
PHYSICAL REVIEW A VOLUME 45, NUMBER 1 1 JANUARY 1991

Calculation of the initial density matrix for He I in beam —tilted-foil experiments

J.-P. Weber, J. C. Dehaes, and J. Devooght
Service de Metrologie Nucleaire (Code Postal 165), Universite Libre de Bruxelles, 50 avenue F. D. Roosevelt,

B-1050Bruxelles, Belgium
(Received 5 April 1991)

We investigate the validity of the surface electric-field interaction model in beam-foil experiments
where the polarization of the emitted light is measured. After summarizing the theory for expanding the
density operator into state multipoles and linking these to the Stokes parameters of the light, we show

also how to use symmetries to reduce the size of the calculations. A very simple model is chosen for the
electric field: it is perpendicular to the foil and constant over a finite distance, then zero. This model is

used to find the initial density matrix for the n= 3 singlet states of He I and the electric-field parameters
from tilted-foil experiments. Reasonable results are obtained given the unrealistic electric-field model

used.

PACS number{s): 34.SO.Fa, 34.10.+x

I. INTRODUCTION II. SPHERICAL TENSORS
AND THE DENSITY OPERATOR

The first experimental evidence of a tilt angle depen-
dence of the beam-foil interaction was given by Berry
et al. [1]. Further experiments have confirmed their con-
clusion that foil surface efFects are important [2]. A num-
ber of models have been presented [3—8], but none of
them gives results that agree totally with experiment [9].
In this paper, we will examine more closely a model in
which we assume that the initial state is a coherent super-
position of states with different L and that the interaction
is due to an electric field that is normal to the foil. In the
original proposal by Band [10] and the generalization by
Dehaes, Schenkel, and Devooght [11],a big problem was
the limited validity of the second-order expansion that
they used. Numerical calculations showed discrepancies
for tilt angles of more than 10' [l l].

To evaluate the validity of this model, we use it in this
paper to compute the initial density matrix (at the exit of
the foil) for the n =3 singlet states of He t (neutral heli-
um), starting from the measured relative Stokes parame-
ters for 2s 'S —3p 'P and 2p 'P-3d 'D transitions. At the
same time, we will determine the parameters of the sur-
face electric field.

In the calculation, we use the expansion of the density
operator into a sum of unit spherical tensors (irreducible
tensor operators). We present a quick summary of the
theory to show how the symmetries are reflected in the
density operator and to allow us to reduce the number of
independent variables. We also show the relation be-
tween the Stokes parameters of the emitted light and the
density operator. Then we find the relation between the
initial density matrix and the Stokes parameters. This al-
lows us finally to find the initial matrix density and the
surface electric field in the case of the n =3 singlet states
of He I.

Let us begin by the definition of the unit spherical ten-
sors (also called state multipoles) [12].
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where the dagger denotes the adjoint.
We can then expand the density operator p as a linear

combination of these operators:
ktlz= X X Xisq(JiLi»zLz)T, " (JtLi»zLz»

JI,L I J2,L2 k, q

where

(3)

where the
~
JLM ) are the eigenvectors of angular

momentum (the other quantum numbers will not be writ-
ten, they will always be understood to be the same).
These are irreducible tensor operators, and a definition
equivalent to Fq. (1) can be given using the Wigner-
Eckart theorem (see Appendix A). The important point
is that they satisfy the following orthogonality relation:
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in the general case of a non-self-adjoint Hamiltonian H.
If 8 is self-adjoint, we get the usual Fano-Liouville equa-
tion. If we want to take into account the population de-
cay through transitions to other levels, we have to use a
non-self-adjoint Hamiltonian. We will assume a Hamil-
tonian of the following form:

H =Ho i ——+V(t),. r

With the orthogonality of the 3j, we can invert this rela-
tion:

& J,L,M, lplJ, L,M, &

where Ho is the Hamiltonian of the free atom, I ac-
counts for the finite lifetime, and V (t) is a time-
dependent perturbation. If we take Ho and I to be diag-
onal in the l JLM & basis, i.e.,
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This shows that there is total equivalence between these
two representations of the density operator p.

The time evolution of the density operator p is given by

=E,', lJLM &,

then, using Eqs. (2), (3), (7), and (8) in Eq. (6), we can
write the equation for the time evolution of the com-
ponents of the expansion of the density operator into unit
spherical tensors as
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where the tensorial components of the potential V(t) are
defined in the same way as for the density operator:

V"(JiL „JzL2)=Tr[ V(t) T"(JiL i,J2,Lz)] . (10)

In Appendix B, we give the general method for obtaining
the system of equations for the evolution of the
coefficients of the expansion of p over any basis of opera-
tors.

