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A systematic evaluation of one-electron matrix elements appearing in the theory of charge-exchange
processes in ion —metal-surface scattering is presented. The conduction-band electrons are described by
jellium-type wave functions, while hydrogenic wave functions are employed for the electronic states of
the ion. By applying Fourier-transform methods and complex integration techniques, exact closed-form
expressions for overlap and Coulomb matrix elements are derived for arbitrary hydrogenic quantum

numbers, momenta of the conduction-band electrons, and distances of the ion from the surface. The
general case of arbitrary energy difference between initial and final state {including the strictly resonant
case) is treated. For the near-resonant case, an expansion of the matrix elements about the resonant lim-

it is derived. The effect of the motion of the ion is taken into account by including electronic translation-
al factors. The actual computation of the matrix elements involves multiple summations, which can be
accurately performed even for high-lying ionic Rydberg states. Structural properties of the matrix ele-

ments are revealed by studying, for typical cases, their dependence on the various parameters. Possible
applications of our method are indicated.

PACS number(s): 79.20.Rf, 79.80.+w

I. INTRODUCTION

For many decades, considerable interest has been de-
voted to the study of the electronic processes that take
place when atoms or ions are scattered by metal surfaces.
Following the early investigations on recombination of
ions [1—4], the systematic exploration of the basic
charge-exchange and electron-emission processes near
metal surfaces was initiated by Hagstrum [5]. The devel-
opment of the field of ion —metal-surface scattering (the
term "ion" is understood here and in the following to in-
clude the limiting case of a neutral atom) and its present
status have been summarized in a number of comprehen-
sive review articles [6—21].

Electronic processes in ion-metal-surface scattering
are frequently studied under near-adiabatic conditions,
under which the energy transfer between the translational
motion of the ion and the electronic degrees of freedom
in the ion-metal system is small. In this case, one may
distinguish essentially two different categories of elec-
tronic transitions. First, the one-electron potential acting
in the ion-metal system can effect resonant transitions in
which electrons are transferred from occupied states of
the conduction band of the metal into empty ionic states
having the same energy ("resonance neutralization" ), or
from loosely bound, occupied ionic states into empty
conduction-band states of the same energy ("resonance
ionization"). Second, Auger-type two electron transitions-
can be induced by the electron-electron interaction. In
these transitions, a conduction-band electron is
transferred into a low-lying, empty ionic core state, with
the excess energy being carried away by an electron emit-
ted simultaneously from the conduction band ("Auger
neutralization" ) or from an excited ionic state ("Auger
deexcitation").

From a theoretical point of view, the ion-metal interac-

tion constitutes a many-electron problem of extreme
complexity. The complete solution of this problem re-
quires the dynamical treatment of one-electron and two-
electron processes including effects of the response of the
metal electron gas to the presence of the ion ("image
charge effects") and effects of the Pauli principle. It is
therefore not surprising that a fully quantitative theoreti-
cal understanding of ion —metal-surface scattering has not
yet been achieved.

Most of the theoretical studies performed so far have
treated the ion-metal interaction in the strictly adiabatic
limit ("fixed-ion approximation"), using first-order per-
turbation theory to calculate transition rates for resonant
one-electron processes and Auger processes as a function
of the ion-surface distance [1-4,22 —29, 19]. In a number
of cases [30—35], nonperturbative approximations at
different levels of sophistication have been used to evalu-
ate transition rates in the adiabatic limit. Departures
from adiabaticity due to the motion of the ion relative to
the surface have been treated within various time-
dependent quantal approximation schemes [23,36—45] as
well as within a classical master-equation approach
[46,40].

While in the past the emphasis has been on studies
with light ions in low charge states, the recent develop-
ment in the field of ion —metal-surface scattering is
characterized by an increasing number of experimental
investigations using beams of slow, highly charged, heavy
ions [47,28, 48 —53]. The advent of this type of experi-
rnent constitutes a challenge to theory. In typical scatter-
ing experiments with highly charged, heavy ions, the
electrons at the Fermi level of the conduction band are
near degenerate with high-lying Rydberg states of the in-

coming ion, so that resonant one-electron transitions into
these states will be the dominant charge-exchange pro-
cess at least at an early stage of the interaction. A sys-
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tematic extension of the previously developed theoretical
schemes to the regime of ionic Rydberg states is therefore
desirable. In recent theoretical studies [54,55] of the in-
teration of highly charged ions with metal surfaces, the
classical aspects of electron-transfer processes involving
high-lying ionic states have been emphasized. The
present paper aims at taking a step towards a fully quan-
tal treatment of the electronic degrees of freedom in these
processes.

We consider in this work one-electron oUerlap matrix
elements and Coulomb matrix elements as they appear in
the quantal theory of charge-exchange processes in
ion-metal-surface scattering. These matrix elements
form the basic ingredients of any specific formulation of
the theory [22,20], and their accurate evaluation is prere-
quisite to the complete analysis of present-day experi-
ments. Our aim is to devise and implement a systematic
method for explicitly evaluating the matrix elements for
arbitrary values of their parameters, in particular at high
principal quantum numbers of the ionic states. We do
not impose restrictions on the energies of the initial and
final states; i.e., we deal with the case of strict energy res-
onance as well as with the off-resonance case, which is
relevant for treating nonadiabatic effects. Further, we
wish to study structural properties of the matrix ele-
ments, such as their dependence on the various parame-
ters, without making reference to specific theoretical ap-
proximation schemes. We use jellium-type wave func-
tions to describe the metal electrons, whereas hydrogenic
wave functions are used for the ionic states.

In the context of previous theoretical studies, matrix
elements of the type considered here have been evaluated
by different methods for various specific cases, yet ex-
clusively for low values of the ionic quantum numbers
(with the exception of Refs. [28,19] in which matrix ele-
ments for ionic Rydberg states were evaluated at asymp-
totically large ion-surface distance) and usually with re-
strictions imposed on the values of the other parameters.
A partially implicit, closed-form representation of one-
electron Coulomb matrix elements for arbitrary parame-
ter values has been given in Ref. [41], which has been ob-
tained [56] by employing parametric-differentiation tech-
niques and integration in cylindrical coordinates. No at-
tempt has been made to examine the general applicability
of this representation.

The organization of the present paper is as follows. In
Sec. II we specify the general form of the matrix elements
and perform a reduction to one-dimensional integrals.
The key quantities appearing in these integrals are func-
tions F~(q, ) related to the momentum-space representa-
tion P'„I' (q) of the ionic wave function P'„I' (r). In order
to apply complex integration techniques, the analytic
structure of the functions I',.(q, ) in the complex q, plane
is explored in Sec. III. In Sec. IV the final evaluation of
the matrix elements is performed, and compact closed-
form expressions for various specific cases are collected.
The efficiency and accuracy of the numerical summation
of these expressions is examined. In Sec. V typical exam-
ples are explicitly considered, and qualitative structural
properties of the matrix elements are derived from these
examples. In Sec. VI we summarize the contents of the

paper and indicate possible applications of our results. A
variety of lengthy formulas is collected in the Appendix.
We use atomic units unless stated otherwise.

II. GENERAL FORM AND REDUCTION OF MATRIX
ELEMENTS

H = —
—,
' V' + V + V, , (2)

in which the image potentials are neglected. The
conduction-band potential V is taken in the jellium ap-
proximation [3,23],

V = —VOB( —z ), (3)

where Vo )0 is the sum of the Fermi energy sF (reckoned
from the bottom of the conduction band) and the work
function 4, and B(z) is the unit step function. The
Coulomb potential V, of the ion core is written as

V, = ——,B(z)—= — B(z),Z = Z
/r —De, /

(4)
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FIG. 1. Schematic diagram showing the choice of coordi-
nates used to describe the ion —metal-surface interaction.

The physical situation that we consider is depicted
schematically in Fig. 1. An ion is located at a fixed, but
arbitrary distance D in front of an ideal metal surface. In
a laboratory frame with coordinates (x,y, z), the surface
is assumed to coincide with the (x,y ) plane in such a way
that the metal fills the half-space z ~0. As the metal is
invariant with respect to translations in the (x,y ) plane,
we may assume, without loss of generality, that the ion
lies on the z axis, i.e., the coordinates of its center are
(O, O, D ). An overall phase factor that arises in the matrix
elements when the position of the ion is shifted away
from the z axis will be included in the final results. The
electronic position vector r' referred to a coordinate
frame with origin in the center of the ion is related to the
position vector r referred to the laboratory frame by

r'=r —De, ,

where e, is the unit vector in the z direction.
The complete one-electron Hamiltonian describing the

electronic motion in the ion-metal system [22] comprises
the potentials of the unperturbed conduction band and of
the ion core as well as the image potentials induced by
the ion core and the valence electrons. For our purposes,
it is sufficient to write down the Hamiltonian in the form
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where Z is the efFective core charge. The "cutoff" factor
8(z) reflects the assumption that inside the metal the ion-
ic potential is completely "screened out" by the polariza-
tion charges piled up at the surface.

A. General form of matrix elements

The one-electron matrix elements considered here are
of the general form

JR (k;n, l, m;v, D)=(PI, ' If'" ')

=—Jdr[P„'(r)]*f,'" '(r), (5)

( Vo)
where the wave function Pl,

' (r) is a solution of the one-
electron Hamiltonian with the jellium potential (3). Its
explicit form will be given in Sec. IIB. The function

f,'" '(r) is defined as

f'"' '(r)=f (r —De, )exp(iv r)

We further mention that we automatically obtain those
matrix elements in which the full Coulomb potential is
replaced with the cutofl' potential (4). In the evaluation
of the matrix elements (5), the contributions from inside
and outside of the metal emerge from separate calcula-
tions. So the contribution to the matrix element with the
full Coulomb potential from outside of the metal just
gives the total matrix element with the perturbing poten-
tial (4). The matrix elements of the metal potential V

are obtained in a trivial way by multiplying the contribu-
tion to the overlap matrix element from inside the metal

by a factor —Vo.

