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In this paper we discuss the excitation of a localized molecular ground-state wave function by a short
laser pulse. With a one-dimensional approach we show when it is possible to excite a considerable frac-
tion of the ground state without too much distortion of the shape of the wave packet. This is of interest
in time-resolved molecular experiments where an excited wave packet is often taken as the initial state.
We solve the two coupled wave equations numerically and compare results to an analytical approxima-
tion based on the Rosen-Zener model. The validity of the approximation and its breakdown is con-
sidered in detail. Special attention is paid to the effect of lengthening the pulse duration and the conse-
quences of the accompanying number of Rabi flops occurring in the area theorem. When the approxi-
mation breaks down, the wave packet becomes distorted and spread out, but there are still interesting
coherence effects due to the interplay between the Rabi flopping and the molecular dynamics; these are
displayed and discussed. Finally, the relationship to other works and possible generalizations are

presented.

PACS number(s): 33.80.Be, 03.65.Bz

I. INTRODUCTION

The modern development of technology for ultrashort
laser pulses has made it possible to study fast phenomena
in atoms, molecules, and solids in real time. Experimen-
talists can now excite and probe microscopic degrees of
freedom over time scales that exhibit characteristics of
genuine quantum evolution. On the theoretical side,
modern computers and advanced numerical methods al-
low the integration of models that contain the main
features of real atomic systems investigated experimental-
ly. Thus, one can follow the genuine time dependence of
quantum-mechanical systems in situations not usually
discussed in the conventional applications of quantum
mechanics.

In our previous investigation [1], we have discussed the
time evolution of wave packets on crossing excited-state
potential surfaces; see Refs. [2-4], and references
therein. Formulating the molecular energy-level struc-
ture in terms of Born-Oppenheimer potentials [1], we can
treat the wave packets with a model of coupled-channel
wave functions on different electronic-potential surfaces.
In [1] and [5], we assumed that the excited wave packet
started its motion on one potential and was transferred to
another one at a laser-induced level crossing. We com-
pared the results of exact numerical investigations of the
wave-packet motion with those obtained from the well-
known Landau-Zener approximation for the level cross-
ings.

In our earlier work we also assumed that the ground-
state wave function could be excited to an upper-
potential surface without too much distortion; this is the
assumption of adiabatic excitation. In this way we could
obtain a well-localized wave packet as the initial state for
our level-crossing calculations. It is, however, important
to know the conditions and circumstances which make it
possible to lift the well-localized ground state to an excit-
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ed level without significant distortion. This is the prob-
lem investigated in the present paper.

In perturbation theory, the shape of the ground-state
wave function is transferred to the excited state un-
changed, but in this case only a minor fraction of the
population can be excited. With an increase in laser in-
tensity, it becomes possible to achieve larger excitation,
which is also desirable from an experimentalist’s point of
view. For certain pulses, so-called 7 pulses, all the popu-
lation becomes excited, and one may ask if this is achiev-
able without distortion of the wave packet. On the other
hand, an increase in laser intensity may return population
to the lower level, and a 27 pulse leaves the level popula-
tions unchanged. What is the behavior of the wave pack-
et in such cases?

We also know that a very short exciting pulse can be
approximated by a § function in time. In this case, the
ground-state wave function has no time to deform, and
the excited state appears as a well-localized wave packet.
However, real exciting pulses have widths, and, in prac-
tice, these are not very different from the time scales of
the motion on the potential surfaces. Thus, the discussion
of the influence of a finite pulse width becomes an issue of
interest.

To be able to answer the questions above, we model the
step of initial molecular excitation by a short laser pulse
according to Fig. 1. The laser couples the ground state 1
to an excited state 2, so that the energy of the laser pho-
ton #Q brings the two levels into near resonance at the
position of the wave packet; this is shown in the figure by
a down shift of the excited state to the dotted potential
curve. The coupling allows the resting wave packet to
transfer partly to level 2 and start sliding down the slope
and away from its position in the ground state. When the
laser pulse is over, the transfer ceases and the part excited
to level 2 can form the initial state for investigations of
the type discussed in [1] and [5]. In contrast to these
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FIG. 1. In our model the laser pulse brings potential surface
2 down to 2’ so that it is approximately in resonance with sur-
face 1. As the pulse also couples the surfaces, the initial vibra-
tional wave packet is transferred, at least partly, to surface 2,
where it will start to slide down the slope. For simplicity we ap-
proximate surface 1 with a harmonic potential, and surface 2
with a linear slope.

works, we cannot utilize the Landau-Zener model for the
excitation process discussed here.