III. EFFECTS QF SYMMETRIES

First, the fact that p is Hermitian give us

pq(JiL»J2L2) —(
—1) ' ' p"*q(J2L»J&Li ),

which means that not all the tensorial components are in-
dependent variables. If there are some other symmetries,
the number of independent variables will be reduced.

In Appendix C, we show how to find the relations be-
tween the coefticients in an expansion of p due to sym-
metries of the problem. Here these coefficients are the
tensorial components (or state multipoles) and we will
look at two symmetries that will be useful in the case of
beam-foil interactions: cylindrical symmetry and

—iaJS =-R,(a)=e (12)

where J, is the z component of the angular momentum
operator. We find then that Eq. (C3) gives us

gJ1 L
1 J2L2kq J3 L3J4L41P Ji J3 L

1 L3 J J4 LpL4 kl qr

(13)

And by using this in Eq. (C5), we see that cylindrical
symmetry implies

pq(JiLi, JiL2) =5qopo(JiL, ,J2L2) . (14)

Thus all tensorial coinponents with q&0 are zero.
The other case is reAection symmetry with respect to

the x-z plane. The symmetry group has just two ele-

I

reflection symmetry.
The first case is cylindrical symmetry. Indeed, even if

the foil is tilted, the beam coming out of the foil (before it
is modified by the surface interaction) should be invariant
for any rotation around its axis (which we take to be the z
axis). Thus the symmetry operations are rotations of axis
z with an arbitrary angle a:
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S =SOR (m) . (15}

ments: the reflection operator and the identity. The
reflection operator can be defined as

(by using the formulas of Appendix A}

g v 2J+ lpo(JL, JL)=1 .
JL

(19)

where So is the space inversion operator (parity operator)
and R (n ) is the rotation of an angle mar.ound the y axis.
To find the g coefficient, we need the following results
[13].
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With this normalization, all the diagonal elements of the
density matrix are probabilities (i.e., all positive) and
their sum is equal to 1. Since Eq. (4) gives us

&J)L,M(IR (n)IJ2LqMq&

'& J&L&M& IRy( —~}lJ2L2M2 &

(16)

0 ~ &2J + 1po( JL,JL ) ~ 1 . (21)

and we know that the sum over M will be smaller than 1,
we get
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And since the diagonal elements are probabilities, they
are non-negative and smaller than 1, which gives, with
Eq. (5}.

(17)

and we get for the tensorial components

p,"(J,L»J,L, )=(—1) ' ' p",(J,L„J,L, } . (18)

Thus it gives a relation between the tensorial components
with q (0 and the ones with q &0. It also means that
some components with q =0 are zero (depending on L„
L2, and k).

IU. CONSTRAINTS ON THE DENSITY MATRIX

(22)

We have thus one equality constraint given by Eq. (19)
and four linear inequalities given by (21) and (22).

There is one more constraint on the elements of the
density matrix, due to the fact that p is Hermitian and
positive definite. Indeed, we can write p=p' p' and
the Schwarz inequality gives us

I & J~L ~M~ IplJ2L&M2 & I'

~
& J~L~M~ IplJ~L~M~ && J2LzM2lplJ2L~M2 &,

If we want to have a well-defined p, we need to choose
a normalization. We will take Tr(p)=1, which gives us

I

and by using Eq. (5), we get

(23)
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This is a nonlinear constraint on the tensorial corn-
ponents of the density operator.

V. DENSITY MATRIX
AND THE STOKES PARAMETERS

In the experiments, we never have a direct access to
the density matrix. The only information we have is the
emitted light and its polarization. This emitted light is
totally described by its Stokes parameters [12]. Thus, we

I(e, t)=IOTr[p(t)D(e )], (25)

where Io is a constant depending on the measurement
system and on the number of ions going through the foil

have to establish the relation between the density-matrix
elements and the Stokes parameters.

