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Double-electron capture as a two-step process
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Double-electron capture by the impact of heavy projectiles on heliumlike atoms is studied with a two-

electron model. The process is here considered a two-step collision, which in the frame of the distorted-

wave formalism is related to the second order. This second order is evaluated by using an on-shell Green

function representing one electron in each center, and it is found to be related, after some approxima-

tions, to the independent-electron model. In particular, the exact impulse approximation is used to cal-

culate the single-capture T-matrix elements, and the electronic repulsion is included as a dynamic per-

turbation in first order. A configuration-interaction wave function is employed to describe the ground

state of helium for double capture 1s ~1s in a He -He collision. For this benchmark, differences

with the use of a Hartree-Fock wave function instead are found to be negligible. Thereafter, capture to

single excited states for the same system is calculated by using Hartree-Fock and variational electronic

wave functions. Also, double capture for multiply charged ions on helium is calculated. Differential

cross sections for double-capture He +-He collisions at 60 keV/amu impact energy are presented and

compared with previous experiments. The present theory produces good agreement with the available

data.

PACS number(s): 34.70.+e

I. INTRODUCTION

Multiple-electron capture is a very interesting process
for the study of the dynamics of a multiple-electron sys-
tem during a collision. State-selective experiments at
high energies are difficult [1], and the corresponding
theory faces the nontrivial task of dealing with various
active electrons. To treat such systems, the
independent-electron model (IEM) is generally assumed.
Thus, the n-particle system is decomposed in a collection
of independent clusters of three particles (the projectile P,
the nucleus target T, and one electron e), which are
solved with an appropriate theoretical technique. Nei-
ther momentum nor energy can be transferred from one
cluster to another. Relaxation is not allowed, and corre-
lation is dropped, so they evolve independently from each
other. A formal derivation of this model was worked out
by McGuire and Weaver [2]. The IEM has certainly
proved to be successful to deal with single capture in-
duced by fast ions [3]. For double processes, the IEM
leads to the product of single probabilities, which has
been largely used to calculate double capture within the
quantum [4—7] and classical formalisms [8,9].

There is an improvement that considers the electronic
correlation in the bound states, for example, through the
use of the Pluvinage wave functions [10]. This model,
sometimes called the independent-event model [10], still
uses the product of probabilities.

Few attempts have been made to solve the two-electron
Schrodinger equation via a basis expansion within the
semiclassical coupled channels. In the intermediate-
energy range (including translation factors) two types of
expansions of the time-dependent total wave function
were investigated, namely the Slater- [11,12] and Gauss-

type orbitals [13]. The success of these methods is gen-

erally restrained to the intermediate-energy range, unless
the basis includes the continuum as an intermediate state.

In the present paper, we have studied double capture
with a two-electron distorted-wave formalism. In this
frame, the first order represents a single-step collision; it
has been found [10] to be much smaller than the second
one, and it was dropped here. Therefore, we have only
concentrated on the second order, which involves a two-

step process. It is calculated by using an on-shell propa-
gator representing one electron in the target and the oth-
er one in the projectile. In this way, double capture may
be seen as two subsequent single-capture processes,
which, after several approximations, leads to the IEM.

In Sec. II, we present the general theory, and in Sec.
III the exact-impulse approximation (IA) is used to evalu-

ate the single-capture T-matrix elements. %e have de-
scribed the bound states, a lineal combination of products
of two one-particle orbitals, which can be coming from
configuration-interaction (CI), Hartree-Foe k (HF), or
variational electronic wave functions. The electronic
repulsion has been included in first order as a perturba-
tion potential during the collision, and relaxation has also
been considered. In Secs. IV A and IV B total cross sec-
tions for the symmetric case He ++He(ls )

~He(ls, ls2s, ls2P)+He + are obtained and compared
with experiments and other theoretical results. In Sec.
IV C we present results for the asymmetric systems
X ++He(ls )~X' '+(ls )+He +, Z=3,5. In Sec.
V we show differential cross sections for the symmetric
case. Throughout the work the internuclear interaction
will be dropped and reintroduced through the well-

known Coulomb phase factor when calculating the
differential cross section. Atomic units are used, except
where indicated.
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II. THEORY ~,',"=&X&I~,'G W, IX, &, (2-4)

1
H —— VR +Hp+ Vp, + Vp2,

2VT T

where Hz- is the atomic Hamiltonian:

1 2 1
V» Vr + Vy]+ V72+ V)2

2pT1 ~& 2pT2

(2 1)

(2.2)

In the distorted-wave formalism the exact T-matrix ele-
ment is Tf; =Tf',"+Tf

TI,"=&X, IWIIX, &, (2.3)

el

Let us assume a collision of a structureless projectile P
(of mass Mp and charge Zp) with a heliumlike atom com-

posed of a target nucleus (Mz. and Zr ) and two electrons

(e, and ez). Coordinate systems are shown in Fig. 1, and

the corresponding transformations are listed in the Ap-
pendix. Reduced masses vz, pz&, and p&2 are associated
with the coordinates Rx, rz„and rxz (with X = T or P),
respectively, and v is associated with the coordinate R.
The potential VXJ is the Coulomb potential between the
nucleus X and the electron j (j=1,2), and V, & = I /r, z is

the electronic repulsion.
The total Hamiltonian H reads

G+ being the total Green function. In Eq. (2.3) surface
terms are considered to be null. y,

+ and yf represent
distorted-wave functions containing two electrons in the
target and projectile, respectively, and they satisfy

(E H—+iE)X, = —WX—, j =i,f, s~0+, (2.5)

with E the total energy. The erst order, Tf';" represents a
mechanism where the two electrons jump together from
the target to the projectile in a single step [10,14]. Croth-
ers and McCarrol [10] calculated this term and conclud-
ed that it is negligible in comparison with the two-step
mechanism (e.g. , one order of magnitude smaller than the
two-step process at 1.4 MeV of He + on He). Thus, we
will not study this order and will concentrate only on the
second one.

Replacing in Eq. (2.4) G+ by Gz, which describes one
electron in the target and the other in the projectile, we
can approximate

Tf g&Xf ~ W'f ~g„) . &g„~W, ~X,
+ ), (2.6)

n
E E„+re

where g„areeigenfunctions of GN, E„is the eigenener-

gy, and the subindex n also involves the state of spin
(which remains the same) and the continuum. The func-
tions g„should form a complete set, properly orthonor-
malized and symmetrized. Of course, as far as the bound
electronic wave function is concerned, the nuclei are con-
sidered to have infinite masses.

The main approximation used to calculate the second
order involves the consideration of only the on-shell con-
tribution of Eq. (2.6), i.e.,

1 1
~

=P
E —E„+ic E —E„ i ~5(E —E„), —(2.7)

where the principal part (P) is neglected. With respect to
this approximation, we point out the following: as shown

by McGuire [15], the principal part plays an important
role in double excitation when using Born wave functions
[16]. But this is not the present case since we are going to
use exact-impulse wave functions already containing the
principal part of the corresponding propagators, and so
the principal part in Eq. (2.7) is not expected to be very
relevant. Anyway, the exact calculation of the complete
second order, including the principle part, would involve

a formidable numerical task, which we cannot face. The
on-shell contribution, on the other hand provides a sim-

ple physical picture; i.e., the intermediate states satisfy
the energy conservation. VAth this assumption, we can
use the simpli6cation introduced by the 6 function. Tf;

'

then reads

TI, '= — g K„f dy„f d&„sinH„TI„T„+;
U „00

where

(2.8)

FIG. 1. Coordinate systems.

E,
2v +e,- —e„

2VT
(2.9)
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where v is the impact velocity, 6„is the angle between the
initial momentum of the projectile K, , and the intermedi-
ate momentum K„,and y„is the azimuth angle. In Eq.
(2.8)

(2.10)

correspond to transitions where one electron is captured
and the other is relaxed to any state. In Eq. (2.9} e; and
e„represent the initial and intermediate two- electron en-

ergy. No matter which distorted wave functions are em-

ployed, the contribution of this second order to the total
cross section is found to be

6 2
o' '= f dpi g fdpi„T&„(ri ri„)T—„+,(i'„)

4U4

(2.11}

where now the arguments of the T elements denote the
corresponding transverse momenta

g =K&sin8(cosy', sining, 0),
g„=E„sin8„(cosip„,sing„,0) .