B. Jellium wave functions

For later use, we have to specify the jellium wave func-
tions in detail and discuss some of their properties. The
bound-state jellium wave functions are eigenfunctions of
the Hamiltonian

f (r')exp—(iv r) .

The subscript j distinguishes the two choices

and

(6)

(7)

H= ——'V +V —= ——'V' —VpB( —z) .
2 DT

(10)

The wave function corresponding to electronic mornen-

tum k=(k„,k, k, ) [we refer to the parameter k, as the z

component of the electronic momentum although the
Hamiltonian (10) does not commute with the z com-
ponent of the momentum operator] and energy

The function f, is an (unperturbed) ion-centered hydro-

genic wave function corresponding to effective core
charge Z and energy

1 Z2

2 2

k —V (0k 2 o

( k =
I kI ) is given [3,23] explicitly by

(Vo) ~ ( &0)
Pl, '(r}=exp(ik„x}exp(ikYy}gk ' (z),

where

(12)

The resulting matrix element (5) is the overlap matrix ele-

ment expressing the nonorthogonality of hydrogenic and
metal wave functions [22]. In the function f2, the ion-

centered hydrogenic wave function is multiplied by the
potential energy of an electron in the Coulomb field of
the ion core. The matrix element resulting from inserting
the function f2 into Eq. (5) is commonly [22] assumed to
constitute the basic one-electron transition matrix ele-

ment describing charge exchange processes in

ion —metal-surface scattering.
We have included in the function f~"' '(r) a plane-

wave translational factor exp(iv r), which serves to im-

part to an electron bound to the ion, in addition to its
internal rnomenturn and energy, a momentum v and a ki-
netic energy v /2 when the ion moves with velocity v in
the laboratory system. The functions g'„I'(r')exp(iv r}
fulfill the asymptotic conditions required for ionic basis
functions in a truly dynamical treatment of scattering
problems [57].

It should be noted here that the hydrogenic wave func-
tions introduced in Eq. (7) are not eigenfunctions of the
one-electron Harniltonian with the "cutoff" core poten-
tial given by Eq. (4). The use of functions of the latter
type as unperturbed basis functions may be attractive on
physical grounds, but their explicit calculation is likely to
be prohibitively complicated.

( Vo)
gk

' (z) = [exp( ik, z ) +a exp( ik, z ) ]—8( —z )

+b exp( —«,z)8(z) . (13)

The real quantity K, characterizing the decrease of the
wave function outside of the metal is expressed in terms
of Vo and k, as

«., =(2V —k )' )0

so that the energy ck can be written as

ek =
—,'(k~~ —v, },

where

k =(k +k )'
II

(14)

(15)

(16}

2k,b=
kz+LKz

k, K,—i =1+a,
Vo

is the momentum component parallel to the surface.
The reflection and penetration coefficients a and b in

Eq. (13) are given by

k, —i Kz kz Kz kzKz

k, +iK, 2Vp Vp

and
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respectively.
Now, by expressing the reflection coeScient a as

a =exp(2iy, ), (19)

Another relation which we will have to use below is

[yI,"'(r)]'=y"1", (r) . (23)

( Vo)
we can rewrite the function gk (z) for z & 0 as

( Vo)
gk

' (z) =exp(ik, z ) +a exp( i—k, z )

Kz
P = —arctanb k,

(v, )It follows from the continuity of gk
' (z) at z =0 that

2

(21)

—:2exp(iy, )cos(k, z —y, ) . (20)

( Vo)The complex phase of gk
' (z) in the range z &0 is there-

2

fore given by y, or y, +m., depending on whether
cos(k, z —y, ) is positive or negative. The phase of

( Vo)
gl, (z) in the range z )0 is given by the phase of the

2

penetration coeScient b =
~
b

~ exp(iPb ),

This follows from Eqs. (12), (13), (17), and (18).
Since we deal in this paper with matrix elements only

and not with absolute transition rates, we have chosen an
( Vo)

arbitrary normalization for the functions Pl,
' (r). We as-

sume infinite extension of the jellium wave functions,
which results in Dirac 5 functions when the plane-wave
parts are integrated over full space.

C. Reduction to one-dimensional integrals

We now proceed with the evaluation of the matrix ele-
ment JM, (k;n, l, m;v, D) by reducing it to a sum of one-
dimensional integrals. This is achieved by expressing the
function f'"' '(r) in Eq. (5} in terms of the Fourier trans-
form fi(q) of the function fj(r). Using Eq. (A2) we ob-
tain

f'" D'(r)=(2n. )
3~2fdqexp[i(q+v) r —iDq, ]

+a b (22) xfi(q) . (24)

This shows that the relative phase between the value of
(v, )

the function gk
' (z) at any point in the range z &0 and

2

its value at any point in the range z )0 can acquire only
the values 0 or +m.. We will make use of this statement
below in order to infer phase relations between the con-
tributions to the matrix elements arising from the half-
space z & 0 and from the half-space z & 0, respectively.

Upon inserting this expression into Eq. (5) and inter-
changing the order of the integrations over r and q, we
can integrate out the plane-wave factors in the coordi-
nates x and y and use the resulting Dirac 5 functions
5(q„—k„+v„)and 5(q —k~+ v ) to perform the q„and
q„integrations. As an intermediate step in the evaluation
of the matrix element (5), we then obtain

~J(k;u, i, ~;v, D)=(2m')' f dq, FJ(q, )exp( iDq, )f —dz[g„'(z)]'exp[i(q, +u, )z], (25)

where the function F (q, ) is defined by

FJ(q, }=f (k„',ky', q, },
and

(26)

k„'=k„—u„, k ' =k„—v (27)

and

0I—(q, )=f dz exp[i(q, —p+—)z] (28)

are the x and y components, respectively, of the momen-
tum of the metal electron relative to the moving ion.

( Vo)Further, upon inserting the function gk (z) from Eq.
2

(13) into the z integral of Eq. (25}, we encounter integrals
of the form

The integrals I*(q, ) correspond to the range z & 0, i.e., to
the contribution to the matrix element from inside the
metal. The superscripts "+"and "—"distinguish the
contributions arising from the "incoming" wave

( Vo)
exp(ik, z ) in gk

' (z) and from the refiected wave
2

exp( —ik,z ), respectively. The integral I (q, ) corre-
sponds to the range z &0, i.e., to the contribution to the
matrix element from outside of the metal.

The integrals I* can be carried out after introducing
into the exponential an infinitesimally small quantity ig
where g & 0, in a way that corresponds to a wave function
that is exponentially damped for z~ —00:

0I (q, )=f dz exp—[i(q, p ig—)z]—

I (q, )=f dz exp[i(q, —p )z],
0

(29) q p ig
(32}

where

p+—=+k, —
Vz

and

(30)

The limit g~0 is to be performed after the q, integration
in Eq. (25) has been carried out. The integral I is well

defined since sc, )0 and therefore Irn p (0,

p = —v, —ia, . (31)
I (q, )=

qz p
(33)
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We now introduce integrals E*. and E. by setting

K*=I dq, J*. (q, }

and

K =I dqJ, (q),

(34)

(35)

and

k' =(k' +a }' &0+ I( n

k' =(k'+ k')'"
II ~ v

~„=—=( —2e )'=Z
n

(40)

(41)

(42)

where the functions J.*(q, }and J. (q, ) are defined as

J,*(q, ) =F,(q, )exp( iD—q, )I*(q, )

exp( iDq—, )
iF (q,—}'

q, —p*—ig

and

(36)

is the parameter characterizing the decrease of the radial
coordinate-space wave function R„'l'(r) at large dis-
tanCeS, i.e., R„'l'(r)~eXp( li„—r) fOr r~no. We Can

therefore confine ourselves to studying in detail the ana-
lytic structure of F, (q, }.

In view of Eq. (A5), we can write F, (q, ) in the factor-
ized form

J (q, ) =F,(q, )exp( iDq, )I—(q, )

exp( iDq,—)
iF, (q—, )

qz
(37)

In terms of Kl and Kl, the matrix eleinent (25) is ex-
pressed as

Ail(k;n, l, m;v, D)

=(2m} ~ (K +ri~Kl++ Kj ) . (3

F, ( q, ) = ( i )—'U„'l '( q, ) W& ( q, ) . (43)

and

The functions U„'l '(q, ) and Wl (q, ) are related to the ra-
dial momentum-space wave function R„'l'(q) [cf. Eq.
(AS)] and the momentum-space spherical harmonic
Yi~(9~, $~ ) [cf. Eq. (A12)], respectively, by

U„'P(q,):—R„','(q(q, )) (44)

The final step in the evaluation of Al. (k;n, l, m;v, D)
now consists in the evaluation of the integrals E. and
K. . The factor exp( iDq, )

—entering the integrands

JJ (q, ) and J~ (q, ) is, for D & 0, an exponentially decreas-
ing function in the lower half of the complex q, plane.
Complex contour integration may then be applied, pro-
vided the remainder of the integrand does not increase
exponentially in the lower half-plane and has only a finite
number of poles there.