In Sec. II, we formulate a mathematical model for the
physical situation shown in Fig. 1. In Sec. IIl, we show
how a generalization of the Rosen-Zener model can be
used to describe the excitation process, if molecular
motion is assumed to play only a minor role. This is the
short-pulse limit, and its range of validity is explored by
exact numerical integration of the time evolution of wave
packets and simple estimates based on the physics of the
situation. Two features of the wave-packet evolution lead
to finite-time effects; the packet may disperse, or it may
move out of the interaction region during the excitation
time. The breakdown of the applicability of the general-
ized Rosen-Zener model is discussed in Sec. IV, where we
determine the time range over which the simple approach
holds. It turns out that the effects of a finite pulse length
can be used to enhance the transfer of population above
that predicted by the short-pulse approximation, but then
the original smooth wave packet will be distorted and
spread out. The outgoing wave packet may be chopped
into pieces that leave the excitation region like bullets
from a machine gun. These effects are discussed in Sec.
V. The paper is concluded by a discussion in Sec. VI.

II. THE FRAMEWORK

We have already discussed how to model complicated,
laser-manipulated molecular configurations by a simple
system consisting of two crossing potential surfaces with
a time-dependent coupling [1,5]. Within the validity of
the Born-Oppenheimer approximation, we get the
coupled-channel Schrédinger equations
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Here ¥;(R,t) are the components of the wave packet
W(R,t) that reside on the corresponding electronic energy
surfaces U;(R) (the Born-Oppenheimer, or adiabatic
molecular potentials). The vibrational energy resides in
wave-packet motion on these surfaces. Therefore, we
consider wave-packet transfer between potential surfaces
rather than a time-dependent probability redistribution
on the discrete quantum-mechanical states. Our system
has been simplified further by the assumption of only one
relevant nuclear coordinate (one degree of freedom) R.

The laser field at frequency () appears as a radiative di-
pole coupling ¥ (t), and as a shift #Q of the potential sur-
face 2 within the rotating-wave approximation. The en-
velope function V(t) simply reflects the strength and
duration of the laser pulse; in the dipole approximation it
is a linear function of the laser-field strength. The fre-
quency, duration, intensity, and functional form of the
pulse are important factors, especially as they are rela-
tively easy to control externally.

We now insert the system of Fig. 1 into this general
framework. Initially (1— — o) the wave packet rests on
the ground state of the harmonic potential surface 1 (the
lowest vibrational state), so that

U (R)=1maw*R —Ry)*,

(R —R,)?
——+i¢

W\(R,— w)=(2m0?) 4 exp 5
40

’

where (AR)=0=V'#%/2mw. The phase factor ¢ is
chosen to be such that it cancels the actual time-
dependent phase at the particular finite time which we
choose as the starting point for the numerical work. If o
is small enough, we can take U,(R) as a polynomial
linear in R:

Uy(R)=—a(R —Ry)+B, a>0 4)

and we define the detuning A(R)=U,(R)—#Q— U,(R).
For the laser field amplitude we have chosen

V(t)=Vysech(t/T) , (5)

where ¥V, is the maximum coupling induced by the laser
field and T defines the pulse duration. As the two sur-
faces become coupled by the pulse, a part of the initial
wave packet is transferred from surface 1 to surface 2.
This transfer is most efficient at the spatial points where
the field is in resonance with the potential surface, i.e.,
where A(R)=0. However, the maximum number of
these points is only two, and if they are located far from
the region of the initial spatial probability distribution
[Eq. (3)], the total transfer can become quite small. Evi-
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dently, this takes place if A(R,) becomes very large while
a stays small.

Equations (1) and (2) for the system chosen do not ap-
pear to be analytically solvable, so we use the numerical
method described in the Appendix. We shall shift the
spatial coordinate by setting R, =0 and rescale our vari-
ables into dimensionless ones:

_ 2mR?
c % ’

(6)

'r'—_—t- t
t.’

so that R, and ¢, are not fixed, but only related. Then,
after introducing the scaling

T
T _
c tc ’
_at.R,
=
L (B #i2) = A(O), .
C=lot, ,
_ VOtc
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we obtain the equations
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— 70
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ii\ll (x,7)= —a—z—Ax +B |¥,(x,T)
ar =7 dx? 2
—70
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where 7, is chosen such that D sech(r,/T,)=0; in our
numerical work we start the integration at 7=0. Now
the initial wave packet on surface 1 takes the form

1/4
2

¥,(x,0=|<| exp —%x (10

with (Ax)=0 /R, =(2C)" /2. One can easily see that, as
x and 7 are dimensionless, so are the parameters defined
in Eq. (7). In order to reduce the number of free parame-
ters, we have simply fixed ¢, and R, by using C =27172
which gives t.=V2/w and R, =(#/V2m®)'’?, but other
choices would have been equally possible. We have also
mostly confined our studies to those values of B for which
A(R) has at least one zero point.