(2.12)

Tba (ri) = f dpab. (p)e
(2m )

(2.13)

where p is the impact parameter, the total cross section
reads

o'"=fdp~AI;(p)~2,

where

(2.14)

and K&, 8 and y are the final momentum, polar angle,
and azimuth angle of the rearrangement atom, respec-
tively. Introducing the Fouier transforms

FIG. 2. Schematic picture for 1s'~1s double capture. (a)
Two electrons in the initial state. (b) The active electron (e&) is
captured to a state P„[ofenergy —Zp2/(2np2}] and the passive

one (e, ) relaxes to a state P„[ofenergy —Zr/(2nr)]. (c) The"T
roles change. The active electron (e&) is captured while e& re-
laxes to the final state.

coherently, thus, the 4 ' is totally removed. For a
schematic picture, see Fig. 2: in the first step, one elec-
tron (say the active one) is captured and the other one
(the passive one) is relaxed; in the second step the roles
are exchanged.

A/, .(p) =—g a&„(p)a„+,. (p} .
n

(2.15) III. THE EXACT-IMPULSE APPROXIMATION

Although the expression (2.14) does not seem to be famil-
iar, the IEM is achieved by dropping g„,considering
frozen states (no relaxation), and neglecting correlation
by replacing the transition amplitudes by the single-
electron-capture ones. Further, as in most of the calcula-
tions, symmetric approximations are carried out to the
point that ab, is not distinguished from ab„as in
the Brinkman-Kramers or continuum-distorted-wave
(CDW} [6] approximations, and the well-known product
of probabilities results.

The factor i /2 in Eq. (2.15) produces a coefficient 4
at level of the total cross section. It is partially or totally
removed according to the symmetrization of the wave
functions. At the level of T matrix, one may find interfer-
ences among the different "paths" that connect the initial
i = {i„ib] with the final electronic state f = {f„fz ]
passing through the intermediate state n ={nr,np].
Four possibilities can be identified where one electrons do
the paths: i, ~nr~f, and ib +np~fz', i, +np~f, — —
and ib ~nr~ fe; i, ~np~ fe and ib~nr~ f, ;
i, ~nr~fe and ib ~np~f, . In the Particular case of
i, =ib and f,=fz, the four paths are equal and add

Following the Coleman derivation [17], the initial ex-
act two-electron impulse wave function reads

(1+P,2)

(2 )3/2

X f dgi fdg24;. (g»4;, (g24,", ,(rpi}4-,", ,(rp2}-

XexP[i (PriPr2K +gi+g2)'RP ]

(3.1}

where

lit„—(r) = e'"'D (Z„k,r)—, C = T,P, (3.2)3/2 gt t

and for a pure Coulomb center

D*(Z,k, r) =e'"/ 'I (1+ia),F,(+ia, 1,+ikr —ik r),
(3.3)

with a =Z /k. Singlet states were considered.
(a=i„ib)are the initial one-electron orbitals. The prod-
uct P; (rri)P, (rr2) rePresents a term of a CI or HF ex-
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pansion of the full initial electronic wave function
4, (rT„rT2). The permutation operator P, z exchanges
the electrons 1 and 2, and the tilde represents the Fourier
transform.

It is clearly seen from Eq. (3.1) that the electrons are in
the continuum of the projectile. Equivalently, for the
final channel

(1+Piz)
f v 2 (2 )3/2

x f dsi f dszo f (Si)0f„(sz)fs+v(rT))gs+ (rT2)

expl. ' (p pip pzK f Si S2)'RT j

with

1 iK R
(rT) )4' (rp2)

(2m. )
nT np (3.6)

where P„and P„areone-electron bound states in thenT P

target and in the projectile, respectively. The corre-
sponding electronic energy e„is the sum of the individual
electronic energies, and we assume the proposed set to
satisfy the orthonormalization N„=1.

As the T„+; element is calculated on the energy-shell,
we are able to use either 8'; or the intermediate potential
V„[18],where (H E)g„—= V„g„;then

(3.4)
where pi3(p=f„fd) are the final one-electron orbitals.
Again, the Product (()f (rp) )Pf (rpz) rePresents a term of

C d

a CI or HF expansion of the full final electronic wave
function Cf(rpi I'pz).