In the integrands J (q, ), the infinitesimal i ri shifts the
pole of the factor I/(q, p i—ri) aw—ay from the real q,
axis into the upper half-plane, so that the analytic prop-
erties of J*(q, ) in the lower half-plane are solely decided
by those of the function FJ(q, ). The integrand JJ (q, )

has in the lower half-plane a first-order pole at
q, =p = —v, —ix„apart from possible singularities of
FJ(q, ). We now turn to a detailed examination of the an-
alytic structure of F (q, ) for the specific forms (7) and (S)
of the function f~(r ').

~i (q, )= Yl (~,(—q, »4k'}

where

q(q. ) =(q'+kii')

q,
cos8 (q, )=

q qz

and

tanpk =ky jk„' .

More explicitly, we have from Eqs. (AS) and (A12)

nl (qz} nl 2 ~I l+2 n —I —1

(q, +k'+ ) q, +k+

and

(45)

(46)

(47)

(4S)

(49)

(50)

III. ANALYTIC STRUCTURE OF F~ (q, )

The momentum-space representations f (q) of the
functions f (r) corresponding to the overlap matrix ele-
ments (j=1) and the Coulomb matrix elements (j=2)
are explicitly given in Appendix A. According to Eq.
(26), the functions F (q, ) are obtained by fixing in f (q)
the variables q„and q to the values k' and kv, respec-
tively.

Froin Eq. (A3), it follows that F2(q, ) is related in a
simple way to F, (q, ), viz

qz8'i (q, )=Xi Pi, exp(imPk ) . (51)
(q, +k' )'

It is noted here that k' can acquire both positive and
negative values and accordingly k' itself can be purely
real or purely imaginary. In the following derivation,
however, only even powers of k' will be encountered.

Let us first consider the analytic structure of the func-
tions U„'l '(q, ) and Wi (q, ) separately

Using the representation (49) of U„'i l(q, ) and the expli-
cit form (A10) of the Gegenbauer polynomial C„'+l i, it
is readily shown that U„'l '(q, ) can be written as

F2(q, )= —
—,'(q, +k'+ )F, (q, ),

where

(39) ( 2+ k ~2 )I/2

( 2+k~2 )
+In (52)
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where the function P„l(q,) is a polynomial of degree
2(n —I —1) in q„whose explicit form is given in Appen-
dix B. It is now immediately seen that in the lower half-
plane U„'I '(q, ) exhibits a pole of order n + 1 at
q, = —ik'+ [note that for bound ionic states, we havea„)0 and thus, according to Eq. (Bl), P„&( i—k'+ )%0].
Moreover, for odd values of the angular-momentum
quantum number i, the factor (q, +kI~ )'~ gives rise, in

the lower half-plane, to a branch point at

Similarly, from the representation (51) of WI~(q, ) and
the explicit form (A15} of the associated Legendre func-
tions, it follows that WI (q, ) can be written as

6( (q, )
W ( )=Im qz

( 2+ k P2 )ly2
q

ll

(53)

where

V, (q, )

(q, ik'+ )"+—'[q, —( ik'+ )]"—+' (54)

P~(q, )=( i)'P„~(q,)6I (—q, ) (55)

is a polynomial of degree 2(n —1)—I —m in q, . Using
the condition k'+ a.„,it is easily shown from Eq. (B6}
that 6& ( ik'+ )WO an—d hence V, ( ik'+ )%0. There--
fore Eq. (54) reveals the key result of this section: in the
lower half of the q, plane, the function F, (q, } exhibits a
single pole, which is located at q, = —ik'+ and is of order
n +1.

This simple result could not have been immediately an-
ticipated. The appearance of a single pole characterized
by the principal quantum number n only, and not of a
manifold of distinct poles with order and position de-
pending also on the angular-momentum quantum num-
bers l and m, apparently rejects the dynamical symmetry
and the associated l degeneracy inherent in the hydrogen
problem. The surprising feature is the prevalence of the

where the function 6, (q, ) is a polynomial of degree
l —m in q„provided k~'~%0 or k~'~ =0 and m =0 [the ex-
plicit form of 6I (q, ) is given in Appendix B]. In this
case, since 6&~( ik~~)%—0 according to Eq. (B6), the
function W, (q, } exhibits in the lower half-plane a pole
of order i/2 at q, = ik

~'~
if—I is even, and a branch point

at q, =
ik~~

—if 1 is odd. If kI~
=0 and mAO, the overall

factor kI~ in 6I (q, ) makes this function vanish identi-
cally. This feature reflects a selection rule for the matrix
elements AI following from the cylindrical symmetry of

( Vo)
the functions Pz

' (r)exp( —iv r) for k
~~

=0. The analytic
structure of F, (q, ) is now easily inferred from that of
U„I(q,) and WI (q, )

Inserting the expressions (52) and (53) into Eq. (43),
one sees that the term (q, +kI~ )' in the denominator of
W& (q, ) cancels the identical term in the numerator of
U„&(q,), thereby removing the singularities associated
with these terms. Hence we can write F, (q, ) as

V, (q, )
F)(q, )=

( 2+k 2 )n+1
qz +

dynamical symmetry even in a situation in which two of
the coordinates of the momentum-space wave function
are kept fixed. A more detailed investigation of the sym-
metry properties of the hydrogenic momentum-space
wave functions will be necessary to understand this
feature.

Turning now to the function F2(q, ), we can write, by
using Eqs. (39) and (54),

&&(q, )
F,(q, )=

(q, ik—+ )"[q,—( ik'+—)]"

where

(56)

V2(q, )= —
—,'P&(q, ) . (57)

Hence, the only singularity of F2(q, ) in the lower half-
plane is a pole at q, = —ik'+, i.e., at precisely the same
position at which the pole of F, (q, ) shows up. The order
of the pole of F2(q, } is n, i.e., one unit less than that of
the pole of F, (q, ).

In concluding this section, we write Eqs. (54) and (56)
in the condensed form

P, (q, )F (q, )=J ~
( ki )n j+2[ —

( k~ )]n
—i+2

j=1,2, (58)

which exhibits the property of F, (q, ) to have in the lower
half-plane a single pole of order n —j+2 at q, = —ik'+.
Equations (55) and (57) can be combined into

&)(q, )=( —
—,
'

V '( i)'&„I(q,)6—I~(q, ), j=1,2 . (59)

IV. EVALUATION OF MATRIX ELEMENTS

We are now prepared to evaluate the integrals E*and
E given by Eqs. (34) and (35) and finally the matrix ele-
ments (38).

E~*=f dq, JJ (q, )= 2ni Res'". —1+„,—' J*(q,), .
q rk+ J (60)

where the superscript n —j+2 indicates the order of the
pole. Similarly, we have

A. The integrals Kj+ and KJ

The position of the poles of the integrands Ji*(q, ) and

J& (q, ) in the complex q, plane is depicted schematically
in Fig. 2. In the lower half-plane, the function J*(q, ) has
a single pole of order n —j+2 at q, = —ik'+. The func-
tion J (q, ) has two distinct poles, a first-order pole at
q, =p and a pole of order n —j+2 at q, = ik'+, pro-—
vided p A —ik '+. If the two poles coalesce at
q, = —ik+, a single pole of order n —j+3 emerges.

As the functions F (q, } and hence the. functions J.+—
(q, )

and J (q, ) do not contain exponential parts, we can
close the integration path in the integrals K —. and I( in
the lower half-plane. By applying the residue theorem
(note that the integration contour C is defined in such a
way that it encircles the poles in a clockuuse sense), we
obtain
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P +I/
X

ik

E

P +lg
X Req, ,

the laboratory system cannot be achieved for vAO (even if
u, =0) since in this case the ionic wave function with the
translational factor included [cf. Eqs. (6) and (7)] is not an
eigenfunction of the stationary ionic Hamiltonian. How-
ever, if U, =O, the invariance of the metal Hamiltonian
with respect to translations parallel to the surface allows
the resonance condition to be established in the ion's rest
frame.

B. Residuesof JJ+{q,) and J,. {q )

The evaluation of the residues in Eqs. (60), (61), and
(62) is performed by applying the general formula [58)

ResqP'
q w(q, )

FIG. 2. Schematic diagram showing the distribution of poles
of the functions J,+(q, ) and J,- {q,) in the complex q, plane and
the integration contour C in the integrals E,+—and KJ'.

l d&'
, [w(q, )(q, —q())']

p —1!dqp ' (65)

and hence, according to Eqs. (9), (15), and (40),

~k'=~lk —~l
(64)

The latter equation expresses, in the rest frame of the ion
moving with velocity v=(u„u~,O) parallel to the surface,
the condition for energy resonance between metal elec-
trons and ionic electrons. Note that energy resonance in

I

E =f dq, J, (q, )

= —2qri[Res"', Jj (q, )+Res'" J+
k,

' J . (q, )] (61)
z q — rk+ J

for p'A —ik'+, and

(62)
Z +

for p = —ik'+.
According to Eq. (31), the condition p = ik'+ —can

be fulfilled only if U, =0. In this case, it acquires the form

[cf. Eqs. (14) and (31)]

(63)

for a function w (q, ) exhibiting a pole of order p at

Cz =Co.
The residue of Jj (q, ) at the first-order pole at q, =p

which appears in the nonresonant case p W ik'+, i—s ac-
cordingly given by

z

=i exp( iDp —)Fj(p )

exp( iDp ) 9—'j (p )

(k +. ~ ) )n
—j+2(k p

) )n
—j+2

exp[ D(K, i—u, )]P (——u, i', )—
(66)(k'++a., iu, )" '—+ (k'+ —)r, +iu, )"

i.e., it is expressed directly in terms of the ionic
momentum-space wave function at complex values of the
z component of the momentum.

