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A comprehensive approach to semiclassical quantization of the quadratic Zeeman effect in the hydro-

gen atom (QZE) is presented which utilizes the connection between the Kepler system and the four-

dimensional harmonic oscillator. Past attempts to quantize the QZE have encountered problems associ-
ated with singularities arising because of a classical separatrix. Here, a uniform semiclassical quantiza-
tion scheme that passes smoothly through the separatrix is developed using classical perturbation
theory. This method accounts for the topologically distinct kinds of dynamics that arise in the QZE, and

provides good estimates of tunneling splittings. Extension to the quantization of arbitrarily-high-order
classical perturbation expansions is straightforward.

PACS number(s): 32.60.+ i, 03.65.Sq, 31.10.+z

I. INTRODUCTION

The quadratic Zeeman effect in the hydrogen atom
(QZE) has for the past decade or so been the subject of an
enormous number of experimental and theoretical studies
[1—5]. The QZE is an important example of a nonintegr-
able Hamiltonian that is markedly chaotic in the classical
limit. Application of a uniform magnetic field to the hy-
drogen atom breaks the spherical symmetry, thus des-
troying angular momentum as a good constant of the
motion, although its component along the field direction
is preserved. In the opposing limits of very strong or-
very weak magnetic fields the problem is almost inte-
grable. The dynamics is thus most interesting (and most
chaotic) in the mixing region where the magnetic and
Coulomb fields are comparable. Sufficiently high Ryd-
berg states can always be found for which this is the case,
and most experimental and theoretical studies have fo-
cused on understanding this regime. In 1980 Zimmer-
man, Kash, and Kleppner [6] postulated the existence of
an approximate constant of motion based on experimen-
tal observations of "quasi-Landau" resonances through
the ionization threshold. This constant (denoted A) was
soon found independently by Solov'ev [7], by Herrick [8],
and by Goebel [9]. A fourth independent determination
of A was made by Reinhardt and Farrelly [10]using clas-
sical perturbation theory for the case m =0. A has been
central to almost all subsequent theoretical studies of the
QZE, with particular attention having being paid to the
quantization of the invariant A using semiclassical
methods. Most of the issues relating to semiclassical
quantization of nonseparable systems and the correspon-
dence limit of quantum mechanics are tied up in the
QZE, and it is therefore important that a consistent
theoretical picture of the classical and semiclassical
mechanics of this problem be developed.

The QZE is an example of a resonant classical system
exhibiting topologically distinct types of motion. Reso-

nant systems are much harder to treat semiclassically
than nonresonant ones because of the strong distortion of
the topology of the trajectories by the resonance and the
sensitivity of the dynamics to perturbations, especially
close to classical separatrices. (A classical separatrix
separates topologically different volumes of phase space. )

In such systems it is crucial that the correct unperturbed
set of action-angle variables is determined, otherwise
nonuniform (singular) quantization formulas result. Con-
sequently much effort has been directed to the general
problem of determining the best set of action-angle vari-
ables for resonant systems [4,5,11]. Quantizing resonant
classical dynamics is akin to performing degenerate quan-
tum perturbation theory, where the correct basis of un-
perturbed states must first be found if singularities in the
perturbation expansion are to be avoided. Resonances in
the QZE lead to similar difficulties, giving rise to singular
quantization formulas [2,12]. Some studies have avoided
the separatrix region, thus minimizing these difhculties,
since in the extreme limits of vibrational and rotational
motion primitive semiclassical formulas may be used.
Nevertheless, the importance of the dynamics in the vi-
cinity of the separatrix necessitates the development of
quantization formulas that are uniformly valid through
the separatrix. This problem was solved for the special
case that m =0 previously [12]. In this paper a generally
applicable quantization scheme is developed which is
applicable to nonzero n values.