The intensity of the light emitted in a given direction
with a polarization vector e is given by
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(i.e., on the beam current),

D(e~)=g(e d)lf && fl(e .d)t,
f

(26)
I

d is the electrical dipole operator, and the sum is over all
possible final states lf & for the observed transition.
Now, if we introduce the definition (3} for p in Eq. (25)
and if we use the Wigner-Eckart theorem, we obtain

JO+ Ji+q2 1 1 k 1 1 k
I=Io g g g g ( —1) ' ' 'v'2k+ le e'
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(28)

Now, when working in the LS scheme, if an operator A

does not act on the spin, we can write [13]

where the e are the tensorial components of the polar-
ization vector e~, with the basis defined as follows:

L+L+,C'"'(L„L2)=g(—1) '
L& L2 Lo
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(34}

Knowing that the electric dipole operator (for one elec-
tron} is given by

d=-lelr, (35}

=(—1) ' ' Q(2J, +1)(2J +1}
Li k L2

X'J (29)

we can then compute the reduced matrix elements either
from theory (for hydrogenlike wave functions) or from
the experimentally observed transition rates Rf;, since
[14]

In Eq. (27), the electric dipole operator d does not depend
on the spin and we can thus use Eq. (29). This allows us
to write

I(e~, t)=Io Q I "(e )8"(t},
k, q

where

g "i(JiLi, J2L2)C "(Li,Lp}
J)L ) J2L2

(30)

Xpz(JiLi, J2L2) . (31)

In these equations, the I" are the components of an irre-
ducible tensor that accounts for the geometry of the ob-
servation:

4 e coRf;=— l&n;L;I lrl InfLf &I
9 4~so Ac3

(36)

Now, Fig. 1 shows the two coordinate systems that we
will use in this paper. The beam coordinate system has
its z axis along the beam, its origin at the point where the
center of the beam exits the foil, and the y axis is in the
foil along the rotation axis for tilting the foil. The x axis
is chosen to have a right-handed system of coordinates.
The foil coordinate system has the same origin and its y'
axis is the same as the y axis, but the z axis is in the
direction normal to the foil. We can thus go from one
coordinate system to the other by a rotation by an angle
P (the tilt angle of the foil} around the y axis. We will al-

+1
~k

q&, q2
= —1

q+) 1 1 k
( —1)' e e'

q& q2 q

X&2k +1, (32)
normal

and the 3j coefficient implies that k ~2 for a nonzero re-
sult. The A '"' account for the spin effects:

beam

=( —1) ' ' Q(2J, +1)(2Jz+1}' J
(33) , P (tilt axis)

and the C' ' account for the quantum characteristics of
the system under observation:

FIG. 1. Definition of the coordinate systems. The surface of
the foil is in the x'-y' plane.
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ways use the beam coordinate system for the observa-
tions.

In the beam coordinate system, if we look at the light
emitted in the y direction, we obtain for the Stokes pa-
rameters (using the definitions in Ref. [12] )

I= —Bp —Bp (82+8 2),p 1 2 1 2 2

3 6 2

—8p+ —(Bi+8 2),2 1 2

2

&L, I lr I IL, & =&4~/3&L,
I I

I"
I IL, &

X RnL T TRn, (41)

& L
I lr I IL —1& = —

& L —1
I

lr
I IL &

=&L A„(L,L —1), (42)

But the angular part is nonzero if and only if
IL, L—2I =1,which gives us [13]

C=Bi —B

S=—i(8', +8', ) .

(37) where A„ is the radial integral part of Eq. (41) (the phase
convention is that of Messiah [13)). For hydrogenlike
wave functions, we get [15]

If we observe the light emitted in the x direction, we get
instead

Jq (L L —1 ) = '
rt ( n —L )

ao

Z ' (43)

I = —Bp —Bp+ (8~+8 2)
p

3 6

3 2 1 2M„=— —Bp ——(82+8 2),
6 2

C, = i(B—, +8, ),
S =8& B

(38)

(but C„and S„will always be zero by reflection symme-

try).

where the convention is that the hydrogenic wave func-
tions are positive as r~O. In the general case, we can
use the same method as for the matrix elements for the
transitions: we obtain the reduced matrix element from
the transition rate with Eq. (37).

