II. SEMICLASSICAL DISPERSION

Although the classical theory of dispersion is well
known [14], it may be useful to derive first the degree of
coincidence of two classical light pulses in a form that is
suitable for subsequent comparison with the quantum-
theory predictions.

A light source will be assumed to emit two identical
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pulses that, for simplicity, will be taken to have negligible
widths at the time ¢ =0 of their emission. After passing
through two identical narrow-band filters f, and f,, the
pulses propagate in different directions along paths 1 and
2 toward detectors D, and D,.

The electric fields of the two pulses will be denoted by
E,(x,,t;) and E,(x,,t,). A single linear polarization
will be considered and it will be assumed that the two
light beams have been sufficiently well collimated that
they can be represented by plane waves, in which case the
coordinates x; and x, can be taken to be one dimension-
al. It will also be assumed that the dispersive media
along paths 1 and 2 have homogeneous indices of refrac-
tion that may not be the same in the two regions.

The fields at the location of the source can be written
as

E(0,t))=Eyo(t))=——

1( 1 ) 0 ( 1 ) o _ we
where E is a constant and a similar expression exists for
E,(0,t,). Both filters will be assumed to have a transmis-
sion coefficient f (w) for incident fields given by

()

—(o—w 2 02
flo)=e (0—wp)/2 F
where o is the center frequency [15] of the filters and o ¢
is their width (one standard deviation). After passing
through the filters the fields then have the form

E, ®  —(o,—wp)?/20% —iot
El(o,t,)=77;f_we TR R T M g, €))

with a similar expression for E,(0,¢,). The propagation
delay between the source and filters has been assumed to
be negligibly small in Eq. (3).

Since the filters have relatively small bandwidths, the
wave number k(®) as a function of the angular frequency
o can be expanded in a Taylor series about wp

k(w)=kp+talwo—wp)+Blo—owp) . @)

Here ky, a, and B are constants that may have different
values in the two media. The second-order terms are
sufficient to demonstrate the effects of interest, and
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higher-order terms, which are extremely small for a
sufficiently narrow filter, have been neglected.

The comparison with the quantum-mechanical situa-
tion can be facilitated by introducing the small parame-
ters €; and €, defined by

(L)1=COF+61 N
(5)

(02=w1;‘—'62 .

The reason for including the minus sign in the second
equation will become apparent shortly. The dispersion
relations can now be written as

kl(m1)=kpl+a1€1+61€% N (6)
k2(w2)=kp2—a262+326% .

It should be noted that the sign convention is such that
a;=a, and B;=p, if the properties of the two media are
identical.

After propagating through the medium in path 1, the
electric field at detector D becomes

Ey rw —&/20% ilkp +ae+B,)x
E (x,,t,)= f e VTR R ME TR
27T —

—ilogp+e€

Xe "ide, , (7)

where x; and x, now denote the distances between the
detectors and the light source. Equation (7) can be in-
tegrated to give

__ %o
El(xl,tl)_—z_‘—-

exp | — s
7%, P 4of+pB2x?)
(8)
where
1
2 .
a1=———iBx, , 9)
1 20% Bl 1
1
2
= (10)
0 20%

and an irrelevant phase factor has been dropped.
Multiplying Eq. (8) by its complex conjugate gives the
intensity 7,(x,¢,) of field 1

2
EG  —(apx,~1,?202
e

Il(xl’tl) (11)

T e
4mrata,

where the width o is given by

(o§+B3x?)
S ALLLILA (12)
To
The corresponding expressions for field 2 are
z —lay,x, — 2 0'2
L(xg,ty)=——0e @272 (13)
4ma3a,
1
ai=———iB,x R (14)
2 20_%‘ B2 2
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(o4+B3x3)

g

oi= (15)

Detectors D; and D, will be assumed to be single-
photon detectors, such as photomultiplier tubes, with
detection efficiencies and pulse intensities sufficiently
small that the probability of a detection event for any
given light pulse is much less than one [16]. In a semi-
classical field theory the probability of obtaining a count
from either detector is then proportional to the local field
intensity. The probability P of obtaining two such counts
at times ¢, and ¢, =t + 7 is thus

P=ql (x,,t;)1,(x,,t;+7), (16)

where 7 is a constant related to the detection efficiency.
The overall probability P(7) of detecting two photons at
a time lag 7 is then the integral of Eq. (16) over all time
E4

P(r)= __Tn_o__
(47m)ata,aja,

f w —lax;—1))2/20% —[ayx,—(t; +1)]* /202
X e e dt, .