The paper is organized as follows: in Sec. II the classi-
cal mechanics of the QZE is examined briefly. Section III
describes the conversion of the QZE Hamiltonian into
that of a four-dimensional [4D] isotropic oscillator with a
sextic perturbation. This transformation allows classical
perturbation theory to be applied. A transformation to a
set of action-angle variables is then introduced. These
are used to effect uniform semiclassical quantization,
which is described in Sec. IV. Brief conclusions are
drawn in Sec. V.

45 3093 1992 The American Physical Society



3094 KRANTZMAN, MILLIGAN, AND FARRELLY 45

1100-

1000-

(b)
1000-

900- 900-

600- 800-

700- 700"

800- 800

500- 500-

400- 400-

300

200-

ijl&

(I

300

200-

100- 100-

0-
I

- 1000 -750 -500 -250 0 250 500 750 1000

0"
I

-1000 -750 -250
I

250
'I''
580 750 1000

0. 3
I
~ oo

1100-

1000-

900-

SOO-

700-

600-

500-

400-

300-

200-

(c)
~ ~

% fP
~ ~

0. 2

~ ~
'~

~ ~

~ hl

" i'8 ~

~ \ ) h
~

$ S ~ Q +«ah«

h ~

/gr ~

~ /r r'
'I I

~ I«
f r «p

;r
ss. )& pl

I

-0.2-
~ ~

~ ~

~ o

«0 ~ o« ~~ g ~ ~
~ &i

~ ~
~ p~ P

~ oo

~o
~ ~ %

'~ ~ O Oo ~ ~ P
~o &v« ~ «Poo i

~ P«« ~ ~ P

~ P ~ ~

..-'p 0.
V ~ V ~

PP V P ~ PVVV V
poV OO po«P P

~ o~
~ «V o«PV

100

0-
I

-'1 000 -750 -500 -250
I

0 250 500 750 1000

~ I

-0 3 ~

I ' I ' I ' F
' I I ' I I I ' I

0 100 200 300 400 500 $00 700 b00 900 1000

FZG. l. Classical trajectories and poincare surface of section for the QZE in cylindrical coordinates, corresponding «n =2»
m =2, and y = &.26X ]0 a.u. ; (a) a rotational trajectory with A) 0, (b) a vibrational trajectory with A &0, and (c) its Partner. The
vibrational trajectories occur in degenerate pairs related by reAection through the z axis. A composite Poincare surface of section s

shown in (d). It was obtained by running 25 trajectories with randomly chosen initial conditions. The islands correspond to the vi-

brational trajectories and a separatrix separates the two types of motion.
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II. CLASSICAL MECHANICS

(2)

P&=mA and the unit of magnetic field is 2.35X10 T.
The paramagnetic term has been removed by going to a
rotating coordinate system [5]. The approximate con-
stant of motion found by Solov'ev [7] and Herrick [8] is
given by

A=4A —5A (3)

where

1 rA= pXL ——
Q( —2Ho )

(4)

is the modified Runge-Lenz vector and Ho =ED is the un-

perturbed Kepler energy. The existence of A as an ap-
proximate constant of motion can be explained in terms
of the approximate separability of the Hamiltonian in el-
liptical cylindrical coordinates on the O(4) sphere within
manifolds of constant n [8]. Quantum evaluation of A is
effected by simultaneously diagonalizing Ho, I.„andA
itself. However, A is a first-order-perturbation-theory re-
sult and attempts to go to higher orders quantum
mechanically become considerably more complicated
[13]. On the other hand, classical perturbation methods
provide a simple and direct way of calculating very-high-
order perturbation expansions [4,10,12]. A takes values
in the range ( n, 4n ), a—nd the two extremal values cor-
respond to different limiting types of classical motion
with a separatrix occuring at A=O. As illustrated in Fig.
1 trajectories with A) 0 have the full symmetry of the
potential and are usually labeled rotational. As A ap-
proaches its maximum value the trajectories become lo-
calized along the p axis and correspond to the ridge states
of Fano [14] which give rise to the 3/2fuu quasi-Landau
resonances [6,15,16]. The second class of trajectories
with A &0 are vibrational in character and occur in de-
generate pairs as illustrated in Figs. 1(b) and l(c). This
leads to splittings in the eigenvalue spectrum due to tun-
neling. The separatrix between the rotational and vibra-
tional types of trajectory occurs at A =0 and is apparent-
ly visible in the Poincare surface of section shown in Fig.
1(d). For the vibrational states A, itself is a fairly good
constant of motion, making the problem in this limit
similar to the Stark effect in hydrogen. In the Hamiltoni-
an (1) the quantum number m appears as a parameter and
the dynamics must therefore be examined for each value
of m. It is of particular interest to note that, based on
first-order classical perturbation theory, the dynamics
can be divided into two broad categories depending upon
the ratio m /n [17,18]. If m In (1/v'5 both vibrational
and rotational trajectories exist, while if m/n ) 1/~5