In the nonresonant case p W —ik'+, the evaluation of
the residues of JJ

+—
(q, ) and J (q, ) at the pole of order

n —j+2 at q, = —ik'+ is combined by writing

7 (q, )

)n
—j+2

d n —J+ i exp( iDq, )—
Res'" J+ ' J (q )=

ik+ J ()2 j+ 1 )) dqn J+1 q pZ q = —ik+
(67)

where J, (q, ) stands for either J+—
(q, ) or J. (q, ), and cor-

respondingly p for p
—or p . The factor i' is equal to —i

in the "+"case, and equal to i in the "&"case. By suc-
cessive differentiation, this expression is reduced to the
form

exp( Dk'+)—
Res'" j+. ,

' J (q, )= i'—
q = —ik+ J qz (2k& )n

—j+2(k& ~ )n
—j+2

o'
p

—1

RIP)(k'+,p;D)= g 1 i—
0 k'+

SJ'"(o",k+;D ),

where

(Dk+ )
()(P)(cr;k'+;D)= $ PP'(q-;k+ ),

(o —r)!~=0

(69)

(70)

XW,(."-&+"(k'„p;D). (68)

The "residue function" A'p)(k'+, p; D ) corresponding to a

pole of order p is defined as

t
gp)( .k& ) ~ 2

—(r u) p 1+&— & cg( )(k~u)7 p + ~ l 1 + 7

M =0

(71)
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(72)
(ik+ )"

'M,'"'(k' )=, „&,(q, )u! dq," J '
q, = —.k'

The specific arrangeinent of the various terms in Eq. (68)
has been chosen in such a way that in the case p =p the

correspondence with siinilar terms in Eq. (66) is em-
phasized.

In the strictly resonant case p = —ik+ =——i z„weob-
tain for the residue of J (q, ) at the pole of order
n —j+3 at q, = —ik+

d» j+2 —exp( iDq—, )P.(q, )
Res'" j+. I J (q ) = 2 J 2

q = ik—+ j (n —j+2)t dqn
—j+2

( k& )n
—j+2

2 z +

exp( Dk'+—)=i . 8" + '(n —j+2;k'+,'D) .
(2k&2 )n

—j+2 j
+

I
q = —ik

Z +

(73)

Looking at the dependence of the residues Res"',J (q, ) and Res'" j+.„2,' J (q, ), respectively, on the parameter
Z q — Ik+ J

p (at fixed k'+), we see from Eqs. (66) and (68} that in the vicinity of p = ik—'+ the residues each vary as
[p —( ik'+—)] '" j+ '. Therefore, if p is arbitrarily close to ik'+—, the integral K [cf. Eq. (61)] cannot be accu-
rately evaluated by summing the contributions calculated individually from the two residues. We can overcome this
difficulty by showing that the sum of the residues is an analytic function ofp in the vicinity ofp = —ik+, which can
be expanded in a Taylor series about this point.

Writing

G (p )=Res'",J (q )+Res'" j+,' J (q )J
2 q =—ik

Z +

H, (p )

[p —( ik' —)]" j+2 (74)

we have from Eqs. (66) and (68)

exp( iDp )P—j(p )~&( &
)

~ n —j+3j (k~ + & )n
—j+2

exp( Dk+ )R'" j—+ '(k+,p;D)
)n

—j+2 (75)

Using Eqs. (69) and (70), it is easily shown that the derivative of order a of the function H (p ) at p = ik'+ van--

ishes if a & n —j+2, and is given by

d exp( Dk' )—
H'(p') = " '+'( —) l &'" '+"( k' 'D)&a J j '= —ik' k' (2k' )" (76)

G (p )=h'" j+ '+h'" j+ '[ —u, +i(k' —~, )]

+hj" + '[ —u, +i(k'+ —~, )] +"
where

(77)

II. (p )~ .1

J &/ d &a J p = —'k'+ (78)

Note that the coefficient hji" j+ ' is identical (as it
should be) to the expression (73) for the residue
Res" +,' J (q ).

q = —ik' J' z
Z +

The evaluation of the residues of Jj*(q, ) and Jj (q, )

can now be completed by evaluating the function
Vl'"'(k+ ) defined by Eq. (72). Using Eqs. (59), (Bl), and
(B6), the derivatives of the polynomial 9'j(q, ) can be ob-

if a&n —j+2. Therefore, according to Eq. (74), the
function G. (p } is analytic in the vicinity of
p = —ik'+, and its Taylor expansion in terms of the
variable p —( ik'+ )=———u, +i(k'+ —a, ) is obtained as

dQ Q
' '

dU
Vj(q, )=(—

—,')j '( i)' g —" P„i(q,)
dq," U=o . dqz

dQ U

x ai (q, )
dqz

(79)

and performing term-by-term differentiation of the
separate polynomials P„i(q,) and ai (q, ). Introducing
the functions

tained by performing term-by-term differentiation of the
polynomial resulting from multiplication of the polyno-
mials P„i(q,) and 6, (q, ). Both from the point of view
of a transparent formulation and of the numerical evalua-
tion of the matrix elements, it is, however, advantageous
to exploit the separable form (59) of the polynomial
7 (q, ) by writing
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(ik'+ )"
V'„('(k'+ )=, P„((q,)

dq,
'

q =—ik+
(80}

(ik'~ } .6, (q. }
W. diaz

and we can write

e(")(k' )=j +
( —I')1 ( i—) g V„'"('(k+)~()" ")(k'+ ) if u ~ u

0 if u)u (82)

u,„=2(n—1}—l —m . (83)

From Eq. (Cl1), it follows that V„(((k'+) is a real func-
tion. According to Eq. (C3), the function %'(( '(k'+ ) con-
tains an overall phase factor ( i )™—exp(imPk ). Com-
bining this factor with the factor ( i ) in —the expression
Eq. (82), it is seen that the function QJ("'(k'+ ) contains an
overall phase factor (

—)'+ i exp(imPk ). In the follow-

ing, we assume that this factor is removed from Vlj(.")(k'+ )

[and also from the function V~(
—u, ia, ) —appearing in

Eq. (66)] and is incorporated into a prefactor of the ma-
trix element Af The . functions Vlj("'(k '+ ) and
4'~)((T; k'+, D ) are then purely real.

I

The explicit form of V'„&'(k'+ ) and 'NI '(k'+ ) is given in

Appendix C. Since V (q, ) is a polynomial of degree
2(n —1)—l —m, we have

C. Complete expressions for the matrix elements

In this section we summarize the results of Secs. IV @
and IV 8 to obtain final, closed-form expressions for the
matrix elements (38), which exhibit the general structure
of these quantities and their dependence on the relevant
parameters. We assume at this point that the ion is locat-
ed at an arbitrary position in the laboratory frame,
specified by a position vector D (with z component
D, =D). Th—is introduces, in comparison with the form

(38), an additional overall phase factor exp( —
iD)~ k)~) in

the matrix elements, where D~~ and k~~ are the respective
components of D and k parallel to the surface. Splitting
the matrix elements into a contribution A, from inside
the metal (called henceforth the "metal contribution")
and a contribution JK. from outside of the metal (the
"vacuum contribution") and separating off' the overall
phase factor, we write for m ~ 0

JR (k;n, l, m;v, D)=( —1)™exp[i(t}(k, v;D)][JR (k;n, l, m;v, D)+JR (k;n, l, m;v, D)],
where

At~ (k;n, l, m;v, D)=(2m. )'~ (KJ++a'K~ ),
A~ (k;n, l, m;v, D)=(2n. )'~ b*KJ

(84)

(85)

(86)

)t) (k, v;D) =m )I}„,+——
D(~ k„. (87)

For the metal contribution at arbitrary parameter values, we obtain from Eqs. (60) and (68)

3/2exp( Dk'+ ) %—(" 1+2)(k'+ k, v. ;D) -~J(" J+2)(k+ k, v, D)— —
JK (k;nlm, ;v, ,D)=(2m) ~, , +a*

(2k' )" + [k' —i(k —u )]" + [k' +i(k +u )]"
(88)

The vacuum contribution in the nonresonant case p = —v, —i~,A ik'+ follow—s from Eqs. (61), (66), and (68) as

b*
JR (k; n, 1,m; v, D ) = (2m )

~

exp[ D()r, iu, ) ]V. ( ——v—, i x,)—
(k'+ +a, iu, )"— exp( Dk'+ )%(." 1+ '(k—'+, —v, i)r, ;D)—

(2k & )fl J +2 (89)

To deal with the vacuum contribution in the near-resonant case (including the strictly resonant case p = —ik+), we

can combine Eqs. (61), (74), and (77) to obtain an expansion of Jitfin terms o, f the dimensionless variable

(k+ —~, +iu, )/k'~:
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exp( D—k'+ ) . k'+ —a, +iu,
(k;n, l, m;v, D)=(2m) b' eP'." + '(n —j+2;k'+, D)+4'" '+ '(n —j+3;k'+,.D}

(2k 2)n —j+2 l ' +' 1
+ k'+

+SJ(" 1+ '(n —j+4;k'+, D )
k+ K +lV

+ e ~ ~

k+
(90)

In the strictly resonant case, we recover from Eq. (90}
that expression for the matrix element At, which follows
directly from Eqs. (62), (73), and (86). If u, =0, we can in-
troduce, in generalization of Eq. (64), the "energy defect"

5=el, —s—:—'(k' —~ )n —
2 + z

to rewrite the expansion variable in Eq. (90) as

(91)

k+ K =1— 1—
k+ k+

r

k+ 2k+
(92)

The matrix element A(, thus varies, for fixed k'+ and
small 5, linearly with h.