1n

By completing the square in the exponential, Eq. (17) can
be put in the form

(r—7)
2(02+03)

P(r)=yexp y (18)

where 7=a,x, —a,;x; and the constant ¥ has the value

7,=———7’Eg fw exp
(4m)Yata,aia, v =

1

2

+L2 t2lde .
2

o

1
ot
(19)

It can be seen from Eq. (18) that the classical coin-
cidence distribution has a width o, given by

208+ (B3 +B3)x?

b
o

git=0l+oi= (20)

where it has been assumed for simplicity that x; =x,=x.
In the limit of small dispersion or small distances this
reduces to

ot=203=1/0% (21)
while for large distances and large dispersions
(B} +B3)x?
2

)

or= =203} +B3)x* . (22)

No cancellation of the classical dispersion coefficients
is possible since Eq. (22) corresponds to the sum of the
squares of the individual coefficients. Although the spe-
cial case of two Gaussian pulses was considered here, the
Appendix shows that this is a general property of any
classical or semiclassical theory. The lack of classical
dispersion cancellation is a consequence of the indepen-
dent propagation of the two pulses.
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II1I. DISPERSION IN QUANTUM OPTICS

The propagation of light in two different media need
not be independent if we consider a correlated or “entan-
gled” quantum-mechanical state of two photons. The
most general two-photon entangled state at the initial
time ¢ =0 has the form

[9(0)) = [ do, [ dog(e,0)a] b 10) . (23)

Here g (w,,®,) is an arbitrary function, |0) is the vacuum
state, and the operators a,I] and b,f2 create photons in
paths 1 and 2, respectively.

If the photon pair is created from an initial photon of
energy fiw,, as is the case in parametric down-conversion
(1], then energy conservation limits the possible form of
the state vector to

[9(0)) =cy f(:‘"’dw,ﬁ(wl)a,jlb,jo_k1 0) . (24)

Here cy is a suitable normalization constant, and we have
used

Wy)=wWy— Wy . (25)

The passage of both photons through the two filters has
been reflected by the inclusion of the factor of fX(w,).
The center frequency wy was chosen to be wy/2, in which
case f(w,)=f(w;) from Egs. (2) and (25). This choice
simplifies the calculations somewhat, but the same gen-
eral results can be obtained without it.

Equation (25) can be rewritten by introducing a small

J

2oy

E5 (x,,t, +T)E{ (x1,£)|¢(0)) = —cy

— o

X
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parameter € defined by

0,=wy/2+€,
(26)
0, =wy/2—€ .

Equation (26) is analogous to the semiclassical equation
(5) except that now energy conservation requires
€,=€,=¢€. The dispersion relations of Eq. (6) can now be

written as
kl(a)l):kpl +a|E+Bl€2 )
27)
ky(@,))=kpy—a,e+B,€ .

It will be simplest to work in the Heisenberg picture, in
which case the positive-frequency component [17] of the
electric field operator has the form

12
2mfiw, i(kyx, —oyt)
e :
V

(28)

E+(x1,t1)=l' 2
@y

The probability P of detecting two photons at times ¢,
and t, =t + 7 is proportional to

P=9'{PO)|E | (x,,t,)E; (x,5,t,+7)
XEF (xy,t; +7)ET (x1,t)|9(0)) , (29)
where the constant 7’ is related to the detection
efficiency.

Combining Egs. (24)-(28) gives the approximate ex-
pression

f © dee —ez/ai-ei[(kn‘l-ale-%ﬂlel)xl ~(wF+€)l1]

i[(kpy—a,et+ B )x, —(0p—€)t, +7)]
e F2 2 2 2 F 1 |0> .

(30

The narrow bandwidth of the filters allowed the slowly varying factors of @, and w, in the square roots to be approxi-
mated by wp. The range of the integral was also extended to = .