In cylindrical coordinates and atomic units (m, =e
=A'=1) the Hamiltonian for the QZE is given by

P2
~+ &(p2+p2)+ 0 + ) ~2

p z g gP
where

only rotational trajectories occur. The separatrix disap-
pears when m In = 1/&5. This is summarized in the sur-
face of section in Fig. 2. This phenomenon has important
consequences for quantization; when m/n (1/&5 (the
separatrix exists) a quantization formula is needed which
goes smoothly from the regime where A & 0 to that where
A )0. When only rotational motion exists then a
different quantization formula is needed to treat the sin-
gle class of rotational states. Richards [17] developed
quantization formulas based on classical perturbation
theory performed in the Delaunay elements [18,19] which
gives good agreement for states far from the separatrix.
However, Richard's formulation is singular at the separa-
trix and is technically invaded in the limit m =0 [17]. It
works best when m In & 1/V 5 or for the rotational states
but does provide good agreement for low-lying vibration-
al states. The outstanding problem is thus the develop-
ment of a uniformly valid quantization formula to treat
cases where m In & 1/~5 and passage through the
separatrix is possible. Stated somewhat difFerently, Her-
rick [8] (see also Alhassid, Hinds, and Meschede [20] and
Kalnins, Miller, and Winternitz [21]) has shown that the
QZE can be viewed as falling between two exact

0.5-

0.0

-0.5-
I

&0 20 30

FIG. 2. Composite Poincare surface of section for the QZE
in cylindrical coordinates, with the same parameters as Fig. 1

except m = n /&5. The islands have almost disappeared and ro-
tational states dominate phase space.
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dynamical-symmetry limits: O(4) 30(3 )&3O(2) and
O(4)DO(2)O(2). [The subscript ")I," in O(3)i indi-
cates that the generators of the Lie algebra are those of a
nonstandard angular momentum having components
(A„,Az, L, ). ] As the value of m increases the former
dynamical chain becomes more appropriate. The next
section describes how classical perturbation theory can be
applied to the QZE together with a transformation to
action-angle variables which makes uniform semiclassical
quantization possible.

t
Pu (7 1 ~P2~P3rP4)

for which the following constraint holds:

Q )p4 Q4p) +Q3p2 Q2p3 0

and

3 4

g p„d„=g p, d„

(12)

(13)

(14)

III. TRANSFORMATION INTO FOUR DIMENSIONS
1

Px 2
~P&~2r

(15)

The tack taken is to make use of the well-known con-
nection between the hydrogen atom and a four-
dimensional isotropic harmonic oscillator. This
correspondence may be established either by using the
Kustaanheimo-Stiefel transformation [22—24] (KS) or via

group theory. Each has its merits. The KS transforma-
tion, originally designed to regularize the classical
motion, allows any perturbation to be written in terms of
the canonical coordinates and momenta of the 4D oscilla-
tor. This is necessary in order to apply classical pertur-
bation theory. However, the group-theoretical descrip-
tion gives a deeper perspective which enables the trans-
formation to good action-angle variables to be made.
The connection between the Kepler problem and a 4D
oscillator is due to the existence of the angular momen-
tum L and the Laplace-Runge-Lenz vector A as con-
stants of motion which are related to each other through
the requirement L A=O.