The Schrodinger equations (8) and (9) above form the
framework for our numerical investigation of the current
problem. However, in the next section we shall discuss
how one can utilize the Rosen-Zener model to obtain the
transfer probability for cases with very short-pulse dura-
tions T.
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III. THE GENERALIZED ROSEN-ZENER APPROACH

The time-dependent two-state model first studied by
Rosen and Zener (RZ) [6] in 1932 is given by

Wi (1) AoV | [ (@
YRz (1) Vi) —i | |WR (1)

i

o , (D

where A is a constant and the coupling is
V(t)=Vysech(t/T). If we set |WR¥(—o)|=1 and
YRZ(— 0 )=0, we find the solution

2
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F

’

(12)

where the time dependence is contained within the func-
tion

z(t)=1[ tanh(z/T)+1], (13)

and F is the hypergeometric function. For details of the
derivation see Ref. [7] or Appendix A of Ref. [8]. When
the pulse has died out (¢ — ), one gets from Eq. (12)

[WRZ(A, 00)|?=sinX(7V,T /#)sechX(wAT /%) . (14)

If we set A=0 (so the energy levels are brought into
resonance) and define

o= [" dr've) — av,T/%, (15)

t—

it is easy to obtain

WEHA=0,0)>= sin0(1) — sin’7V,T/% (16)
from Eq. (11). This is known as the area theorem, and
the pulse area also appears as a part of the solution (14).
The population of the energy levels go through a number
of oscillations (Rabi flops) while ¥ (¢) is nonzero. Usually
the pulse area is defined as 26( ), so that if 2V, T /# is
equal to an odd number, the pulse inverts the level popu-
lations, and we call it a 7 pulse. The optical transparency
effect [9,10] takes place when 2V, T /# is an even number
(called a 27 pulse by us). Of course, due to absorption,
the pulse intensity is changed as it traverses matter, but
we assume an optically thin interaction region in order to
be able to ignore such effects.

Because of the area theorem we have a way to control
the amount of transfer from zero up to a certain value
defined by the energy difference of the levels, as seen for
the Rosen-Zener case from Eq. (14). We often prefer to
choose V,, and T such that we have a 7 pulse and there-
fore expect maximum transfer. When plotting the proba-
bility |WR%4(A,1)|? obtainable from Eq. (12) as a function
of time, one can see oscillations which are very much like
those anticipated by the area theorem, though reduced in
amplitude by the detuning of the levels (see Fig. 2 for an
example).

Now, if in our original wave-packet scheme the pulse is
extremely short, we can neglect propagation effects dur-
ing the pulse, i.e., we omit the spatial derivatives in Egs.
(1) and (2) [or in (8) and (9)]. The original wave packet
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FIG. 2. The time-dependent behavior of the population on
the excited potential surface is illustrated here with solid lines,
and the corresponding pulse envelope normalized to unity with
dotted lines. We have in (a) 4 =1, B=—12, D=100, and
T.=0.025, and (b) 4 =50, B =10, D =350, and T,=0.01. The
dashed line is simply |¥52(2A=A(0),7)|%, and in (a) it corre-
sponds quite well with the result of the wave-packet calculation
because, for T, and A suitably small, the Gaussian term dom-
inates the integration in Eq. (19). However, as A4 is increased, as
in (b), deviations occur, although the qualitative behavior holds.
We have not plotted PRX?(7) as the result cannot be dis-
tinguished from the wave-packet result P,(7) by eye. In all
figures appearing in this paper we have used the value 27!/2 for
C.

and the potential surfaces are divided into tiny slices over
which any variations as a function of position can be
neglected. Then we simply apply the Rosen-Zener model
with a constant level separation 2A to each slice. Conse-
quently, for the part of the wave packet residing on sur-
face 2, we get

|W,(R,1)[2=|¥,(R, — © )WRZQ2A=A(R),1)|*, (17)

so each part of the initial spatially distributed wave pack-
et gets transferred to surface 2 independently of the oth-
ers according to the Rosen-Zener expression, but with
the constant energy-level detuning replaced by the spa-
tially dependent potential surface energy difference. We
invoke the Franck-Condon principle, which states that
nuclear separation R is not altered during a change of
electronic quantum state.

With the assumptions above, we obtain the total
transfer of population as

P32 = [ " dRIW\(R, — =W} 2A=AR),)]* (1)
=V/'C /7 sin*(7DT,)

0 wTC
Xf_ dx e %’ sech? T(C2x2+Ax—B) )

(19)

We have defined P,(t) as the numerical probability
transferred to surface 2 in our original model of Sec. II,
with P, =P,( ), and the corresponding Rosen-Zener re-
sult is denoted by PX% Equation (18) becomes time
dependent if Eq. (17) is used in the integrand; this defines
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PXZ(t). Naturally, in our scaled units ¢ is replaced by
T=t/t,.

One should note that the equation above is not limited
to our special system (the chosen potential surfaces U,
and U,); it could be applied to Morse potentials or to
other more realistic cases. On the other hand, the hyper-
bolic secant pulse shape is one of the few that can be
analytically solved for two-level systems. For instance, to
the best of our knowledge there are no corresponding re-
sults available for the Gaussian or Lorentzian pulse
shapes used quite often (see Sec. VI for a discussion).