We do not enter here a discussion of the convergence
properties of the expansion (90). From a practical point
of view, the expansion is needed to evaluate the matrix
element AI in the immediate vicinity of the energy reso-
nance, where the numerical evaluation of the exact ex-
pression (89) is bound to fail. It can be assumed that an
evaluation of the first-order term of the expansion is
sufficient for an accurate interpolation of JNin t,hat
range where the numerical results obtained from the ex-
act expression look irregular.

From the expressions (88), (89), and (90), some qualita-
tive insight into the structure of AI and JK can be
gained. The metal contribution At, given by Eq. (88) ex-
hibits a particularly simple dependence on the ion-surface
distance D, viz. , a dependence solely via the dimension-
less parameter Dk+, with a polynomial in this parameter
arising from the function SI~'( ok'+', D), and a cominon
factor exp( Dk'+ ) governing t—he behavior of JK at
large distances D. At fixed (large) D, the presence of the
factor k'+ in the exponential entails a falloff of ~A(J ~

both
as a function of the binding energy ~s„~of the ionic state
and as a function of the parallel momentum k~~ of the
conduction-band electron relative to the moving ion. The
binding-energy dependence reflects the decreasing spatial
overlap of the ionic wave function with the conduction-
band wave function inside the metal. Similarly, the
momentum dependence reflects the increasing mismatch
between conduction-band momentum and the momen-
tum distribution in the ionic state.

The dependence of AL on the momentum component
k, (at fixed k'+) is, according to Eqs. (69}and (88), a poly-
nomial dependence in the variables 1/(k, —v, +ik'+ ) and
1/(k, +u, —ik'+ ), respectively, for th'e "incoming" and
the "reflected" part in Eq. (88). The nonappearance of an
exponential dependence on k, is plausible since the in-
coming and reflected plane-wave parts of the jellium

I

wave function are "cut off" at the surface. Accordingly
they are not eigenfunctions of the momentum operator
with respect to the interval —~ &z &+ 00, but corre-
spond to the broad momentum distribution given by Eq.
(32), whose overlap with the ionic momentum distribu-
tion is expected to vary slowly with the parameters.

The ion velocity in the laboratory frame, v, enters the
matrix element AL in an obvious way by shifting the
momentum components of the conduction-band electron
from their values in the laboratory frame (with the z com-
ponent taken as kk„corresponding to the incoming and
reflected part of the jellium wave functions; the reflection
coefficient a is not affected by the ion velocity) to values
referred to the ion-centered frame. In the specific case
u, =0, it is easily shown from Eq. (69) that

'+ '(k'+, k„D)=—R'" + ' (k+,k„D), (93)

and hence K =K+, so that AI acquires the simplified
form

AI (Ir.;n, l., m;v, D)=(2m)' (EJ++a'E~+ ) .

Using Eq. (19), this can be rewritten as

(k;n, l, m;v, D)
=2(2m ) '~ exp( i y, )R—e[E.+exp(iy, ) ] .

(94)

(95)

The ph~s~ of JK, at v, =0 is thus g~~~~ b
—y, +m., depending on whether Re[E+exp(iy, )] is posi-
tive or negative.

The vacuum contribution AI exhibits a more compli-
cated D dependence than does the metal contribution

. At large distances, the behavior of AI is dominat-
ed by the first or second term in the large parentheses of
Eq. (89), depending on whether a, (k'+ or a, )k'+. The
dependence on a, (at fixed k'+), i.e., the dependence on
k„is particularly involved in the near-resonant case, in
which the singular behavior of the negative power of
k'+ —a, +iv, in Eq. (89) is compensated by the vanishing
of the large parentheses.

The ion velocity v affects A, . by shifting the momen-
tum components in the laboratory frame, where ia, is
now to be considered as the z component, to their values
in the ion-centered frame (the penetration coefficient b is
not affected by the ion velocity). In the case v, =0 (which
includes the strictly resonant case), it follows from Eq.
(89) that AI is given a.s a product of a real function and
the penetration factor b*. Now, by using Eqs. (22) and
(95}we can infer that the relative phase between JN;and,

at v, =0 is either 0 or +~. This result has the impor-
tant consequence that the metal contribution and the vac-
uum contribution interfere either completely constructive
or completely destructive when the total matrix element is
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(96)

Further, from inspecting Eqs. (87)—(89), we have

JR ( —k; n, I,m; v, D )=—JN, (k; nl, m, ; v, D ),
JM, (

—k;n, l, m; v, D )—=Af(,k;nl, m, ;v, D ),
(97)

(98)

and

( —k, —v;D)= —P (k, v;D) .

Hence, using Eq. (84),

JR (k;n, l, —m;v, D)

(99)

=( —1) expIi[$ (k, v;D) —P (k, v;D)]]

XJR~(k;n, l, m;v, D), (100)

i.e., the matrix elements for m = —
~m

~
&0 differ from

those for m =
~
rn

~
merely by a phase factor.

Except for the overall phase factor exp(imgj, ), the ma-
trix elements JM, depend on the momentum components
k„'and k» only via k~'~. Accordingly, ~JRl ~

is invariant un-

der rotations about the z axis in k ' space and depends on

k~~ and k,'=+k, —
U, only.

The only selection rule for the matrix elements JR~ ap-
pears to be

A(J=O if kI~
=, 0 and mao, (101)

which originates from the factor kI~ in Eq. (B7) and
which expresses the cylindrical symmetry of the func-

( Vo)
tions Pz

' (r)exp( iv r) fo—r k
I~

=0. We are not aware of
any general scaling law connecting the values of the ma-
trix elements at different parameter values.

gl~ ggga Qqg 4 n ~nova +ha+ +ha vran+t ia ala~an+c eat v a

formed.
In the strictly resonant case, the total matrix element

A1,. involves an overall factor exp( D—k'+ ) =exp( —D~, ).
This implies that the falloff of the matrix element at large
D is solely determined by that parameter which charac-
terizes the exponential falloff of the jellium wave function
in the vacuum region (or, equivalently, by the momentum
component k, ).

The matrix elements corresponding to m &0 can be
readily expressed in terms of those for m )0. Using Eqs.
(5)—(8), (23), and (A13), we obtain

Af (k;n, l, —m;v, D)=( —1) Jk1, '( k;n, l,—m; —v, D) .

This relation can be exploited to crosscheck the numeri-
cal results.

%hile the condition D )0 had to be imposed in order
to allow the q, integration in the integrals E+= and K to
be performed by contour integration in the lower half-
plane, the resulting expressions for the matrix elements

are readily seen to be well defined at D =0 and equal
to hmD (pent, .

D. Numerical evaluation

While the expressions (88) and (89) constitute truly
closed-form expressions for the matrix elements A, and
At. , some care is required in their actual evaluation
(which, except for very simple limiting cases, must be
performed by numerical computation). For large values
of the ionic principal quantum number n, the summation
of the residue function A'" ~+ '(k'+,p;D) may involve
an enormously large number of terms. Precautions must
then be taken to avoid unacceptably large round-off er-
rors and computing time.

From Eqs. (69)—(71) and (82), it follows that the evalu-
ation of the function %'" 1+ '(k'+, p;D) involves, for
given product V'„,'(k'+ )'NI" "'(k'+ ), a fourfold "outer"
summation (over indices cr, r, u, u) The. number of terms
in this sum is estimated to be of order n /8. The number
of terms in the threefold sum occurring in the function
V'„"&'(k+) of Eq. (Cl) depends, at given n, strongly on the
value of I. It is found by explicit calculation that the
maximum number of terms is roughly given by f(n )n,
where f(n ) is a monotonic function that increases slowly
with n and attains a value of about 8 at n =100. The
number of terms in the twofold sum in 'NI '(k'+ ) is very
small in comparison with the rnaxirnurn number of terms
in V'„I'(k'+ ). It is noted here that an evaluation of the
function Q~("'(k'+ ) not from Eq. (82), but from the "mul-
tiplied" form of the polynomial P~(q, ) [cf. the discussion
preceding Eq. (80)] would result in a fivefold sum and ac-
cordingly entail a larger total computing time for the ma-
trix element.

To evaluate Jl' "'+ '(k'+, p;D) for. a given set of pa-
rameter values, it is advisable to compute and store
V'„&'(k'+ ) and 'NI '(k'+ ) for the required range of indices
U and m and subsequently perform the sums over U, u, ~,
and a. For specific parameter values, it may of course
be advantageous to rearrange the expression for

'+ '(k'+, p;D ) and perform the sums in a different
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and to avoid overQows in the numerical summation of
1+ '(k'+, p;D ) by avoiding the appearance of exces-

sively large numbers in the computer. One source of
large numbers could be the factorials which are present
in the normalization factors (A9) and (A14) as well as in
the Gegenbauer polynomials (A10), and also those which
arise from the successive differentiations encountered in
the evaluation of the residues of the functions J.(q, ).
Therefore, the coefficients in the functions (70), (71), (82),
(C1), and (C3) defining the final expression for

1+ '(k'+, p;D ) have been written in a way in which
factorials have been absorbed, whenever possible, into bi-
nomial coeScients. It is seen that the only remaining fac-
torial shows up in the function 4'~~'(cr;k'+, 'D ) of Eq. (70).
The binomial coeScients are of reasonable magnitude
even for very large quantum numbers n.

Another possible source of large numbers are the
powers of Dk'+ occurring in the function Sf~'(o",k'+ ', D ),
which can be exceedingly large if both D and n are large.
This problem can be conveniently dealt with by combin-
ing the powers (Dk'+ }"with the function exp( Dk'+ ) of-
Eq. (68) and the factorial of Eq. (70) into a single function
(Dk'+ )"exp( —Dk+ )/p!. This function can be shown to
be always smaller than unity and can be accurately evalu-
ated by applying a recurrence relation for its logarithm.