In this paper, we will use a very simple model for the
surface potential. We will assume that it is linear, which
has the advantage for the computer calculations of giving
a constant electric field (and thus a constant Vp). We can
write

Ep if d (dp
VI. INTERACTION POTENTIAL 0 if d~d (44)

In the surface electric-field model, we assume that
there exists a potential V'(d) that depends only on the
distance d from the foil (measured along the axis normal
to the foil). If r is the position of the electron relative to
the center of mass of the atom, it is affected by a potential

V(d, r) = V'(d + r n) —V'(d),

= lel(r n)E(d),

where e is the electron charge, n is a unit vector along the
axis normal to the foil, and E(d) is the electric field nor-
mal to the foil at a distance d from the foil. We will use
this first-order approximation since r is usually small
compared to the distances over which there is a
significant change of the electric field. In the foil coordi-
nate system, we get [using Eq. (10)]

Vq(Li L2)= &L2I lrl ILi &&q, pfik, ilel&(d)

(40)

which means that only the Vo tensorial components can
be nonzero. (That only, the q =0 components would be
different from zero was to be expected because of the cy-
lindrical symmetry of the potential. ) This means that if
we compute the evolution of the density operator in the
foil coordinate system, we will have a decoupling in q of
the system of equations (9) for the p".

We need again to compute the reduced matrix element
of r between two angular momentum eigenvectors, but
this time they have the same principal quantum number
n. We can write

and d =ut cosp, where u is the velocity of the ions and p
is the tilt angle of the foil.

VII. INITIAL DENSITY-MATRIX CALCULATION

The initial density matrix (at time zero) describes the
state of the beam as it exits the foil. At that point, it has
cylindrical symmetry in the beam coordinate system.
Then it undergoes some evolution in the surface electric
field and the emitted light is observed. In the case of heli-
um, once the atom is past the region with a strong elec-
tric field, there is no more observable evolution of the em-
itted light (except for an exponential decay) because the
transitions are observed separately. In the case of hydro-
gen, the transitions are not resolved and quantum beats
can be observed as we observe the light further and fur-
ther from the foil.

If the foil is tilted and we want to conserve the advan-
tages of the cylindrical symmetry of the potential, we
have to compute the evolution of the density matrix in
the foil coordinate system. To pass from the beam coor-
dinate system to the foil coordinate system, we need to
rotate it about the y axis by an angle P. The tensorial
components of p transform then as follows:

p" (foil) = g p" (beam)r" (P), (45)

where the r" are the rotation matrix elements [13];and

to go back to the beam coordinate system to compute the
Stokes parameters, we just apply a rotation of —P.
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(1s3

728.1
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1s3p P,
(1s3d) D,

8 nm

) P,

L=1

pears. On the other hand, the relation between the mea-
surements and the initial density matrix is not linear, as it
would be if we were given I, M, C, and S separately.

For the case of the Hei n =3 singlet states we will ob-
serve the 2s 'S-3p 'P transition at 501.6 nm and the
2p 'P 3d '—D transition at 667.8 nm. The third transition
from the singlet states 2p 'P —3s 'S at 728.1 nm, cannot
give us any more information since the emitted light is
not polarized (because the 'S state has spherical symme-
try). Figure 2 gives a schematic representation of the en-

ergy levels and Table I gives the exact energies and life-
times.

VIII. SOLUTION METHOD

FIG. 2. Schematic representation of the energy levels of the
n =2 and 3 singlet levels of He l. The wavelength of the transi-
tion radiation is indicated for each transition.

We can now summarize the link between the Stokes
parameters and the initial density matrix p(0) as

I

From the results of the preceding section, we can see
that for each tilt angle, we have six measurements: M/I,
C/I, and S/I for each of the two observed transitions.
We can put all these measurements for all the angles in a
vector M; and from Eq. (46), for each of these measure-
ments, we can write a function of p(0), Eo, and do that
should be equal to the measured value. We will call the
vector of these functions F. To find the initial density
matrix and the electric-field parameters, we then have to
solve the following constrained least-squares problem:

M
=I08(A, )R ( p) U(Eo,—do)R (p)p(0),

S

(46) min g [M; —F;(Eo,do, p(0) }]1

p(0), Eo,do; 0,
(47)

TABLE I. Energy levels of He I singlet states.

Energy (m ') Lifetime 1/I (ns)

16627 170
17 112915
18 485 906
18 620 362
18 609 922

0.5558
55.25
74.74
15.67

where R (p) is the rotation defined by Eq. (45), I(Eo,do)
is the evolution operator for the system of equations (9)
with the potential defined by Eqs. (40) and (44), and 8(k)
is the observation operator for the transition at a wave-
length A, given by Eq. (37}. As we mentioned above, the
evolution operator U needs only to be computed for the
region with a nonzero electric field since all the subse-
quent evolution is unobservable (except for the exponen-
tial decay).

In Eq. (46), there is one important implicit assumption:
that all the atoms contributing the observed transitions
had already the same main quantum number n at the exit
of the foil. This means that we neglect any contribution
to the population coming from transitions from higher-
energy levels with a different n.