We have performed the necessary wave-packet calcula-
tions and compared them with the corresponding results
from the numerical integrations of Eq. (19) and its time-
dependent version. Of course, for short 7 pulses almost
all the population is transferred to surface 2. However,
in cases where the absolute value of the detuning of the
surfaces [A(x)=—Cx%*— Ax +B in our scaled units]
exceeds the spectral width of the pulse (proportional to
T, !) while the initial wave-packet function is still not-
ably nonzero, we may get transfer probabilities clearly
less than unity. This situation can be reached by choos-
ing 4 or |B| large enough compared to TC‘I, although
then we move towards the limits where the Rosen-Zener
approach breaks down. To cover extensively the full
four-dimensional parameter space (4, B, D,and T,) is a
tedious and time-consuming task, so we have just chosen
some parameter combinations to check the validity of the
Rosen-Zener approach.

In Table I we have examples that illustrate the validity
of the Rosen-Zener approach quite well. The data show
how P, gets smaller as |B| increases. One can notice a
hint of the tendency that the approximation gets better
with fewer oscillations (first three lines), and is very sensi-
tive to pulse duration (last three lines in Table I). We will
discuss the breakdown conditions in greater detail in the
next section.

Unfortunately we have been unable to produce an ana-
lytic expression for Eq. (19), but any small computer
with simple routines can handle it in a reasonable time,
unlike the wave-packet calculations which have been per-
formed on a Cray X-MP supercomputer.

In Fig. 2 we have plotted P,(7) with the corresponding
I‘I/§Z(27L=A(0),'r)l2. Also, the pulse envelope normal-
ized to unity is displayed. We can see that the correspon-
dence is good in Fig. 2(a) even before integrating over the
initial probability distribution; we have chosen A(0) be-
cause the distribution has its maximum when x =0.
However, in the case of Fig. 2(b), the integration is essen-
tial, as the hyperbolic-secant amplitude term in Eq. (19)
will strongly modify the Gaussian term inside the integral
because of the large 4.

In Fig. 3 we have plotted the results for =, 27, and
even for 7 /2 pulses with different T, and some different
values of 4 and B. Once again we see the sensitivity to
T.. As T, increases, we lose both the optical transparen-
cy effect (area theorem breakdown) as well as the ampli-
tude approximation (Rosen-Zener envelope breakdown).
This breakdown is discussed in the next section.

Note that, in Fig. 3(b), for 4 =5 we have stopped at
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TABLE I. Here we have numerical (P,) results and those obtained from the Rosen-Zener approach
(P%?) compared. We have kept 4 =3 and C =27!/2 for all data. The integer part of the pulse area
factor DT, tells us the number of oscillations taking place before the transfer probability settles to its

final value.

B D T. DT, P, PRz |AP,| /P, (%)
—15 20 0.025 0.5 0.7087 0.7088 0.009
—15 100 0.025 2.5 0.7078 0.7088 0.1
—15 300 0.025 7.5 0.7068 0.7088 0.3
—10 300 0.025 7.5 0.8481 0.8471 0.1

-5 300 0.025 7.5 0.9490 0.9491 0.01
0 300 0.025 7.5 0.9899 0.9899 0.004
5 300 0.025 7.5 0.9606 0.9584 0.2
10 300 0.025 7.5 0.8683 0.8633 0.6
15 300 0.025 7.5 0.7346 0.7285 0.8
-5 350 0.01 3.5 0.9914 0.9914 0.003
—10 150 0.05 7.5 0.5442 0.5576 2.5
-5 75 0.1 7.5 0.4808 0.5583 16

A=0.25,
B=0.1
-+ DTc=3.0
-+ DT=3.25
= DT.=3.5

. A=0.25,
* B=0.1
DT,=0.5
A=0.01,
° B=1.0,
= Briss
-- A=5.0,
B=2.0,
02} x DT=0.5
. | * DT=35
0.0 - - P
32 0 1

log0(T¢)

FIG. 3. In (a) of this figure we show the P, from the wave-
packet calculations (points) compared with the Rosen-Zener re-
sult (solid lines). Dotted lines are drawn between the points to
guide the eye. The chosen examples are a 2 pulse (DT, =3.0),
a 7/2 pulse (DT, =3.25), and a 7 pulse (DT,=3.5). For small
T, they comply with the area theorem. As T, increases, the va-
lidity of the Rosen-Zener approach breaks down, as well as the
area theorem: we find a strong enhancement of transfer, espe-
cially in the optical transparency case (27 pulse). In (b) we
show the results for three 27 pulses without Rabi flops
(DT,=0.5) and for one with them (DT, =3.5). All results seem
to follow the corresponding Rosen-Zener calculations (lines)
more or less, although deviations clearly increase with 7,. A
comparison of (a) and (b) (the 4 =0.25 case) shows that we
have an enhancement of population transfer when T, is large if
Rabi flops occur.