Finally, by expressing the components of k and v as
well as x, and x„in terms of multiples of k+, we can
avoid the appearance of large values of powers involving
these quantities. When scaled with k+, the quantities
k', k~~, and ~„are smaller than unity. Expressed in
terms of the scaled quantities, the matrix elements appear
as a dimensionless part multiplied by a factor k+

V. EXAMPLES AND DISCUSSION

The large number of parameters in the matrix elements
renders dificult a systematic survey of their properties.
When considering here explicit examples, we have to
con6ne ourselves to a few typical cases which are selected
partly according to their value for demonstrating the po-
tentialities of our method and partly according to their
relevance for applications.

Throughout this section we will consider the case v=0
only. While a nonzero velocity component of the ion
parallel to the surface results in a trivial kinematic trans-
formation in the matrix elements, the conditions of
present-day experiments are indeed in most cases near-
adiabatic with respect to the motion of the ion normal to
the surface. The case u, =0 is thus an important limiting
case. In the adiabatic hmit v=0, the total electronic en-
ergy is conserved in transitions between conduction-band
states and ionic states. Then only matrix elements corre-
sponding to the strictly resonant case are of physical im-
portance, and we restrict our examples essentially to this
case. In order to illustrate the behavior of the matrix ele-
ments in the nonresonant case, we consider in a few ex-
amples their dependence on the energy defect 6 intro-
duced in Eq. (91).

En the graphical representations of the matrix elements
as a function of the ion-surface distance D, we will indi-
cate the value Do at which the top of the potential barrier

between metal and ion coincides with ionic level under
consideration. From Eqs. (3), (4), and (9), it follows that

Z 2nDo= z (103)

The distance Do (the "classical threshold" ) separates the
"classically allowed" range in which resonant electron
transfer is classically possible, from the "classically for-
bidden" range where this transfer can be effected by
quantal tunneling only. In the classically forbidden
range, a rapid (exponential) decrease of overlap and
Coulomb matrix elements can be anticipated.

For the sake of simplicity, the depth of the
conduction-band potential is taken in the following exam-
ples (except for one ease) as Vo =0.5 a.u. =" 13.605 eV.
This value is slightly larger than the average of the exper-
imental values for the metals usually used in studies of
ion-metal-surface scattering. We consider two choices
for the ionic states, viz. , the n =8 manifold at Z=5 and
the n = 14 manifold at Z =9. The binding energies of the
corresponding ionic levels are 5.31 and 5.62 eV, respec-
tively, which is roughly equal to the electronic binding
energy at the Fermi level of the conduction band.
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FIG. 3. Real and imaginary parts of the metal and vacuum
contributions to the overlap matrix element for Z=5, n =8,
I 0 +p &.5 a.u. , 6=0, k~l =0, plotted as a function of the
ion-surface distance D.

A. The case 6=0, kll =0

We begin our discussion of the properties of the matrix
elements Afby ,considering the resonant case (6=0}at

k~~
=0. The selection rule (101) restricts the nonzero ma-

trix elements in this case to those with m =0. Then, ac-
cording to Eq. (84), the overall phase factor in JK is
equal to ( —1)'.

In Figs. 3-7 results are displayed for Z=5, n =8,
l =0, and V0=0.5 a.u. The momentum component k, is
Axed, by energy conservation, to the value 0.781 a.u.

In Fig. 3 the real and imaginary parts of the metal con-
tribution %i and of the vacuum contribution JN, i to the
overlap matrix element At, are shown as a function of the
ion-surface distance D. The common features of the
curves are oscillatory behavior in the classically allowed
range D & Do and exponential falloff in the classically for-
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7 7

ion-surface distance D.

bidden range D & Do. This behavior is representative for
all our results. The oscillations in the metal and vacuum
contribution bear certain similarities to each other, with
a tendency of the metal contribution to show more pro-
nounced oscillations. The frequency of the oscillations
appears to be somewhat larger in the vacuum contribu-
ion. While the occurrence of the oscillations is clearly

related to the nodal structure of the ionic wave functions
and, in the case of the metal contribution, also to the os-
cillatory behavior of the z-dependent part of the jellium
wave function, it appears that no simple rule for the num-

er of maxima and minima can be given. In general, this
number turns out to be considerably smaller than what
would be anticipated from the number of radial nodes of
the ionic wave function, and/or from the wavelengths of
t e jellium wave functions. Further analysis will be
necessary to clarify this situation. It is noted that the
conQuence at D =0 of the curves pertaining to the real
parts of metal and vacuum contribution and those per-
taining to the imaginary parts is purely accidental.

Closer inspection of the results shown in Fig. 3 reveals
that the complex phase of the metal contribution is in-
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FIG. 7. Ratios of various contributions to the Coulomb and
overlap matrix elements shown in Figs. 5 and 3, respectively.

Eq. (95). The phase of the vacuum contribution is identi-
ca to that of the metal contribution for all D 1

that the
a va ues, so

a e condition imposed on the relative phase between
vacuum and metal contribution (cf. the discussion in Sec.

and vacuum contribution and of the total overlap matrix
element are displayed, exhibiting indeed constructive in-
terference between metal and vacuum contribution
throughout. The absolute magnitudes of metal and vacu-
um contribution are seen to be of the same order in the
classically allowed range, whereas the metal contribution
decreases much faster than the vacuum contribution in
t e range close to and beyond the classical threshold.
This tendency has been observed throughout our calcula-
tions.

The Coulomb matrix elements displayed in Figs. 5 and
6 bear a close resemblance to the overlap matrix clem t

igs. and 4 with regard to their qualitative features.
noteworthy discrepancy occurs in the ran e

2.4&D &4.5 aa.u. , in which the relative phase between
e range

vacuum and metal contribution is equal to n., thereby giv-
ing rise to destructive interference between these contri-
butions.

The similarities and di8'erences between Coulomb and
overlap matrix elements become more apparent from Fig.

, in which ratios of various combinations of the contri-
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butions to these matrix elements are shown as a function
of ion-surface distance. The ratio of the meta1 contribu-
tions reflects the rapid fluctuations of the individual con-
tributions in the classically allowed region. The ratio of
the vacuum contributions displays a weak dependence on
D over the full D range, with modulations in the classica1-
ly allowed range which are apparently smaller than in the
individual contributions. The average value of the ratios
of the vacuum contributions as well as that of the ratios
of the total matrix elements is about —0.2 a.u., which is
close to the energy c„=—0. 195 a.u. of the ionic state
with Z=5, n =8. This near-quality is plausible in view
of Eq. (A3), from which the average ratio of the
momentum-space functions fz(q) and j&(q) and conse-
quently that of the matrix elements JM, 2 and JM,

&
is es-

timated to be of order c„.The near-equality of the ratio
of the metal contributions and the ratio of the vacuum
contributions in the classically forbidden range appears
to be an accidental feature. The ratio of the total
Coulomb matrix element to the metal contribution to the
overlap matrix element is seen to have the constant value—0.5 a.u. , in conformity with Eq. (102).

We now turn to the dependence of the matrix elements
on the ionic orbital angular-momentum quantum number
l. Because of the similarities between overlap and
Coulomb matrix elements and their simple phase proper-
ties, we confine ourselves in the following to the discus-
sion of the square moduli of Coulomb matrix elements.

In Fig. 8 the square modulus of the Coulomb matrix
element for Z =5, n =8, m =0, Vo =0.5 a.u. is shown as
a function of D for l =0,2, 5, 7. The results exhibit an in-
creasingly stronger localization of the matrix elements in
the range of small distances when the I value increases.
In a classical picture, this feature can be understood in
terms of the eccentricity of the ionic Kepler orbits. Low
I values imply large eccentricity and hence large penetra-
tion of the orbit into the metal even at large distances.
The eccentricity of high-l orbits is small, so that substan-
tial penetration into the metal occurs in this case at small
D values only. From a quantal point of view, the trend
observed in Fig. 8 is understood in terms of the root-

mean-square radius of the ionic wave function, which de-
creases with increasing l, thus giving rise to a progres-
sively smaller overlap of the wave function with the met-
al.

For very large principal quantum numbers n, the local-
ization of the matrix elements at small ion-surface dis-
tances does not become monotonically stronger with in-

creasing l. In Fig. 9 we show the D dependence of the
square modulus of the Coulomb matrix element for
Z =9, n =14, m =0, Vo =0.5 a.u. (k, =0.766 a.u.), and
I =0, 1,2, 3. The l =1 and 2 matrix elements are seen to
be stronger localized in the range close to the classical
threshold Do than is the I =0 matrix element. Only for
l & 2, a tendency towards a monotonic shift of the locali-
zation to smaller distances develops. Such a behavior of
the matrix elements apparently reflects subtle structural
properties of the ionic wave function. To achieve a better
understanding of this situation, a more detailed analysis
will be necessary.

The influence of the depth Vo of the jellium potential is
illustrated by Fig. 10, where results are shown for Z =9,
n =14, 1=0, and different Vo values. When Vo varies
between 0.3 and 0.6 a.u. , the momentum component k,
varies between 0.432 and 0.887 a.u. With increasing Vo,
an overall reduction of the magnitude of the matrix ele-
ments is observed. Further, the wavelength of the oscilla-
tions becomes progressively smaller, particularly at small
distances, where a reduction by roughly a factor of 2 is
observed when Vo changes from its smallest to its largest
value. This factor is close to the relative change of 1/k„
i.e., of the wavelength of the z-dependent part of the jelli-
um wave function inside the metal. This suggests a
correlation between the oscillations in the jellium wave
function and those in the matrix elements at small ion-
surface distances. In a complete analysis of this point,
the metal and vacuum contributions to the matrix ele-
ments will have to be considered separately.