In this paper, the goal will be to find the initial density
matrix and the parameters Eo and do that define the sur-

face potential. To do that, we are given the relative
Stokes parameters M/I, C/I, and S/I for several transi-
tions and several tilt angles p. This means that the Io
factor, which depends on the measurement system, disap-

with the constraints given in Sec. IV. The o s are the
standard deviations on the measured values.

If the principle is simple, the number of variables in-
volved makes it much more dimcult. For example, if we
take the n =3 singlet states of He I, that is, S=0 and
L =0, 1,2 for p"(L„Lz), we get k going from iL, —L2i
to L, +L2 for each combination of L, and L2, and each

q going from —k to k. This gives us a total of 81 com-
plex variables, or 162 real variables (the real and imagi-
nary parts each being considered as a real variable). But
if we use the symmetries of Sec. III, we can substantially
reduce the number of variables; for example, the Hermiti-
city of p, expressed through Eq. (11},cuts by half the
number of real independent variables. Then, the
reflection symmetry condition (18} links all the com-
ponents with q &0 to those with q )0 and sets some q =0
components equal to zero. Together with the Hermitici-
ty, this reduces the number of independent real variables
to 45: 14 real independent variables for q =0, 16 for
q =1, 10 for q =2, and 1 for q =4. And since the system
of equations [Eq. (9)] is decoupled in q for the potential
we have chosen, these means that we can reduce the
problem of the calculation of the evolution operator to
the solution of five independent systems of differential
equations of sizes 14, 16, 10, 4, and 1, respectively. Now,
for the initial density matrix p(0), we are assuming cylin-
drical symmetry, which means by Eq. (14) that only the
components with q =0 are nonzero. This leaves us with
14 independent real variables to totally determine p(0).
In Appendix 0, we describe the method that was used to
obtain systematically the reduced systems of equations.

When we say independent variables, we have to be
careful, because this does not yet take into account the
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2 (M; F)— =0,F;
(48)

with a method inspired by the Newton-Raphson method
(we work with the tangent planes). That is, we take a
first-order expansion of F:

F(E+bE,d+bd)=F(E, d)+DE +Ad
BE Bd

(49)

where E and d are the current values of the parameters
and the ALE and hd are what we add to them to get the
next values. Introducing this into Eq. (48), we get for
each step the following system of equations:

constraints. The normalization of the trace to 1 through
Eq. (19) reduces the number of independent variables, but
that relation is not easy to introduce, and we have decid-
ed not to use it to reduce the number of variables but to
impose it with the other constraints of Sec. IV during the
minimization procedure.

The minimization itself consisted of two nested minim-
ization procedures. The outer one finds the minimum
with respect to Eo and do by finding a zero of the gra-
dient of the function in Eq. (47), i.e., by solving the fol-
lowing system of equations:

F
(M; F) — =0,

IX. RESULTS FOR He I

As we have already mentioned above, in this paper our
main interest is the singlet (S =0) states of the n =3 level
of He I (neutral helium). We assume that there is no mix-

ing with the S =1 triplet states. Because S =0, we have
J=L and some of the formulas obtained above can be
somewhat simplified. Because the transitions are between
states with fixed L, the C'"'(L, ,L2) coefficient defined by
Eq. (34) becomes

L. . +L, +& 1 1 k
C'"'(L,L.)=(—1) '

r L; L; Lf

X[&n;L;/ /d/ [nfLf)/2, (51)

where L; and Lf are the initial and final L's for the ob-
served transition, respectively. And the A' ' coefficient
defined by Eq. (33} is then equal to 1. We can compute
the reduced matrix elements using the transition rates
from the tables [14,16] and Eq. (36). The results are near-

ly the same as for hydrogen. Moreover, since there is
only one reduced matrix element coming in for each tran-
sition, it will cancel out when we compute the relative
Stokes parameter (M/I, C/I, S/I). Thus, we do not need
to compute them.

For the potential, we need the reduced matrix elements
of r between the 3p and 3s states and between 3d and 3p
states. From the tables [16]and Eq. (36), we get

(3p ~ ~r
~

~3s ) =6.566X 10

(A, =7435. 1 nm, R»=2. 53X10 s '),
( 3d I I

r
I I 3p & =7.821 X 10 ' m

BF, BF, . .
1 BF, BF, .