In the present paper we use exact-impulse wave func-
tions to describe the initial and final states y;+ and g&
as in Eqs. (3.1) and (3.4), and for the intermediate states
we propose the following Born functions:

~.;=&a.lIv, lx", &=&a. lv. lx! &

= A "'++A "'++A"'
ni ni ni

where

a""=3/'z(glv„l '+&

a("' =v'z(g„l
v„lq'+)

g (3)+ 3/2( g&
l
V l+I + )

(3.7)

(3.8)

(1+P,z)

3/2N„
(3.5)

The electronic repulsion is a genuine perturbation of the
intermediate state, and since the electrons are in di8'erent
centers, it decreases as the nuclei separate. We have

A (1)+
ni
(2)+

Ani

VT2(g —S» c„"",. (g)
1 P+

S2 glib(gz)LI! (Sz»UP2 g) — C(2)+ +ch(ig~ib) i
(2m )

(3.9)
A„';'+=

3/z dgzp; (gz)L„+(gz—v, Upz —gz)C„' '+; (g )2+ hc(i, ~ i)b,
(2n. )'

where

C(1)+ ( )

C(2)+
' =f dg(P; (g, )I '+(g, —v, p, +g)

Cnr, i, gt~sz

$„'(UT( —g, —g)

C,«T) —Si —Sz)

C„' '+; (gz) = f dg)p, (gi )J '+(gi —v, Upi+ gz)

x4„*«» —g, —g,

(3.10)

and

(k, q)=
3 2 fdre 'q'D +—(Zc, k, r)(I)*(r),

(2m. )

(3.11)

1

V ( )
~ C=T&P

I (k q) 1 —iq-r +Jc+(k)3/2

re�''D

(Zc, k,r)—
(2m )

and the transfer momentum vectors Uz. &, Up„and Up2
are defined in the Appendix. In Eq. (3.9), ch(i, ~ib)
means a similar term exchanging i, with ib.

Each first term of Eq. (3.9) can be physically described
as follows: A„',"+ represents the capture of the electron
ez (say active) by interaction with the projectile, while the
electron e, (say passive) is relaxed by simple overlapping
and it ends in the Coulomb field of the punctual charge
Zz-. Since we are using the exact impulse approximation,
the single-capture element A„",. '+ includes multiple-
scattering and Thomas processes. A„';'+shows the same
process involving the electronic repulsion. The last term
A„';'+ describes the capture of e2 via an interaction of the
projectile with e&, and this element is null in the impulse

approximation because of the orthogonality between
bound and continuum states of the projectile (in this case
I.„p+=0). In all cases the second terms characterized by
ch(i, ~ib ) exchange roles.

The calculation is still very complex, since each term
involves a nine-dimensional integral. A substantial
simplification can be achieved if we replace the Coulomb
interaction of the projectile with the passive electron by
its asymptotic form. It is equivalent to approximate
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ZpD+(Zl, g ]
—v, rl, ])-exp —i ln(vRr —v.Rr)

(3.12)

in Eq. (3.10) to calculate I '+. Note that we still keep
the full Coulomb interaction with the active electron.
We drop the logarithmic phase factor in Eq. (3.12), which
will be added to the one coming from the internuclear in-
teraction in Sec. V. Afterwards, C„"+ reduces to

tion the relaxation functions E' &*. Besides the relaxa-
tion, the presence of A„';'+ and Af'„' differentiates this
calculation from the IEM.

Finally, using Eq. (2.8), we write the T matrix as fol-
lows:

T(2)— t~ ~ d (A(1)—+A(2) —)(A(1)++A(2)+)fi ~ In fn fn ni ni
n

(3.20)

( (1)+ (g)

C(2)+ (g g

g (1)+
nT, &

=(2~) 5(g+Up])
NT, la

(3.13) IU. TOTAL CROSS SECTIONS

where

S t](u)= fdr ((')(r)P t(]r)e'"', (3.15)

having closed forms for any state. Then we arrive at
r

(1)+
P+

A(2)+ =
3~2 dg2$; (g2)L» (g2 —v, UJ2+Ul])

(2m. )'~ 'b

Vr2( —
g2

—
Up, ) K„"';+

X
~12(g2+UP])

+ch(i, ~]b) .

In similar fashion, we find that

(3.16)

with

K"'+ =S„;(0) K' '+ =S„;(g2 —Uz]), (3.14)

A. Resonant symmetric collisions

To study the symmetric and resonant reaction

He ++He(ls )~He(ls )+He +, (4.1)

we have used two descriptions of the electronic ground
state, namely CI and HF Clementi-Roetti [19]wave func-
tions.