T,.=0.25 because, for larger T, the first excited parts of
the packet have time to slide far away from the interac-
tion region. Then the spatial lattice for the numerical
calculations must be made quite large to avoid packet
reflections from the boundaries, but still dense to main-
tain the accuracy, which increases the CPU time con-
sumption. This problem might be avoided by assuming
absorbing boundary conditions, as has been done, e.g., in
Refs. [11,12] (and see also Ref. [13]).

IV. BREAKDOWN
OF THE ROSEN-ZENER APPROACH

The Rosen-Zener approach of the previous section
breaks down if the population transferred to surface 2
within any slice starts to interfere with that transferred
from other slices, or simply move away from the slice re-
gion while the coupling is still affecting the system.
There are two basic causes for this kind of behavior to
appear: (a) if the slope of the surface 2 is steep, parts of
the packet start to slide down before transfer is complet-
ed, and (b) if T, is large enough, the dispersion of the
transferred wave packet becomes important while the
pulse is still on. We can roughly estimate the parameter
regions where (a) and (b) give relevant effects.

For surface 2 we get from Ehrenfest’s theorem (see
[14], p. 41) for the packet acceleration

_ 1 /90U, _a
(a)= m<aR>—m, (20)

so during the time At the excited part of the packet trav-
els the scaled distance

Ax = A (AT)?, 1)

as the mass term is effectively equal to one-half due to
our scaling. This distance should be much shorter than
the packet width (Ax), during the pulse duration:

AT2 <<(Ax),~(Ax),, (22)

where the width (Ax); of the initial Gaussian packet is
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used. From here on we use the notation (Ax); . for the
packet width on level i at time 7. For our numerical cal-

culations we have fixed C=1/ 1/5, so that
(Ax); g=(2C)~'"2~0.8409, and we can write
AT? <1, (23)

as our scaled units are dimensionless. This is the condi-
tion for avoiding the sliding effects in our calculations.

For a linear potential, the solutions of the stationary,
uncoupled Schrodinger equation are Airy functions [15]
with a continuous-energy spectrum. However, here it
suffices to consider the motion of the Gaussian minimum
uncertainty packet as its dispersion has been treated in
detail in Ref. [14], p. 164, and it is the same for a packet
on a linear slope (see [16]). The spreading is given by

2 172 ,
(Ax), ,=(Ax), o [1+ (Ax)‘é,o =~ (Ax)yo
7 large  (24)
and we simply demand
T, <<(Ax)3 o=(Ax)}=1. (25)

We shall see later in this paper that the assumptions lead-
ing to these limitations are confirmed by numerically ob-
tained values for {(x ), and (Ax),.

Consequently, depending on A, the validity of our
Rosen-Zener approach is broken because of packet
dispersion (small A4) or because of packet acceleration
(large A4). This is intuitively quite clear. In Fig. 4 we
show the validity of the Rosen-Zener approach with
different values of 4 and T,. The lines mark the region
where we assume the breakdown to appear. We have
defined a “criteria factor” & so that the solid lines are a
combination of AT?=§ and T,=3$, whichever condition
is first fulfilled as T, increases. We can see in Fig. 4 how

20f

~ 1.0 *

S SRR C

3

Ay 0.0 :

2 I x x xxx x xm oo |o
-1.0T °
_2.0- x x x x X a

30 20 -10 00
logo(Te)

FIG. 4. Here we test the Rosen-Zener approach. To the left
of the solid lines we have AT?><8 and T, <8. The first line
from the left is for §=0.1, and the second one for §=1.0. The
crosses mark (T,, A) combinations for which the relative error
|P,—P%%|/P, is less than 107°, and open boxes mark those
where this error is larger than 1072 As the data used here con-
tain pulses with different amounts of Rabi flops, the regions of
validity have diffuse boundaries.
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the limits defined above are approached and indeed they
seem to hold quite well.

The width of the initial packet is tied to the width of
the initial harmonic potential well. Therefore, we do not
need to consider the sliding effects of the packet on that
surface, as the wave-packet dispersion on surface 2
breaks the validity of the Rosen-Zener approach before
these motions become relevant.

There is one more parameter affecting the breakdown,
which is somewhat visible already in Table I and in Fig.
3, namely, the number of oscillations (Rabi flops). The
transfer probability is not a continuously increasing func-
tion of pulse intensity, but an oscillating one. In the
crude area-theorem picture we may have full transfer
when the envelope has reached only a fractional part of
its actual height. Hence, T, is not the best possible mea-
sure for the pulse time scale in the case of intense pulses.
However, here we shall concentrate only on cases with
less than ten Rabi flops, so we do not take this effect into
account but postpone it to possible future studies of in-
tense pulses (see also Sec. VI).

Although wave-packet distortion breaks down the va-
lidity of the Rosen-Zener approach, it also introduces
quite intriguing behavior in the excited parts of the wave
packet, including a so-called machine-gun effect. This
will be discussed in the next section.