J

(52}

(A, =95760 nm, R~ d =168 s '),
BF;

(Mi F;)—
(50}

1 BF, BF, 1 BF, BF, .

o2 BE Bd,. ',. Bd Bd
j

BF;
(M; F;)—

which differs only by a few percent from the results ob-
tained with Eq. (43) for hydrogen (i.e., with Z =1}.This
is understandable since the helium nucleus with an elec-
tron in a 1s state looks very much like a hydrogen nu-

cleus from a certain distance.
The measurements we used are those from Brooks and

Pinnington [17,18]. They used helium ions at 160 keV,
through a carbon foil with 5 p,g/cm . Since this is a low

energy, we can use the classical formula to compute the

And at each step of this outer iteration, before solving
this systems of equations, we find the minimum of the
function in Eq. (47) with respect to p(0), with the con-
straints on p(0) respected. This was done with a general
minimization routine from the NAG Fortran library.

The advantage of this procedure is that we need to
compute the evolution operator only once each time we
minimize with respect to p(0). For each step of the outer
iteration, we need to compute it twice more (when we
evaluate numerically the derivatives of F with respect to
E and d). With the model we use in this paper (constant
electric field}, the equations, have constant coefficients
and the evolution operator have been computed by taking
the exponential of the matrix times do/(v cosP) (the in-
teraction time). This is probably not the most efficient
method, especially if the electric field is not constant.

Ll Lp PO(L l,L2 )

0.7014
—0.1268+ i0.0534

0.1618
—0.0264

—0.042+ i0.0274
—0.006—i0.0095
0.0112—i0.0262

0.0082
—S.6X 10-'
—1.2x 10

TABLE II. Independent tensorial components of the initial
density matrix.
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TABLE III. Initial density matrix elements (upper triangle). O. 10—

Ll

0
0
0

—1
—1

0
0
1

1
—2
—1

0
1

2

L2

0
0
0

—1
—1

0
0
1

1
—2
—1

0
1

2

(L)M& IplL2M2 &

0.7014
—0. 1268+i0.0534
—0.042+ i0.0274

0.0826
0.0047 —i0.0169

0.115
—0.009+i0.0142

0.0826
0.0047 —i0.0169

0.0036
0.0037
0.0036
0.0037
0.0036

s (.
Q

0.05—

~ o.oo,
Q
A0
~ —0.05—
Q)

—0.10—0

—0.15—

80

speed: E=mu /2 (the energy loss in the foil can be
neglected}. Since the mass of helium is 4.003 amu, we get
a speed of 2.777X10 m/s. The measurements were
made for tilt angles from 0 to 70, by steps of 10. Thus,
we have eight sets of six measurements (two transitions,
three Stokes parameters for each), which gives us 48 ele-
ments for M. As mentioned above, we have 14 unknowns
for p(0} and two unknown parameters for the electric
field (Eo and do}, thus a total of 16 parameters for the
least-squares adjustment. We also have one equality con-
straint (trace normalization). If we assume that the mea-
surement errors are normally distributed, we see that the
function in Eq. (47) should have a y distribution with
48 —16—1=31 degrees of freedom (if we neglect all the
inequality constraints that would reach equality).

The 14 independent tensorial components of the densi-

FIG. 4. Measured relative Stokes parameters I/I (O), C/I
(U), and S/I (6) with their typical error bars [17] for the

2p 'P-3d 'D transitions and the same parameters calculated
with the best fit of the initial density matrix and electric-field
parameters. They are plotted as a function of the foil tilt angle

ty operator calculated by the program are given in Table
II and the upper triangular part of the corresponding
density matrix is given in Table III. In brief, it says that
about 70% of the population is in the 'S state, 28% in the
'P state, and 2% in the 'D state. The S-P coherence is
weak and the S-D and P-D coherences are maximum.
But given the low population of the 'D states, the mea-
surement errors, and the simple model used, the coher-
ences with the D states probably have no meaning. It is
not a pure state, since Tr(p )=0.5636. The electric-field
parameters found are

0.25— Eo=6.2X10 V/m, d&=8.46 nm, (53)

()
Q

0.15 ~~0

af~ oo5—

so

Q
~ W

a5 —0 15—
Q)

IX

—0.25—

FIG. 3. Measured relative Stokes parameters M/I (0), C/I
( ), and S/I (8, ) with their typical error bars [17] for the
2s 'S—3p 'P transitions. The solid curves show the same param-
eters calculated with the best fit of the initial density matrix and
electric-field parameters. They are plotted as a function of the
foil tilt angle P. The measured [19]M„ /I„(» ) for 501.6 nm (not
used in the fit) are compared to the calculated one (dashed
curve).

which gives a total electrical potential of 0.525 V. The
residue of Eq. (47) was 291.5, which is well beyond the
value of 55 that corresponds to the 0.5% probability of
rejecting a true assumption for a y» distribution. One
should, however, notice that this was obtained with the
o; given by Brooks and Pinnington [17], which may be
underestimated, especially for the large angles. A factor
of 2 on the o s would already bring the residue down to
72.8. Several trials showed that the residue is not very
sensitive to a change of a few percent in either Ep or do.
This result should not be taken as exact, but more as an
indication of order of magnitude.