The KS transformation starts by relating the original
Cartesian coordinates to a set of coordinates in a 4D
space using

where

t
px (Jx, ~uxi~px3. } . (16)

In view of Eq. (13) the system is subject to the constraint

P~ —Pl —Q ~p4 Q4p( =Q3pp+Q2p3

which converts the QZE Hamiltonian into

1 1
p2 — + 7 (u2+u2)(u2+u2)

8 u
~

~2 2 1 4 2 3

(17)

(18)

+2y ~u~ (ui+u4}(u2+u3), (20}

This, in turn, can be converted into a system of four cou-
pled harmonic oscillators by making the transformation
to a new time variable s (regularization),

dt =4r =4/u/' .
ds

Multiplying through by 4r gives the Hamiltonian

I(. =4= —,'(p„+co iud )

I =Tu,
where

Q& Qz Q3 Q4

(5)
where

co = —8E. (21)

"z
Q3 Q4

Q4

Q) Q2
(6)

Scaling the coordinates and momenta

P(~+~Pi ~~ QP

(22)

Q4 Q3 Qp Q)

and u=(u„u2,u3, u4), r=(x„x2,x3), and T satisfies the
orthogonality relation

T'T='TT= lu21 .

In Eq. (7),

yields

E=—=
—,'(p„+iui2)

4

+2
~ ~(, + )( + ). (23)

iu i=u, +uz+u3+u4 .

The two sets of coordinates are related explicitly by the
following:

X) =Z=Q ) Q2 Q3+Q4

x2=y =2(u, u2
—u3u4),

x2=x =2(u, u3+u2u4) .

The dynamical variables can be related by using the mo-
menta p„conjugate to u,

L+A L—A
2

"
2

(24)

The transformation of the unperturbed problem proceeds

In the limit of y=O the problem is thus a four-
dimensional isotropic oscillator. An alternative route to
the oscillator picture makes use of the components of L
and A that generate the Lie algebra of the group SO(4)
[isomorphic to SO(3)SO(3)] [25]. The generators of
SO(3)SSO( 3 ) are two angular momenta J and K which
are related to the SO(4) generators by
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by writing the components of J and K in terms of the
classical equivalents of boson operators [25], viz. ,

a1a2+a1a 2

J2=
aa —aa1 2 1 2

21
(25)

1 1 2 2a a —ata
3—

2

a 3a4+a3a4
K1=

2

3 4 3 4a~a —a at
(26}

a; =(Q;+iP; )/&2, a; =(Q; iP; )/&2—. (27)

This eventually results in the Hamiltonian of an isotropic
four-dimensional oscillator [26]

4Eo=—=
—,'(P f +P2+P3+P4+Qf+Q2+Q3+Q4)

(28}

together with the constraint

—'(P +P +Q +Q )=—'(P +P +Q +Q ) (29)

The energy is quantized using the relation [27]

2Eo= =X+2=2n,
&—2E

(30}

where n =(N/2+ I) is the principal (hydrogenic) quan-
tum number, and

X =%1+%2+%3+%4 . (31)

Here X,- is the quantum number associated with the ith
oscillator (i =1,2, 3,4) and takes values 0, 1,2, . . . . In
terms of the oscillator quantum numbers the constraint
(29) becomes

X1+X2 —X3 —N4 =0, (32)

which guarantees that X is even and thus that n is in-
teger. This is equivalent to requiring that J =K, i.e.,
the "square representation. " The results so far apply
only to the unperturbed system and this approach has the
disadvantage that it provides no easy way to convert the
perturbation in Eq. (1) into the oscillator coordinates and
momenta. The difference between the KS constraint (17)
and Eq. (29) is related to the nonuniqueness of Eqs.
(25)—(27), i.e., the phase-space coordinates in the KS
transformation are different from those in Eqs. (25)—(27)
but are related to them by a canonical transformation
which can best be thought of as a rotation in phase space.