B. The case 6, =0, kiiAO

In this section we study the dependence of the matrix
elements on the conduction-band momentum for the res-
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onant case 5=0. As the magnitude of the momentum
vector k is fixed by energy conservation and ~AJ ~

is in-
variant under rotations about the z axis in k space, we
can choose to discuss the matrix elements as a function of
k~~, the component k, being related to kii via

k, = [2( V, +e„)—k~~ ] (104)

For k~~%0, the magnetic quantum number m is an addi-
tional parameter whose in6uence on the matrix elements
can be investigated. Since, according to Eq. (100), ~JK) is
independent of the sign of m, we can confine ourselves to
the case m ~0.

In Fig. 11 the D and k~i dependence of the square
modulus of the Coulomb matrix element for Z =5, n =8,
I =0 Vp=0. 5 a.u. is shown in a three-dimensional plot
covering the full range of allowed k~~ values. Oscillatory
behavior is observed in both coordinate directions. The
onset of the exponential falloff as a function of D, which
is located roughly at the classical threshold Dp when

a-~ gO

gd

~f4

47 ~
6
Pg

0 5 10 15 20 25 30 35 40 45 50

ion-surface distance (a.u.)

FIG. 10. Square modulus of the Coulomb matrix element for
Z=9, n =14, 1=0, 6=0, k~i=0, plotted as a function of the
ion-surface-distance D for various values of the depth Vo of the
conduction-band potential.

k~~ =0, is seen to shift to progressively smaller distances
when k~~ increases. This feature rejects the overall factor
exp[ —2D(k~~ +x„)' ] in ~Jkf~ ~

(cf. the discussion in Sec.
IV C).

The D and k~~ dependence for the parameters of Fig.
11, but I =7, m =0 is displayed in Fig. 12. The matrix
element is now strongly localized in the vicinity of D =0,
k~~

=0. While the compression towards smal1 D is plausi-
ble in view of the arguments given in the discussion of
Fig. 8, the localization in the vicinity of kI~

=0 is not ob-
vious. The spatial distribution of the ionic wave func-
tions at large l values is characterized by a strong elonga-
tion along the z axis (i.e., along the surface normal) for
small values of ~m

~

("cigarlike" shape), and a compres-
sion along this axis for large values of ~m ~

("pancakelike
shape"). For sufftciently large distances D, these features
imply a decreasing penetration of the ionic wave function
into the metal when ~m ~

increases. The corresponding
momentum-space wave functions are expected to be fair-
ly delocalized parallel to the surface when ~m ~

is small,
and localized in the range of small k~~ when ~m ~

is large
The fact that the matrix elements of Fig. 12 oscillate, in
the range beyond D=5 a.u. , about a roughly constant
mean value when considered as a function of k

l~

can now
be understood as resulting from the properties of the
m =0 momentum-space wave function. The situation in
the small-D range appears to be more intricate.

The matrix elements for the case of Fig. 12, but m =7,
are shown in Fig. 13. Now a single broad maximum in
the small-D range appears, which is centered about

k~~
——0.5 a.u. and whose peak value is much smaller than

that of the main peak in Fig. 12 (note the difference in
scale for the matrix elements in Figs. 12 and 13). The
simple geometrical structure of the landscape shown in
Fig. 13 apparently reflects the absence of (radial and po-
lar) nodes in the ionic wave function. The maximum
shows up at larger k~~ values than would be expected from
the momentum-space arguments given above (which,
however, are barely applicable at such small distances).

In Figs. 14 and 15 we show the square modulus of the
Coulomb matrix elements for the case Z=9, n =14,
Vp=0. 5 a.u. The purpose of studying this case is not

a&r
gO

d? ~6

oggp
47

~O

FIG. 11. Square modulus of the Coulomb matrix element for
Z =5, n =8, 1=0, V0=0.5 a.u. , 5=0, plotted as a function of
the ion-surface distance D and the momentum component k~i

of'

the conduction-band electron. FIG. 12. Same as Fig. 11,for 1=7, m =0.



45 ONE-ELECTRON MATRIX ELEMENTS IN THE THEORY OF ~ . . 3019

gd ~.
~(bi

d?
6
~g a-
O
~O

&=8, l=?, m=7
~o = o.5 a.u.
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FIG. 13. Same as Fig. 11, for 1 =7, m =7. FIG. 15. Same as Fig. 14, for l =7, m =7.

only to reveal specific details of the matrix elements, but
also to demonstrate that our method provides accurate
results even for high-lying Rydberg states which play an
important role in present-day experiments on ion-metal-
surface scattering using highly charged ions [19,59]. As
the energy of the Z =9, n = 14 level is close to that of the
Z=5, n =8 level, the k~~ range covered in Fig. 14 is al-
most the same as that covered in Fig. 11.

The I =0 results shown in Fig. 14 bear qualitative simi-
larities to those shown in Fig. 11, but exhibit a larger
number of maxima. This feature can be ascribed to the
larger number of radial nodes in the n =14, l =0 wave
function. Incidentally, in going from Fig. 11 to Fig. 14,
the number of maxima is seen to increase by about a fac-
tor of 2. This change is close to the relative change in the
number of radial nodes in the corresponding wave func-
tions. Figure 15 shows the matrix elements for the case
l =7, m =7, i.e., for an I-value half in between the
minimum and maximum possible values and for the max-
imum associated m value. The results exhibit the tenden-

cP.~ gO
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~all

4? 6

O 4'
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~O

FIG. 14. Square modulus of the Coulomb matrix element for
Z=9, n =14, 1=0, V0=0.5 a.u. , 6=0, plotted as a function of
the ion-surface distance D and the momentum component k of
the conduction-band electron.

cy indicated by Figs. 12 and 13, viz. , the increasing locali-
zation of the matrix elements in the small-D range when I
increases, and a shift towards larger k~~ values when m in-
creases. For I =m =13 (not shown graphically), a single
spikelike structure located close to the maximum k~~

value and to D =0 emerges.

C. The case 6+0

We now consider briefly the case of a nonzero energy
defect between the conduction-band state and ionic state.
The momentum components k, and k~~ are then related,
in generalization of Eq. (104), by

k, =[2(VO+6+s ) —k ]'~ (105)

For fixed Vo and c„,the maximum values for k, and k~~

are thus lowered, in comparison with the 5=0 case,
when 5 is negative, and increased when 6 is positive.
The physically allowed values for 5 are restricted to the
range

(106)

(we have included here the case 6=
~ e„i,i.e., sk =0, since

the matrix elements JN&are we, ll defined in this case and
equal to lim, ~ ).

In Fig. 16 the D and k~~ dependence of the Coulomb
matrix elements for Z=5, n =8, 1=0, V0=0.5 a.u. ,
6= —0.2 a.u. are shown over the full range of allowed k~~

values. In comparison with the 6=0 ease of Fig. 11, a
smaller number of maxima emerges. This feature can be
attributed to smaller k, values and the associated larger
wavelengths of the jellium wave functions inside the met-
al. Just the opposite tendency becomes apparent from
Fig. 17, in which the case 6=0.15 a.u. is displayed.

The dependence of the Coulomb matrix elements on
the energy defect 6 is shown in Figs. 18 and 19 for
D =10 a.u. and D =20 a.u. , respectively, for Z =5, n =8,
I =0, V=0.5 a.u. , k~~

=0. As k~~ is kept fixed, the varia-
tion of b, within the limits given by Eq. (106) implies, ow-
ing to Eq. (105), a variation of k, within the range
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FIG. 16. Square modulus of the Coulomb matrix element for
Z=5, n =8, 1=0, Vo=0. 5 a.u. , 5= —0.2 a.u. , plotted as a
function of the ion-surface distance D and the momentum com-
ponent k~~ of the conduction-band electron.

0& k, & (2VO)'~ . In the immediate vicinity of 5=0, the
vacuum contributions shown in Figs. 18 and 19 have
been obtained by interpolation between their values at
6=0 and at suitable nonzero 6 values, at which the ex-
pression (89) could be evaluated with sufficient accuracy.

The vacuum contribution in both Figs. 18 and 19 is
seen to rise monotonically from zero to its maximum
value when 5 varies between its minimum and maximum
value. This feature is obviously related to the exponential
falloff of the jellium wave function outside of the metal.
From Eqs. (14) and (105), it follows that the parameter a,
characterizing this falloff can be expressed in terms of 5
as

(107)

When 5 increases, K, decreases monotonically, thereby
giving rise to a monotonically increasing overlap of jelli-
um wave function and ionic wave function. The vanish-

ing of the vacuum contribution at the lower limit

FIG. 18. Square modulus of metal contribution, vacuum con-
tribution, and total Coulomb matrix element for Z=5, n =8,
1=0, Vo=0. 5 a.u. , k~~ =0, D=10 a.u. , plotted as a function of
the energy defect A. The arrows delimit the range of allowed 6
values.

b, =(e„~—Vo, i.e., k, =O, follows immediately from the
vanishing of the penetration coefficient b At &. =le. l,
i.e., ~, =0, the vacuum contribution to the matrix ele-

ment itself (not to the square modulus) acquires a finite

value given, apart from a factor of 2 arising from the
penetration coefficient, by the integral of the function

f2(r De, ) ove—r the half space z ~ 0. In the limiting case
D =0, this integral can be evaluated analytically. There-
fore, by numerically evaluating the vacuum contribution
for the case 5= ~E„~,D =0, one obtains a stringent test of
the numerical procedure, in particular with regard to the
overall normalization of the matrix elements.