Figures 3 and 4 show the measured relative Stokes pa-
rameters, with the error bars used in the calculation and
the relative Stokes parameters calculated with the
electric-Seld parameters and the initial density matrix
that we found. We see that the agreement is good. Fig-
ure 3 also shows the calculated M„/I„[observation in the
x direction, see Eq. (38)] for the 2s 'S —3p 'P transition at
501.6 nm. We have also indicated the results of the mea-
surements of M„/I„ for Hei at 150 keV by Dehaes and
Carmeliet [19] (the energy is close enough so that there
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should not be too much difference); and we see that the
agreement with these measures (which were not used in

the calculation) is also good.

X. CONCLUSIONS

where the reduced matrix element is

(JiL) I ITk(J3L3,J4L4}l IJ2L2)

=&2k+15~ I 5i. L 5J 1 5L i. . (A2)

In this paper, we have sketched the theory of state
multipoles applied to density-matrix calculations and we
have given a general method for finding the effects of
symmetries on tensorial components. We have then ap-
plied this theory to the calculation of the evolution of the
density matrix and of the polarization of the emitted light
in beam-foil spectroscopy for the surface electric-field
model. We chose to look at one of the simplest models of
the electric field: a constant field Eo over a distance do
and then nothing. We looked specifically at the n =3
singlet states of He I and, starting from the measured rel-
ative Stokes parameters for several tilt angles of the foil,
we found an initial density matrix and electric-field pa-
rameters. The results were good, considering the simpli-
city and lack of realism of the chosen model for the elec-
tric field. The assumptions made on the electric field may
appear unduly simplistic. This is not so, because the elec-
tric field appears linearly in Eq. (9). Therefore, referring
to Eq. (D 1), the main contribution to the solution,
neglecting contributions from [Q(t'), Q(t")] and higher-
order commutators, will involve fOQ(t')dt', which is
linear in the potential difference between the foil and the
vacuum and therefore independent of the actual shape of
the electric field.

This seems to indicate that the idea of a surface electric
field being responsible for the observed polarization is
valid. Now, the problem arises of the physical origin of
this electric field and of giving a good model of that field.
The hypothesis that appears to us to be the most promis-
ing is that secondary electrons created by the ion going
through the foil and ejected at the same time are at least
partly responsible for this field [9,20,21] The problem is
then to compute the interaction between these electrons
and the atom.

The methods developed in this paper can also be ap-
plied to other ions, such as hydrogen. In the case of hy-
drogen, the levels are nearly degenerate in energy and
quantum beats can be observed as a function of the dis-
tance from the foil. This gives us more information
about the state of the beam than in the case of HeI, so
that it may not be necessary to tilt the foil to obtain more
information. On the other hand, it can be shown that
there will then be some undetermined parameters. This
can be compensated for by making some assumptions,
such as maximum entropy [22].

APPENDIX A: SOME STATE MULTIPOLE PROPERTIES

A definition of the state multipoles equivalent to Eq. (1)
can be given using the Wigner-Eckart theorem [12]:

(J,L,M, ~

T"(J3L3 J4L4 }
~ J2L3M2 )

JI /C J2
1 1 —M) q M~

And two other useful relations are

T (JiLi J3L2) ( 1) T q(J2Lz JiLi) (A3)

Tr[Tq(JiLi J2L2)]=+2Ji+15z J 5L L 5k 5q . (A4)

APPENDIX B: ORTHOGONAL OPERATORS
EXPANSION

This appendix generalizes the work of Fano [23].
Given a set I U ] of orthogonal operators, i.e., such that

Tr( U~ Uk ) =5jk, (B1)

which are in general non-Hermitian (Ul A UJ ), if the UJ s
form a complete basis, we can expand any operator Q on
that basis:

(B2)
J J

where the Q, and Q, are complex numbers defined by

Q, =Tr(QU, ),
Q,

t= Tr(QU,t) .
(B3)

We can do this for the density operator p also; and since

p is Herrnitian, we find that

p'=p' (B4)

(i.e., the coefficients of the two expansions are related by
complex conjugation}. We also have

Tr(p)=gp Tr(U,t), (85)
J

Tr(p')=Tr(pp )=g ~p, ~'.
J

(B6)

Assuming that the U, form a Lie algebra (i.e., closed
under commutation), we can define

i [ Uj Uk ]— g Cl~k U„=g CJ~k U„ (B7}

i [ U, , Uk ]+=g bg a U„=g bj„"U„, (Bg)

ne tn
Cjk

—
Ckj (B10)

where [, ] and [, ]+ are the commutator and the an-

ticommutator, respectively. The coeScients of these ex-
pansion are easily found by using the orthogonality rela-
tion [Eq. (Bl}]

cjk =i Tr(U„[UJ, Uk] ), cjk"=i Tr(U„[U., Uk] ),
(B9)

b,"k=& T«U.'[&& Uk]+» bl'k"=&T«U. [U, Uk]+»

and we can easily find the following relations:

X(J,L, ~
~T"(J3L3,J4L4)~ ~J2Li), (Al) bne gfn

jk kj (B11)
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. IH=H —i—
1 (B12)

We can now find the evolution equation for the com-
ponents p of the density operator, given a Hamiltonian
H. Let us assume that we can write H as

APPENDIX D: INDEPENDENT-VARIABLE EQUATIONS

We have seen in Sec. VIII that the system of equations
(9) decouples in q. Thus, for each q, we get a system of
equations that can be written as

H =H+i-.r
2

(B13)

dP =Qp,
dt

(D 1)

where H& and I are Hermitian. Then, from the Liouville
equation,

=Hp —pH (B14)

and what we wrote above, we can obtain the following
system of equations for the components p '

Q=QO+iQ),

p= A+iB,
(D2)

(D3)

where Q is a complex matrix (which is time dependent in
the general case, but not for the model chosen here) and p
is the vector of all the tensorial components. Separating
the real and imaginary parts, we define

dPj l
X QjkPk rf g (~jk+ ~jk }Pk
J J" (B15)

A Qo —Q) A

and we can then write Eq. (Dl) as a real equation:

where dt Q, Qo B (D4)

Vjk =g cj"k Tr(H, U„),

Wjk =g b~k Tr —U„
r

n

(B16)

(B17)

A= E a=La, (D5)

Now, if we define a to be the vector of all independent
variables in A, we can write

~jk = —
~kj

W = —W'.jk kj

(B18)

(B19)

APPENDIX C: EXPRESSION OF SYMMETRIES

If we are given a group 6 of transformations S; under
which the system described by p is invariant, we must
have

[p S, ]=0, VS, FG . (Cl)

and we can show that V and W are anti-Hermitian, i.e.,
that

B=Mb, (D6)

where b contains the independent variables and M has
the same structure as L. The Moore-Penrose pseu-
doinverses are defined as follows [24]:

(0

where I is a unit matrix of dimension equal to the number
of elements of a, E is a matrix with one nonzero element
per line (and that element is 1 or —1, because of the sym-
metry relations of Sec. III), and 0 is a null matrix (for the
elements of A that are zero, again with the relations of
Sec. III). We can do the same thing with B and define

Taking a complete basis of orthogonal operators {Uj I (as
in Appendix B), we have in general

S;UJS; '=ggjk Uk, (C2)
k

L+L, =I, I, +=(L'L, ) '1,'-
M+M=I, M+=(L L) 'M

(D7)

where

g,'k =Tr(S, Uj S; '
Uk ) .

Using the expansion ofp

P=XPjUJ
J

and the orthogonality relation (Bl), Eq. (C1}gives us

(C3)

(C4)

dt

L +Q L 0L+Q,M-
M+Q, L M+Q~ b (D8)

The pseudoinverses of L and M exist since it is easy to
show that (L L} and (M M) are diagonal positive-
definite matrices (because of the structure of L and M). It
is then easy to obtain from Eq. (D4) the following re-
duced system of equations:

g p (5 k
—g'k )=0, Vi, k .

I
(C5)

This is the relation between the expansion coeScients
that is due to the symmetry group considered.

which has only independent variables. This method gives
us a systematic way to eliminate the dependent variables
and to construct the reduced system of equations in a
computer program.
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