3 3 4 4a fa —a~a
3—

2

The passage to the harmonic-oscillator picture is ac-
complished by associating Cartesian coordinates with the
boson operators Q3

—Pz Q2+P3"2=
g2 Pz

—(Qz —P3}
vz

—(Q~+P, )

vZ

—(Q3+P~}
P3

Qi —P4
P4=

(33}

This transforms Eq. (17) into Eq. (29) while preserving
Eq. (28}. The KS transformation has the practical advan-
tage that any perturbation expressed only in terms of the
original Cartesian coordinates is expressible in terms of
the coordinates u;. In contrast, the canonical transfor-
mation (33) mixes coordinates and momenta in the per-
turbation. It is therefore simpler to perform classical per-
turbation theory in the KS coordinates and then to apply
the transformation (33). The Harniltonian (23) was con-
verted into normal form [12,18] using classical perturba-
tion theory through sixth order in the magnetic field.
The resulting expression contained thousands of terms
but agreed with the results of Kuwata, Harada, and
Hasegawa [24] where comparison was possible. After
generating the normal form the transformation (33) was
applied. All of the transformations were effected by
means of the symbolic manipulation program sMp. The
next step is to go to action-angle variables in order to
effect quantization. Based on the examination of the clas-
sical dynamics and quantization of the m =0 case [12],a
transformation is looked for which will convert the nor-
mal form into an expression containing the action vari-
ables n and m together with A, and its conjugate angle

A lone angle is expected to survive because the

problem is resonant. The initial transformation to
action-angle variables is the following:

Q,. =+2I;sing;, P; =+2I;cosP;, (34)

where i =1,2, 3,4. Two further transformations are then
performed in order to eliminate all but one angle.

First,

This may be understood by thinking of the problem as an
SU(2)SU(2) system. Each of the angular momenta J
and K has components J; and K; (i =1,2, 3) which each
generate the Lie algebra of SU(2). Each of these systems
specifies a sphere of radius J and E, respectively, with
the J; and the K; serving as Cartesian coordinates to label
points on the surface of the sphere. Consequently, the J;
and the E,- may be rotated arbitrarily in three-
dimensional space provided their commutation relations
remain unaffected. In essence the KS transformation
puts one in a phase space which has been rotated as corn-
pared to that in Eq. (28). The straightforward connection
between the components of A and I, and the J; and the
K; [Eq. (24)] makes the P; and Q; ultimately more con-
venient to work with than the p's and u's of the KS trans-
formation. A transformation between the two sets of
coordinates is given by the following:

—«i+P4) Q4
—P&

P&
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I, +IbI 1 & 41 4a +lb

I, —IbIz=, $z=P, —Pb,

Ib=m + A„

Id =m —A„
(36)

I, +Id 6=4, +Id

(35)
[the constraint (32) requires that I, =I,=n]. This con-
verts the normal form K " (through second order in the
field) into

I, —IdI4=, P4

and, second

NF"=—=2n —'
&

"(n,m; A„P„),
N

where,

(37)

:-(n,m; A„Pz )=—6nA, —2nm +6n —4n [[n —(m+ A, ) ]+[n —(m —A, ) ]]'

+8n[[n —(m+A, ) ][n —(m —A, ) ]]' cos (P„) (38)

and the constant of the motion A is given by the expression

A=2{[n —(m+A, ) ][n —(m —A, ) ]]' cos(2$„) 3A—, 2m—+2n"2 (39)

Transformation of Eqs. (25) and (26} into these variables
leads to the results

J~+K~=m,

Jq —K~=A, ,
(40)

as expected in view of Eq. (24). J~ and K~ can each take
values in the range ( n l2, n /—2) which gives

f A, /

& /(n —fm[)/ . (41)

Importantly, the normal form was found to depend only
on the angle P„which establishes its integrability. The"2
sequence of transformations described also allows explicit
expressions for x,y, z and p,p„,p, to be obtained in
terms of the sets of action-angle variables (n, P„),(m, P),
and ( A„P~). This completes the derivation of the nor-