V. EXAMPLES OF DISTORTED TRANSFER

When the condition (23) for a nonsliding packet is
fulfilled, but the dispersion effects are strong, we get the
kind of behavior shown in Figs. 5-8. They are examples
of cases both with and without the probability oscilla-
tions (Rabi flops), as predicted by the area theorem of
Sec. III. In Figs. 5(a), 6, and 7, we show the wave-packet
characteristics of the nonoscillating case, and Figs. 5(b),
6, and 8 feature the oscillating case with one Rabi flop.

0~ 5 10 15
T

FIG. 5. Here we have P,(7) (solid lines) for (a) the nonoscil-
lating case D =0.5 and (b) the oscillating case D =1.5, with
T.,=1.0, A =0.1, and B =0.01. The dashed line is the corre-
sponding Rosen-Zener result. The wave-packet result first fol-
lows the Rosen-Zener result, but then breaks away from it as
the packet has had enough time to disperse. In (b) we see how
the Rabi flop is partly clipped as excited parts of the packet
disperse away from the resonance region [see Fig. 7(b) for a
three-dimensional plot]. The dotted lines are the pulse en-
velopes in our scaled units.
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As seen from (x ),, in Fig. 6(b), the excited packet indeed
slides down surface 2 with the constant acceleration pre-
dicted correctly by the classical estimate (20). The antici-
pated strong dispersion of the excited packet is also clear-
ly visible from (Ax), of Fig. 6(c). The slope for large 7 is
linear, as predicted by Eq. (24). However, since the reso-
nance region is narrower than the initial packet, we see
that

(Ax),0~271/2=0.7071 < (Ax), ,~0.8409 ,

as anticipated in Eq. (25).

The propagation of the wave packet in Fig. 7 shows
how the excited part spreads rapidly, even climbing up
the slope of surface 2, and that only after the pulse is
gone does it slowly assume the motion down the slope.
Despite the absence of oscillations in P,(¢) in this exam-
ple, a small part of the packet is transferred back before
the pulse dies out [see Fig. 5(a)], resulting in an excited-
state “hole” in the region of x where A(x) is smallest.

The part of the packet that remains on surface 1 starts
to oscillate with the eigenfrequency of the harmonic po-
tential, as the packet rearranges itself [see Figs. 6(a), 7(a),

0
0.06
0.031
<x>1 0.00
-0.031
-0.06 X
10 10
(b) oOscillating
8 case 8
6 Non-oscillating
<X>2 case ' 6
4 7 4
2 # Classicall 5
estimate
0 0
0 5 10 15
1.0 ( ) 15
C (AX)2

o, R
09 1 10
(&%), L

FIG. 6. The main characteristics for the nonoscillating and
oscillating cases of Fig. 5 are displayed in this figure. (a) After
the pulse, the remnants of the initial packet oscillate with the
eigenfrequency of the harmonic potential. This is because the
packet is now a superposition of the populations on different vi-
brational energy states. The solid line and the scale on the left
are for the nonoscillating case, and the dashed line and the scale
on the right are for the oscillating case. (b) After the pulse, the
position of the excited packet behaves quite classically. (c) The
packet width in the nonoscillating case shows how the part
remaining in the harmonic well oscillates with a frequency twice
the eigenfrequency of the well, as can be expected, and the ex-
cited part disperses as anticipated in Eq. (24).
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and 8(a)]. This is connected with the asymmetric popula-
tion transfer to the higher vibrational states when some
of the probability is returned to level 1, but we will not
discuss it further in this publication.

Even if the Rosen-Zener method fails to predict the
correct P, in the example above, the oscillating nature of
P,(1) is preserved [see also Fig. 5(b) for another exam-
ple]. This leads to the effects seen in Fig. 8 as the parts of
the excited packet that have not yet dispersed to regions
of large A(x) visit surface 1 once more and then return to
be dispersed again, finally starting to slide slowly down
surface 2.

We can complicate this situation by increasing the
slope of the potential surface U,(x). When A4 gets larger,
condition (23) becomes violated. Then the parts of the ex-
cited packet that have dispersed up the slope in the direc-
tion of negative x start to return to the region of small
A(x) while the pulse is still on. For oscillating cases like
those presented in Figs. 5(b) and 8, this actually means
that P, is reduced as we lose some of the excited popula-
tion back to surface 1. However, the P, obtained still
exceeds the Rosen-Zener prediction. Besides, the parts
dispersed down the slope are now able to escape faster as
A is increased.

If we let 4 become large enough, dispersion yields its
dominance in distortion to the wave-packet acceleration
and deceleration due to the steepening of the slope of sur-
face 2. In a case of this kind, we also enhance the final
transfer probability P, from that predicted by the

FIG. 7. (a) The depletion and slight oscillations of the packet
on surface 1 can be seen here. (b) The excited part of the packet
on surface 2 disperses away from the resonance region while the
pulse is still on. The parameters are the same as in Fig. 5(a) (the
nonoscillating case).
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FIG. 8. This figure shows the wave packet for the same pa-
rameters as used in Fig. 5(b) (the oscillating case). The small
part of excited packet that does not escape the resonance region
in time is transferred back to surface 1, and then excited again.
(a) This results in oscillations of the packet on surface 1 as more
population is distributed to higher vibrational levels. (b) We
also see a second peak in the wave-packet structure on surface
2, which starts to disperse and slide down as the pulse dies.