The integral in Eq. (30) can be evaluated to give

2oy
v

CN,n.l/Z

E2+(x2,t1+T)E1+(x1,t1)|lli(0)>= a'

An irrelevant phase factor has been dropped, and it has
been assumed once again that x; =x,=x. The constants
a' and 7 are given by

a?=1/0%—i(B;+B,)x , (32)

T=(a,—a)x . (33)
Multiplying Eq. (31) by its Hermitian conjugate gives
1oy |

2

n'cn —(r=7)2/20°}
e

vV

(a™*a’)

P'(1)= ) (34)

where

exp

—=\2 2 : +
_(T T)(1/0F+1(312322)X) 0) . 31)
4(1/0'}‘*‘(.31"'.32)1 )
[
1/0%+(B,+B,)x?
o= MOFH BB (35)
I/O'F

The quantum-mechanical coincidence distribution thus
has a width that approaches

oZ=1/0t=20} (36)

when the dispersion or distances are negligibly small. In
the opposite limit of large dispersion the quantum-
mechanical width becomes
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n_ By +B,)°x?

o (37)

203

Unlike the classical result, the quantum-mechanical
width depends upon the square of the sum of the indivi-
dual dispersion coefficients, which gives rise to an in-
terference term, 253,3,.

A comparison of Egs. (20) and (21) with Egs. (36) and
(37) shows that the quantum-mechanical results are the
same as the classical results in the limit of negligible
dispersion or whenever 8, =8,.

The interference term is due to the fact that the two-
photon probability amplitudes are coherently summed
before being squared and is somewhat analogous to the
earlier two-photon interferometer experiments [3,7,8,
10,11]. The summation of probability amplitudes is, of
course, a fundamental property of quantum mechanics
and gives rise to nonlocal effects in this case. In particu-
lar, a medium may have a negative dispersion coefficient
if the frequency of the light is near that of a resonant
atomic transition [14,17]. If the properties of the two
media are such that B,=—pf,, then the dispersion en-
countered by one of the photons will cancel that encoun-
tered by the other photon. The two photons can remain
totally coincident after traversing two dispersive media,
aside from the intrinsic spread o, which goes to zero in
the limit of large bandwidth and is negligibly small in
most experiments.

If the two detectors are not equidistant from the
source, Eq. (37) can be generalized to

2
o= (B1x, +l232x2) (38)
20

It can be seen that the cancellation will be complete
whenever B,x;=—pf,x, and that the properties of the
two media can be matched by varying the ratio of x, to
x,. It should be kept in mind, however, that x, and x,
are the distances from the source and cannot have nega-
tive values. Equations (22) and (37) are not equivalent in
general even when B, and B, are both positive.

The cancellation of dispersion is clearly due to the an-
ticorrelation of the frequency components of the two
photons, which originate from a monochromatic pump
photon. One might ask whether or not such frequency
correlations may have the same effect in the classical
case. It is shown in the Appendix that no classical theory
can reproduce these effects due to the incoherent addition
of classical probabilities.

It should be noted that the initial state of Eq. (24) cor-
responds to a situation in which the emission time of ei-
ther photon has a very large uncertainty in the quantum-
mechanical sense [3]. As a result, it is somewhat mean-
ingless to consider the effects of dispersion on a single
photon of a pair. In any event, the cancellation of disper-
sion coefficients in Eqgs. (37) and (38) applies only to the
degree of coincidence between the two photons. Nonlo-
cal effects in general are limited to joint-measurement
probabilities.
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IV. SUMMARY

It has been shown that the dispersion experienced by
one photon of an entangled pair can be canceled by the
dispersion experienced by the other in such a way that
the two photons remain coincident. This is in contrast to
the classical situation where the dispersion experienced
by a light pulse is dependent only upon the local proper-
ties of the medium through which it is propagating.

These results are due to the coherent superposition of
quantum-mechanical probability amplitudes, which have
no classical analogy. For an entangled pair of photons
this produces nonlocal phenomena that can only be un-
derstood by viewing the effects of dispersion on the two-
photon system rather than on each photon individually.
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APPENDIX

The text considered the propagation of classical Gauss-
ian pulses and showed that their dispersion does not can-
cel. The purpose of this Appendix is to show that this is
a general property of any classical or semiclassical field
and that the dispersion cancellation is thus an inherently
quantum effect. The degree of coincidence of the counts
from two photodetectors will be investigated by calculat-
ing the average squared difference o3 in detection times.
A classical inequality for o ; will be derived, and it will be
shown that no classical or semiclassical theory can pro-
duce total coincidence between two beams of light propa-
gating through two dispersive media.