2

mal form and its transformation to action-angle variables.
Through second order in the magnetic field, quantiza-

tion of the normal form is equivalent to quantization of A
[see Eq. (39)]. Quantization of the full normal form
proceeds in essentially the same way but requires consid-
erably more numerical effort. Contour plots of A as a
function of A, and P„obtained by using Eq. (39) are

2

shown in Fig. 3. These plots can be interpreted as Poin-
care surfaces of section for P„=constand resemble close-
ly the results of numerical investigations [28]. It is im-
portant to note that the plots in Fig. 3 are based on an
analytical expression for A. When min & I/&5 the
plots resemble a twofold hindered rotor and if m =0 A
takes its full range of values ( —n, 4n ). A curious
feature of the transformation is that the librational states
of the rotor which lie in the wells correspond to rotation-
al (A&0} states of the original Hamiltonian (1). Con-
versely, the original vibrational states (A &0) have been
mapped onto rotational states of the rotor. This might

seem puzzling: however, the original vibrational trajec-
tories are localized in disjoint regions of phase space and
the transformation to regularized coordinates is thus ex-
pected to map these trajectories into localized states of
the oscillator. Local modes in the oscillator picture are
those best conserving the rotor action [29], i.e., the rota-
tional states of the rotor (which almost conserve A, ).
The oscillator normal-mode states in the wells (A & 0) be-
come the ridge states of Fano [14,30] as A approaches its
maximum value. The stability of these states against
"falling" off of the ridge can be understood by noting that
they exist at the bottom of a well in action-angle space.
As m is increased the volume of phase space supporting
rotational states shrinks until m/n =1/~5 when they,
along with the separatrix, have vanished altogether. This
picture assumes that the higher-order terms in the nor-
mal form are negligible compared to those which are
second-order in the field. This has been verified numeri-
cally in this limit. As the field is increased the higher-
order terms become more important and begin to distort
this picture. The present analysis is restricted to the case
that only second-order terms need be retained.

An interesting way to examine the structure of phase
space is to use the idea of a rotational-energy surface
(RES) in which each of the SU(2) generators is associated
with a component of an angular momentum [4,31—33]. A
RES is usually a plot of the energy of a system as a func-
tion of the direction of the angular momentum vector.
The components of angular momentum are interpreted as
Cartesian coordinates of a position vector whose length is
equal to the energy which is plotted radially outwards.
This was done in Refs. [4] and [33] for the m =0 QZE
(see also Ref. [34]). The phase-space plots of A shown in
Fig. 3 indicate that the hindered rotor picture persists
provided min & I/&5. It is therefore illuminating to
construct a RES based on the generalized angular
momentum S defined as
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RES has been shaded to reAect regions where A is nega-
tive, i.e., regions corresponding to vibrational states. The
rotational states are localized around the lobes of the
RES's, while the vibrational states lie in the diinples and
are separated by a classical separatrix. The separatrix is
evident in Fig. 4(a) upon examining the contours super-
imposed on the surface. The contours are level curves
corresponding to equal values of

~
A ~. As m is increased

the region of phase space supporting vibrational states
shrinks until m passes through the value m =n /&5 when
they disappear altogether. This manifests itself as the
separatrix first shrinking and then sliding around the
RES. The variation in S& as a function of 8, is obtained
by tracing 0, along the level curves. The orientation is
maintained between the figures and the separatrix has
just vanished in Fig. 4(c). The separatrix which a~pears
to grow in again as m increases beyond m =n /&5 is be-
cause of the mapping of the problem onto an oscillator.
The new states apparently lying in the dimples in Fig.
4(d} do not correspond to real QZE states. A pseu-
docolored version of Fig. 4(a} in which the variation in
the action A, as a function of its conjugate angle is
shown in Ref. [4].