Rosen-Zener approach. Each time an oscillation of P,(t)
reaches a maximum, the transferred part is accelerated
away from the interaction region. As seen in Fig. 9, this
gradually cuts the oscillations down as A increases. We

(0),

Py ()

0 5 10 15 20
T

FIG. 9. Here we have P,(7) (solid lines) for B =1.0,
D =1.75, and T,=2.0 with three Rabi flops, and the slope
values are (a) 4 =0.1, (b) 4 =0.5, (c) 4 =1.0. We can see how
increasing slope 4 enhances the transfer probability as the os-
cillations are clipped. This is because the packets are able to es-
cape the interaction region. The dashed lines are the corre-
sponding Rosen-Zener predictions, and the dotted line is the
scaled pulse envelope.
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FIG. 10. Here we show the form of the packet on surface 2 at
certain times during the excitation and after it. The parameters
are A=1.0, B=0.1, D=1.75, and T,=2.0, so that both the
dispersion and sliding effects break down the validity of the
Rosen-Zener approach. In the upper right corner we have
P,(7) (solid lines) and the pulse envelope (dotted line). The
snapshots to the left are taken at the points denoted by solid
squares in the inset. The Rabi flops in the Rosen-Zener predic-
tion have disappeared from the result of the wave-packet calcu-
lation, and by looking at the different 7 values we see how the
flops form peaks that slide down the slope.

call this phenomenon the machine-gun effect, as it pro-
duces a flow of small peaks in the probability that run
down surface 2 like bullets emerging from the crossing
region (see Fig. 10). Of course, by increasing D in steps
of one we can increase the number of the “bullets in the
clip,” but then the firing frequency increases and it be-
comes harder to separate the peaks from each other.
Also, there is only a finite amount of probability to distri-
bute to these peaks.

FIG. 11. This figure gives an example where both the sliding
and dispersion effects contribute to give a complicated structure
to the excited packet. The machine-gun effect is enhanced as
parts that have dispersed up the slope start to slide back. Here
A=0.25,B=01.,D=1.4,and T,=2.5.
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By combining the sliding and dispersion effects, one
can modify the machine-gun effect by getting the parts
that have dispersed up the slope to contribute to the “ray
of bullets” (see Fig. 11 for a good example). This allows
one to increase the number of bullets without mixing
them too much.

VI. DISCUSSION

In this paper we have not tried to relate our purely
theoretical model to any precise physical system which
could be, or has been, studied experimentally. The laser
intensities needed to achieve some of the effects discussed
may be experimentally unrealistic. Our interest has,
however, been to investigate the quantum-mechanical
characteristics of a model system of coupled potential
surfaces and wave packets on them. Of course, as men-
tioned in the Introduction, the use of ultrashort laser
pulses for manipulating and probing of molecular systems
is the primus motor that triggered this work.

There are several possibilities to extend our theoretical
model. The choice of the functional form of the potential
surfaces is free because the Rosen-Zener approach [Eq.
(18)] requires only that the packet is initially at rest in a
bound (stationary) state. The numerical work, however,
is not limited by initial conditions; examples of wave
packets with nonzero initial momentum were treated in
Ref. [1]. There we showed how to probe excited states,
and found a good agreement between numerical results
and predictions from the Landau-Zener model.

To our knowledge there are no analytical solutions
available for the time behavior of a Rosen-Zener type of
model with a Gaussian or Lorentzian pulse envelope. In
their paper [6], Rosen and Zener conjectured that

sin 4 (0)

4(0) A(A)

P2(°°)':

’

- . (26)
A= [7 dt Ve

They anticipated this to be a general solution for all mod-
els for an arbitrary nonsingular pulse envelope V' (¢) and a
constant detuning 2A (nonchirped pulses). Unfortunate-
ly, this conjecture is not correct, as shown by Robinson
[17], who derives some approximate expressions for
Gaussian and exponential pulses.

However, there are several cases of nonsymmetric
pulse envelopes whose time-dependent solutions are
based on hypergeometric functions [18]. Also, in Ref.
[19] Bambini and Lindberg use these nonsymmetric
pulses to form symmetric ones that approximate
Lorentzian and Gaussian pulse envelopes.

One extension of the model is to use chirped pulses, for
which the level structure is time dependent, in addition to
the time dependence of the pulse envelope. We have late-
ly paid close attention [8,20] to a hyperbolic secant pulse
model, with the Rosen-Zener detuning term A replaced
by A+Eytanh(z/T). This model, with a single time
scale, was first introduced by Demkov and Kunike in
1969 [7]. For suitable values of A and E, it becomes a
level crossing model, like the Landau-Zener model, but
with a finite pulse duration. The work of Hioe and Car-
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roll [21] should also be mentioned, and a recent review of
pulse models in quantum optics can be found in Ref. [22].