In any classical or semiclassical theory the electric field
at a detector located a distance x, from the source in
medium 1 will have some specific value as a function of
time, which will be denoted by E (x,,t;). This is the
case even if the field is unknown and stochastic in nature,
in which case it may be described by a classical probabili-
ty distribution. The same is true for the field E,(x,,t,) at
a detector in medium 2, and for stochastic fields the two
fields may be correlated. It will be convenient to consider
the case in which both fields are nonzero only for
0<t <T, where T is some constant. This condition can
be established for any type of light source by the ap-
propriate use of a shutter.

The probability that the two detectors will both pro-
duce an output at times ¢, and ¢, is given by the joint
probability

Pj(tl,t2)=7],Er(xl,tl)El(xl,tl)E;(XZ,tz)Ez(XZ,tz) )
(A1)

where 7' is a constant related to the detection probabili-
ty. It can be noted immediately that P, factors into the
form

Py(t),15)=P,(t,)P,(t,) , (A2)
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where P; and P, are proportional to the individual inten-
sities. This factorization of the joint probability for any
given set of fields is a general consequence of locality and
corresponds to the fact that the two detectors operate in-
dependently. When averaged over a correlated probabili-
ty distribution for E, and E,, Egs. (A1) and (A2) can still
give correlated results of a purely causal nature, however,
as is the case for local hidden-variable theories in general
[18].

It will be convenient to normalize the constant %’ in
such a way that

forpl(z1 ydt, =1 (A3)
with a similar expression for P,. The same results can be
obtained without such a normalization if the equations
that follow are divided by the integral in Eq. (A3).

Since the fields are nonzero only in the interval
0<t <T, we can consider a large number of systems
prepared in accordance with the same probability distri-
bution and measure the ensemble average of various
quantities. Alternatively, one can suppose that a real ex-
perimental system contains a shutter controlled in such a
way as to produce a sequence of time intervals over
which averages can be performed. The latter situation
will be assumed to be the case here, since it is equivalent
to what is generally measured experimentally. The aver-
ages so obtained will then correspond to the actual exper-
imental measurements without any assumption of ergodi-
city or stationarity [6].

For stochastic fields there are two sources of random-
ness or variation in the measurements. For a given value
of the fields E(x,,¢,) and E,(x,,t,) there will be some
randomness associated with the detection probability of
Eq. (Al). Additional randomness may result from any
variations of the fields from one time interval to the next.
The variation due to the detection process itself will be
considered first, after which the additional randomness
due to any variations in the fields will be taken into ac-
count.

For any specific value of the fields, the variation in the
detection time in path 1 is given by

T T 7.
U%:fo dt1f0 dtZPJ(tl”fz)(tl_tl)2

=f0TP1(zI)(t,—t‘1 ydt, (A4)

where the average value of 7, over the interval is given by
— T
t‘:fo P\(t))tdt, (A5)

with a similar expression for field 2. The average squared
difference in detection times is given by

T
03=f0 dl‘1fOle‘2PJ(t1,t2)(t1—22)2. (A6)
Equation (A6) can be rewritten as
T T
03=f0 aft,f0 dt,P(1)P,(1,)

X[(t,=1)—(t, =)+, —1,)]
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or
T T
0'5:.[0 dtlf() dtZPI(tl)PZ(tZ)
X[At?+At3 —2At, Aty +2A8 (T, —T,)
—2At,(F; —5,)+(F;—1,)*] , (A8)

where the notation At;=t;—7; has been used. The first
term gives

T — T
fo Pl(tl)ul—t,)zdr,fo P,(ty)dt, =07} (A9)

with a similar expression for the second term. The third
term reduces to

T — T —
—zfo P, (t,)(t, —T,)dt, fo P,(t,)t,—F,)dt,

:_2(?1_?1 )(72—72)=0 . (AIO)

The fourth and fifth terms are similarly zero, while the
last term gives just (7, —7,)%.
Combining these results gives

gi=03+oi+(f,—1,)". (A11)

The minimum value occurs when 7, =7, and in general

oi>03+0l. (A12)

The results obtained above correspond to a fixed set of
fields. Any variation in the electric fields from one time
interval to the next can be taken into account by averag-
ing over the correlated probability distribution for the
two fields, which will be denoted by angular brackets. In
that case Eq. (A6) becomes

<05>:<font1fon’zPJ(tlrlz)(’1_12)2> )

where P; is now a function of the fields. The results
again reduce to

(A13)

(a3)2(o)+(o3) 20l tolina > (A14)

where o, | and o, , are the minimum widths that can
be achieved for any given set of fields. It should be em-
phasized that o, and o,, as defined by Eqgs. (A1) and (A4),
include only the uncertainty associated with the detection
process and do not include the additional uncertainty as-
sociated with any variations in the fields.