IV. QUANTIZATION OF THE NORMAL FORM

where

k =1,2, , (n —lml) (44)

a= J A, (n, m, A;Pz )diaz (45)

Once the transformation to action-angle variables has
been accomplished, uniform semiclassical quantization of
A is possible. (The quantum evaluation of A has been de-
scribed by Grozdanov and Taylor [35].) There have been
a number of previous semiclassical attempts to quantize
the QZE [2,5,12,17,24,33,36,37]; ours differs in that it
gives a uniform semiclassical quantization of the problem
valid for arbitrary m/n (1/+5. For m/n ) 1/&5 an
adequate quantization formula already exists in terms of
the Delaunay actions and provides excellent agreement
with quantum results [17]. In the case that m /n (1/&5
the problem is essentially a twofold hindered rotor (see
Fig. 3) for which the appropriate uniform semiclassical
quantization formula (including tunneling) is [38,39]

a —4(e) =km. +tan '[exp( rre—)],

(a) (c)

~4

V.

~p@r%~~

~X 0 9 ~ *y,~
P

FKJ. 4. Rotational energy surfaces corresponding to n =23 and (a) m =0, (b) m =4, (c) m =n /&5, and (d) m =22. The surfaces
have been shaded gray to indicate where A is negative. The Cartesian coordinate system is defined as follows using (a). One axis runs
along the long axis of the body. A second axis around which the angle |t, varies [see Eq. (43)] emanates from the dimple (shaded

gray) in (a). The third axis is orthogonal to these. The orientation is kept constant between figures. The contours are level curves
corresponding to the intersection of the RES with spheres of progressively increasing radii equal to ~A~.
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TABLE I. Quantum-mechanical [5,35] A,
oM and semiclassical A, eigenvalues of A=. Aln for n =23

and m =0.

AM gSC gQM

22+

22
20+

20
18+

18
16+

16

15

14

13

—0.815 18
—0.815 18
—0.47447
—0.47445
—0.19124
—0.188 60
—0.006 50

Separatrix

0.050 73

0.17902
0.31783

0.479 35

—0.811 77
—0.811 77
—0.471 03
—0.471 01
—0.187 67
—0.185 09
—0.002 71

0.054 13

0.179 87

0.320 83

0.482 14

12

10

3

0.659 82

0.858 67

1.075 54

1.309 82

1.561 67

1.830 84

2.11724

2.420 82

2.741 15

3.079 30
3.434 14

3.80602

0.66249
0.861 21

1.077 86

1.312 16

1.563 92

1.833 02

2.11936
2.422 87

2.743 50

3.081 22

3.435 99
3.807 78

and

~a= — '
A, n, m, A;

„

(46)

and the classical turning points (a, b, c) are complex for
states lying above the barrier tops. The quantum correc-
tion function is an antisymmetric function of its argu-
ment and is de5ned

4(e)=e+argl ( —,'+is) —eln~e~ . (47)

Note that the states are split due to quantum tunneling
and must be labeled according to the quantum number k
together with + or —(i.e., k+ or k ), depending upon
which was taken in Eq. (44). The actual quantization is
accomplished by solving Eq. (39) to give A, as a function
of its arguments which are indicated explicitly in Eqs.
(45) and (46). (To quantize the full normal form to higher
order, it would have to be inverted numerically to give
A, . ) Application of these formulas provides all of the

states of the rotor but not all of these correspond to states
of the QZE. On going from the original Kepler problem
to the 40 oscillator the size of phase space was clearly in-
creased, i.e., only some fraction of the oscillator states
match up with states of the hydrogen atom. This mani-
fests itself as restrictions on the values that k may take in
Eq. (44). In fact half of the possible eigenstates of the ro-
tor are ruled out giving n —

~rn~ states altogether. For Ui

brational states lying well above the barrier tops an ap-
proximate quantization rule is

a= f A, (n, m, A;P„)dP„=km. (48)

or roughly, A, =k. By considering Eq. (40) it is clear
that if m is even then J3 and E3 must either both be odd
or both be even. In each case this means that (J3 —K3 ) is
even. Thus for m even the quantum number k must be
even, and similarly if m is odd then k must be odd also.
This rule applies, however, only to the Zeeman vibration-
al states where A, is itself an approximate quantum num-