The vanishing of the metal contribution in Figs. 18 and
19 at the lower limit b, = ~e„~—Vo refiects the fact that
the jellium wave function vanishes inside the metal in the
limit k, ~O (note that a~ —1 in this limit). With in-

creasing 6, the metal contribution rises sharply and
displays a maximum which is particularly pronounced
for D =10 a.u. While in the latter case further structure
is observed, the metal contribution for D =20 a.u. drops
monotonically when 5 increases. At the upper limit of
the allowed 6 range, the metal contribution acquires a
nonzero value, which is much smaller than that of the
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vacuum contribution. The latter finding can be attribut-
ed to the drastically diferent structure of the z-dependent
part of the jellium wave function inside and outside of the
metal. While this part is constant outside of the metal, it
exhibits rapid oscillations within the metal since k, at-
tains its maximum value at the upper limit of the allowed
6 range. These oscillations are likely to cause strong des-
tructive interference in the overlap of ionic and jellium
wave function.

Summarizing the discussion of Figs. 18 and 19, we con-
clude that the behavior of the matrix elements in the vi-
cinity of the lower limit of the allowed 6 range is
governed by the metal contribution, while at the upper
limit the vacuum contribution dominates.

VI. CONCLUSIONS

of the scattering of state-selected Rydberg atoms. Anoth-
er application involving highly excited states of neutral
atoms or of ions in low charge states can possibly be
found in the analysis of light emission from atoms or ions
sputtered from metal surfaces [61]. Apart from applica-
tions in the field of scattering, other applications of our
method may be envisaged in the study of structural prop-
erties (level broadening, level shift) of atoms adsorbed on
metal surfaces. A speculative question is whether our
method will be of any use in the theoretical treatment of
resonant-tunneling processes of the kind occurring in
scanning tunneling microscopy [62,63]. In conclusion,
we believe that the method developed in this paper will
be useful for discussing general properties of the
ion-metal-surface interaction as well as for investigating
specific static and dynamical aspects of this interaction.

We have presented in this paper a systematic evalua-
tion of one-electron overlap and Coulomb matrix ele-
ments that appear in the theory of charge-exchange pro-
cesses in ion-metal-surface scattering. By employing jel-
lium wave functions to describe the conduction-band
states of the metal and hydrogenic wave functions to de-
scribe the ionic states, the matrix elements have been
evaluated in closed form for arbitrary values of their pa-
rameters. The resulting expressions for the matrix ele-
ments have been analyzed with respect to their general
properties as well as to their practical computation,
which requires multiple summations to be carried out nu-
merically. It has been shown that, by appropriately ar-
ranging the various terms, the matrix elements can be
computed over an enormous range of parameters.

In order to reveal finer details in the structure of the
matrix elements, explicit calculations have been per-
formed for a number of typical cases. By choosing exam-
ples pertaining to ionic Rydberg states, we have em-
phasized the necessity to extend the previously developed
theoretical schemes into this regime and have been able
to demonstrate the potentialities of our method. From
the results of our calculations, detailed quantitative and
qualitative information has been obtained with regard to
the dependence of the matrix elements on the ion-surface
distance in both the classically allowed and the classically
forbidden region, on the electronic momentum in the
conduction band and the ionic angular-momentum quan-
tum numbers, and on the energy defect between
conduction-band state and ionic state.

A number of app1ications of our method can be en-
visaged. The most immediate application is in the theory
of charge-transfer processes in the scattering of slow,
heavy ions by metal surfaces [59]. In the strictly adiabat-
ic approximation, which is adequate to describe these
processes, the transition rates involve only resonant ma-
trix elements. An extension of the adiabatic picture to
the truly dynamical case, in which nonresonant matrix
elements are of equal importance, is clearly challenging
and wi11 provide a broad class of applications for our
method. An interesting application may be brought
about by the suggestion [60] to study the ion-surface in-
teraction, in particular its dependence on the atomic
angular-momentum quantum numbers l and m, by means
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The inverse transform is then given by

f(r)=(2n) ~ fdqexp(iq r)f(q) . (A2)

The momentum-space representations f, (q) and f2(q)
of the functions f, (r} and f2(r) given by Eqs. (7) and (8)
are related [64] by

(A3)

where q =
~q~, and a„is defined by Eq. (42). It is there-

fore sufficient to consider explicitly the function

(A4)

i.e., the momentum-space representation of the normal-
ized hydrogenic coordinate space wave function g'„&'(r).
The explicit form of g'„,' (q) reads [65,64]

P'„i'(q)=( ~)'&„'i'(q)&P—(&'„P,) (A5)

[note that the factor ( i }' which ob—viously must be
present in g'„i' (q) is missing in Ref. [65]],where

and

cos8 =q, /q (A6)

tang~ =q„/q„. (A7)

The radial momentum-space wave function R„i(q} is
given by

I
(Z) I+1~n! ('q } n! p 2 i+z n —I —1

(q +a„)
+n

+K
(A8)

APPENDIX A: MOMENTUM-SPACE
REPRESENTATION OF fJ(r)

We define the Fourier transform ("momentum-space
representation"} f(q}of an arbitrary function f(r) as

f(q)=(2m) ~ fdr exp( iq r)f—(r) . (A 1)
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where

2 n(n —1 —1)!
&nl =

(n +1)!

1/2

22(l + 1)l1Kl +5/2 (A9)

where

(21+1)(l—m )!
4m.(l +m )!

1/2

(A14)

The function C„'+l,(x) is a Gegenbauer polynomial
[66] given explicitly by

Illnx (n v 1 )1

The associated Legendre function PI (cos8q) can be ex-
pressed as

( —1)'
P (cos8 )= (1—cos 8 )

with

n —1 —1
max 2

X(2x )n
—I —1 —2v (A 10)

(A 1 1) where

( 1)2
'1 '

(2A)!
.~. (2A, —1 —m)!

X(cos8 )2~ ™(A15)

where [x] is the largest integer smaller than or equal to x.
Assuming the phase convention of Ref. [67], the nor-

malized spherical harmonic Yl (8q, pq) in Eq. (A5) is
given explicitly by

1+m+1
2

(A16)

YI (8q, ltpq)=NImPI (cos8q)exp(I'myq)

for m ~0, and

YI™(8q,gq ) =( —1) Yi (8q, Itlq ),

(A12}

(A13)

APPENDIX 8: EXPLICIT FORM OF ~al (gz )
AND el (q, )

The explicit form of the polynomials P„I(q,) follows
from Eqs. (49) and (52) as

'P.I(q. }=&.I(q,'+k'+)" ' 'C.' —I —1 q2+k'+2

1)v (n v &

[2( 2+kr2 )]n
—I —1 —2v( 2+k r2 )2v

1! „0 v!(n —1 —1 —2v)!

max

=A(Z;n, l) g $(n, l;v)
v=O

n —l —2v —1

a=O

2v

C(Z;n, l;v, a;kII } g 2)(Z;n;v;P;kjl }q,
P=O

(Bl)

where the coefficients A,$,8,2) are given by

A (Z. n 1 )
—

qr
—1/22" + I +3/2lrl +5/2 n ( n 1 )n

n+1
1
—1

$(n, l v)=( —1)"2 '" "
2v

(Z. l. . .k )
n —1—2v —1

II

(B2)

(B3)

(B4)

$(Z n .P k'}= " k'2'2" I" (B5)

In the specific form in which these coefficients are written, they involve binomial coefficients, but no factorials. By elim-
inating the factorials completely, the accuracy of the numerical evaluation of the matrix elements is increased (cf. Sec.
IV D).

Similarly, we obtain for the polynomials al (q, ) from Eqs. (51) and (53)
r

al ('q } +I (q + k)~ } Pl 2,2 1/2 exp(™fk')
(q 2+k r2 )1/2

2'1! I!
'"P ' '

.&. (u —1— )iq'
(I'm(('1 ) g ( I )& 22.—I—m( 2+k 2 )I

—2,

min

l l —A,

=A(l, m;k„',k„') g %(l,m;li, } g 8(l;A, ;y;kII)q '~+r'
y=omin

(B6)
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where

A(l, m;k„',k,')=( —1)™exp(img„.)tr '"2 ' 'ki, (2l+1}

A(l, —m;k„',k')=( —1) A*(l,m;k„',k'),

1/2l
m

if m~O, (B7)

(B9)

(B10)

The explicit form of the polynomials Pl(q, ) follows by inserting Eqs. (Bl) and (B6) into Eq. (59).

APPENDIX C: EXPLICIT FORM OF Vnr ( k + ) and 'Ntm'(k + )

Using Eq. (B 1) and (B6), it follows from the definitions (80) and (81) that

max

V'„'t'(k'+ }=(—1)A(Z;n, l) g k'+"9(n, l;v)
v=o

where

n —I —2v —1

a=O

2v

(
—1) k'+ C(Z;n, l;v;a;k~~ ) g 6"(v;a,P),

p=o
(C 1)

and

(C2)

I I —A,

'll~' '(k+ )=( —1) i™A(l,m;k„',k') Q ( —1) k' ' g(l, m g) y g ~~~(Z
„ l m g ) k')

min

where

(C3)

'(Z ni m''A y k' ) =(—1)r 7 m k'z" ~. &~k'»e(2(g+ ) l ) (C4)

The function 8( ) introduced in Eqs. (C2) and (C4) is the unit step function, with the proviso e(0)= l.
Note that in the final expression (84) for the matrix elements Jkfaph, a.se factor ( i )'+ e—xp(impk. ) is assumed to be

removed from the expression (C3) for the function 'NI~'(k'+ ) and is incorporated into an overall phase factor of the ma-
trix elements.
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