It is apparent from Egs. (A12) and (A1l4) that the
effects of dispersion on o; cannot cancel between two
classical fields. This is a consequence of the fact that
there is some randomness associated with the detection
process itself for which the joint probability of Eq. (A1)
factors into the product of two independent probabilities.
Correlations between the two fields for the stochastic case
can at best ensure that 7, =7, for each time interval.

The results obtained above correspond to single-
photon detectors with low detection efficiencies for which
Eq. (A1) applies. Alternatively, one can consider the lim-
it of high field intensities and continuous classical mea-
surements, in which case all of the above equations still
hold if they are reinterpreted as statistical moments of
the joint intensity distribution.
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There is one special case that needs to be considered
and that is the possibility that some specific set of fields
may cause o; and o, to be zero individually, in which
case the classical results of Eqs. (A12) and (A14) would
agree with the quantum prediction of zero o for a trivial
reason. This possibility can be avoided by considering
the field at two different locations x; and x}7x,. It is
straightforward to show that no classical field theory can
cause the widths o, and o, to be zero at both locations
simultaneously [19]. We can then consider the sum of
the widths measured at these two locations and show that
it obeys an equation analogous to Eq. (A14), where the
corresponding (summed) values of o, and o, are nonzero.
It follows from this that no classical or semiclassical
theory can maintain total coincidence between two light
beams traversing two dispersive media.

The difference between the classical and quantum re-
sults can be illustrated by considering a classical situation
in which the frequency of one field is totally correlated
(or anticorrelated) with the frequency of the other field.
For stochastic fields there would then be various proba-
bilities for these correlated pairs of frequencies to occur.
In the quantum-optics case, the corresponding probabili-
ty amplitudes are coherently added, which gives rise to
the dispersion cancellation discussed in the text. But in
the classical case the results must be incoherently aver-
aged over each such pair of correlated frequencies, which
is equivalent to a superposition of probability amplitudes
with random phases. It is the incoherent addition of clas-
sical probabilities that prevents classically correlated fre-
quencies from giving any dispersion cancellation.

It should be noted that o, the root mean square of the
difference in detection times, can be very different from
the coherence time [20]. For example, in a stationary
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thermal field the detector counts are not coincident at all
(o is infinite), but the correlation time may be finite. As
a result, Eqs. (A12) and (A14) are not relevant to the
effects of dispersion on coherence times. Wang, Magill,
and Mandel [21] have shown that all the statistical prop-
erties of a stationary thermal field are unaffected by prop-
agation through a dispersive medium. As an example of
this, if a thermal beam of light is split in two and sent
through two identical dispersive media, the times at
which the fluctuation maxima occur may be altered by
the dispersion, but the fluctuations will still be the same
in the two beams, leaving the factor-of-two peak in the
coincidence curve (Hanburry Brown and Twiss effect
[22]) unaltered. In the author’s opinion, classical effects
of that kind should not be viewed as a cancellation of
dispersion, since the dispersion is clearly taking place,
even though the correlation time is unaffected.

This Appendix began with the observation that classi-
cal fields have some definite value at each moment in time
even though those values may be unknown and described
by a classical probability distribution. That assumption
(objective realism) cannot be made in the case of quantum
fields, for which reason the results of this Appendix do
not apply to the predictions of quantum optics. A similar
situation was recently discussed with regard to two-
photon interferometry [6].

To summarize the results of this Appendix, it has been
shown that the degree of coincidence as measured by o,
must satisfy the classical inequalities of Egs. (A12) and
(A14) and that no classical theory can give total coin-
cidence between two light beams propagating through
two dispersive media. The quantum-mechanical results
of Eq. (38) need not satisfy this inequality and can give
total coincidence in the limit of large bandwidth.
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