While finishing this study we became aware of the
theoretical model by Hill et al. [23] for coherent pulse
propagation in excimer laser amplifiers. They have the
same potential surface structure (harmonic-linear) and in-
itial condition (only the lowest vibrational state is popu-
lated), but their approach is different. We study wave
packets on potential surfaces, and they discuss state-to-
state transfer between quantum-mechanical states. They
also concentrate on short but intense pulses with large
areas and many Rabi flops, which diminishes the time re-
gion where the Rosen-Zener approach is applicable.

As a conclusion we claim that, despite the complexity
of molecular systems and their interaction with light,
simple analytic models are not yet outdated, but can be
applied as long as their shortcomings are recognized. We
have found that the Rosen-Zener model can be modified
to give predictions on wave-packet transfer between two
potential surfaces coupled by an ultrashort pulse, as long
as the interaction is short compared to the time scales of
packet dispersion and surface structure (packet move-
ment).
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APPENDIX

This Appendix shows how we have carried out the
wave-packet calculations. Although in the actual numer-
ical work we scale the variables and parameters, let us,
for clarity, use the original equations (1) and (2), and
define

@

Ty= (A1)
N 2m 3R?
as the kinetic-energy operator, and
Ty+U,(R) V(t)
HalRO=1 py  1y+U,R)—s| A2
as the 2X2 effective Hamiltonian operating on

¥=[W¥,,¥,]". The solution to the time-dependent prob-
lem would then be given by the expression

W(R,ty+At)= exp[ —iAtH (R, 1) /A]W(R,ty) ,  (A3)

which we expect to be accurate enough for small time
steps At.

This formal solution is, however, of little use, and like
all second-order derivative operators, an application of a
forward difference scheme leads to an unstable algorithm.
We have used two techniques to overcome this obstacle.
A common approach [24] is the Crank-Nicholson
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method, which takes the time evolution operator in Eq.
(A3) in the form

1—iAtH (R,t,) /2%
1+iAtH 4(R,t,) /2%

This expansion is accurate to second order in Az and has
the advantages of numerical stability and manifest unitar-
ity. When ¥ is discretized on a spatial lattice and the
denominator in Eq. (A4) is multiplied to the left, we ob-
tain a linear relationship between states at time ¢, and
time t,+At, which can be solved by sparse matrix
methods.

The second method used to find the time evolution of
Eqgs. (1) and (2) is to split H 4 into a kinetic part Ty (now
a 2 X2 diagonal matrix differential operator) and the po-
tential part W(R,t), which covers both the potential sur-
faces U;(R) and the pulse coupling V(z). This is called
the split operator technique [25,26].

With accuracy to first order in At, we can rewrite the
operator in Eq. (A3) as a product of the two operators

Y(R,t,+Al)=

W(R,t,) . (A4)

Uy = exp ~%“TN , (AS5)
Uy = exp ——%W(R,to) (A6)

However, second-order accuracy can be obtained by us-
ing the symmetrized product U}/2U;U}?. Thus, over a
time interval At, the time evolution in Eq. (A3) can be ap-
proximated by

W(R, 1, +A)=UNAR,t) ) U UYAR, 1, W(R,1,) . (A7)

For many steps this becomes

n—1
W(R,to+nAt)= | [ Up/*(R,ty+kAt)
k=0

XU UYAR,ty+kAt) |W(R,1,) .

(A8)
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In order to save time on multiplication steps, we approxi-
mate this sequence by

n—1

II Uw(R,to+kADU; [W(R,¢,) .
k=0

W(R,ty+nAl)~

(A9)

This involves replacing UY*(R,t +At)UY*R,t) by
Uw(R,t) and a small error in the initial and final multi-
plication by Uj/%(R,t). For small steps At, the errors in-
volved are not expected to be significant.

In general, we have found that the split operator
method gives a performance superior to that of the
Crank-Nicholson method. The space part Uy, is imple-
mented by straightforward multiplication at each point in
the spatial lattice, after exact diagonalization of the
operator W (R,t,). The kinetic-energy part is diagonal in
the 2X2 matrix indices, but an operator on spatial vari-
ables. It is implemented by the introduction of the
Fourier transform operator F defined for an arbitrary
function f(R) by

_ _ 1 ® / ikR' ,
Fh=F(f1=7==[" aR'e** f(R) . (Al0)

Using this formal operator we can write the kinetic part
of the time evolution operator in the form

2
—iAt————ﬁk

U=
T exp M

7. (A11)

Numerically we may apply Eq. (A11) by means of a se-
quence of fast Fourier transforms acting on the discre-
tized wave function. This introduces a finite grid of
momentum points, the size of which sets a restriction on
the maximum wave-function curvature allowed by the
finite lattice spacing introduced in real space. The actual
number of discrete points in the spatial lattice used in our
numerical calculations was typically 2'3.
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