TABLE II. Quantum [5,35] DM and semiclassical Asc eigenvalues of A, =A/n~ for n =23 and m = l.
The numbers in square backets are the powers of 10 by which the entrant is multiplied.

gQM gSC gQM gSC

21+

21
19+

19
17+

17

16

15

14

13

12

—0.64208
—0.64208
—0.327 67
—0.32746
—0.861 35[—1]
—0.694 97[—1]

Separatrix

0.675 89[—1]
0.171 83

0.31365

0.474 27

0.654 33

—0.638 66
—0.638 66
—0.324 19
—0.323 99
—0.823 60[—1]
—0.659 93[—1]

0.712 24[ —1]
0.175 03

0.31360

0.477 08
0.656 99

10

3

0.852 81

1.069 27

1.303 41

1.555 04

1.82402
2.11027
2.413 70
2.734 28

3.071 96
3.426 71

3.788 50

0.854 76
1.071 70
1.305 74

1.557 29

1.826 20

2.11238
2.415 75

2.736 26

3.073 88

3.428 55

3.80026
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TABLE III. Quantum-mechanical [5,35] A.o and semiclassical A. eigenvalues of 1,=A/n for
n =23 and m =2. The numbers in square brackets are the powers of 10 by which the entrant is multi-
plied.

AM gSC AM

20+

20
18+

18
16+

16

15

14

13

12

—0.488 38
—0.488 37
—0.203 19
—0.201 24
—0.142 80[ —1]

Separatrix

0.372 21[—1]
0.16404
0.299 75

0.459 17

0.637 88

0.835 28

—0.484 92
—0.48491
—0.19961
—0.19772
—0.103 50[ —1]

0.406 34[ —1]
0.163 30
0.302 75

0.461 94
0.640 54

0.837 80

10

3

1.050 82

1.284 19

1.535 16

1.803 58

2.089 34

2.392 35

2.712 56

3.049 92

3.404 39

3.777 59

1.053 24

1.286 51

1.537 40

1.805 75

2.091 44

2.39440
2.714 54

3.051 84

3.406 23

3.777 69

ber. These states may be labeled
~ n, k *) and the

difference in energy between the + and —states corre-
sponds to the tunneling splitting. Below the barrier tops
(i.e., inside the separatrix} A, is not conserved, even ap-
proxirnately, and the rotational states of the QZE are not
split by tunneling. The subseparatrix states of the hin-
dered rotor occur as symmetric and antisymmetric pairs.
The states of the rotor which match up with the QZE
states are the symmetric members of each pair of states.
In the limit of no tunneling both members of a pair of
states localized in the wells must map back into the same
rotational state of the original QZE. In the limit of ex-
treme rotational motion which corresponds to motion in
the x —y plane the trajectories are invariant to reflection
through the x and y axes. Therefore, upon inclusion of
tunneling in the rotor picture only the symmetric states
below the barrier tops must be taken. Most importantly,
this procedure yields a perfectly well-behaved quantiza-
tion formula giving accurate results for all states, includ-
ing those close to the separatrix. Results are presented in
Tables I—III for the n =23 manifold with m =0, 1,2. In

all cases excellent agreement with quantum results is ob-
tained, even for states lying close to, or straddling, the
separatrix. This provides direct numerical confirmation
of the analysis presented.

V. CONCLUSIONS

A comprehensive approach to semiclassical quantiza-
tion of the QZE has been presented. Past attempts to
quantize the QZE have encountered singularities associ-
ated with the classical separatrix. To avoid these prob-
lems a variety of piecewise or ad hoc quantization formu-
las have been proposed. In this paper a uniformly valid
quantization scheme was developed which passes through
the separatrix in a completely smooth and singularity free
way. This formula accounts for the topologically distinct
kinds of dynamics which arise in the QZE and provides
good estimates of splittings between degenerate vibration-
al trajectories. Extension of this approach to quantiza-
tion of very-high-order classical perturbation expansions
is straightforward.
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