To obtain a second-order total cross section, five-
dimensional integrals are required: three-dimensional
ones to obtain Tb*„another one to obtain ab*, (p), and a
final one on the impact parameters. Alternatively, with
the T-matrix elements, Eq. (2.11) can be integrated
directly. Numerical errors are estimated to be around
3% at most.

with

Tf» ~gf I Wf I gn & A f» + A f» (3.17) 1. Use of CI wave functions

We construct the following CI to describe the ground
state of helium:

fn
g (2)—

fn )3/2„,f g]df'( —g]) n' '(g]+
c T )=(0.93271@]&

—0.35361@2)—0.0339I@3&

~l ](g]+PP]} Kf,".,
X

I']2(g]+P~]) Kf,.(2)-
where

—0.0619I4~) } IS =O,Ms =0), (4.2)

where

+ch(f,~fd ),

KJ „=SJ„(0),
Kf„",., =Sf...( —g] —Pl ]»

(3.19)

I@ )=Ils')=I(() y )

—( I(()„,(()„&+I((l„,(t „&),
2

le, &
=

I ls, 3s &
= ( ly„,y„&+l(t„,y„&),

2
(4.3)

and the transfer momentum vectors PT&, pz& are defined
in the Appendix.

K"& are simple relaxation factors, while E' &* are re-
laxation functions depending on the variable of integra-
tion. In Eqs. (3.16) and (3.18}, A„',."+ and Af„" are
found to be the sum of the exact-impulse-approximation
T-matrix elements of single capture times the relaxation
factors E"&*. 3„',. '+ and Af(„' represent the contribu-
tion of the capture process involving the electron-
electron repulsion, and they include within the integra-

- (IW2, o 42,o&
—

I&2, ] A, -] &

1

3

The r representation of a ket of the basis is
~ r] r2IP»lm (()n'I'm' & (t)»1m (r] }(t]n'1 m'(r2} The'radia. l Part
of $„1(r}, namely R„l(r),is expressed in terms of the
Slater orbitals S„l(Zlr), where Z is the exponential
coef5cient or effective charge. We find the following ex-
pressions:
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R i, (r) =St,(2. 153Ir),

R2, (r)=0.3992Si,(2. 153Ir)+1.331St,(1.034Ir) —2. 305S2,(1.424Ir),

R3, (r) =0.4275Si, (2. 153Ir)+1.312Si,(1.034Ir) —2.272Sz, (1.424Ir)

+ 1.991Si, (0.4738
I r) —6.896S2,(0.6342 I r ) +6.29SS3,(0.91541r},

R2 (r)=Sz (2.451Ir) .

(4.4)

In particular, we have used the 5-z HF Clementi-Roetti
[19]wave function to describe the electronic ground state
of helium. We have considered as intermediate states
only 1s states around each center, and it has been found
that I( '"—=0.982, indicating that relaxation to high in-
termediate states (nT, n„~2) represents less than 4% in
each center. For reaction (4.1), we have found that the

10-16

10-17

10-18
E

x
g 10 19

UJ
(J)

v) 10
V)
C3
CL

1P-21

10-22
50 100

ENERGY t keV/arnu)
500

~ I

1000

FIG. 3. 1s ~1s double-electron-capture cross sections for
He +-He collision. The data involve capture to all states. Solid
line, second-order impulse approximation as calculated in Sec.
IV A using the CI wave function; dotted line, close-coupling cal-
culation using a Gauss-type expansion from Gramlich, Grun,
and Scheid [13]. o, experiments from McDaniel et al. [21];
experiments from DuBois [22]; ~, experiments from Castro
Faria, Freire, and de Pinho [23].

The present CI wave function has a similar structure to
the one used by Fritsch and Lin [12] but here the charges
of the Slater orbitals were optimized, minimizing the en-
ergy by using the ATMQLci program [20]. The energy of
our CI wave function is —2.873, being slightly better
than the energy of the HF function ( —2.862) [19]. Be-
cause the number of elements A,'b' '* to be calculated is
proportional to the number of Slater orbitals, and consid-
ering that each of those elements involves a three-
dimensional integral, we should be able to accurately de-
scribe the electronic states. The total cross section for
the reaction (4.1) is displayed in Fig. 3 along with the ex-
periments of McDaniel et al. [21], DuBois [22], and Cas-
tro Faria, Freire, and de Pinho [23]. The intermediate
states were assumed to be only ground states around each
center. The agreement with the data is very good.

2. Use ofHF wave functions

I

difference between the results using HF and CI wave
functions is less than the numerical uncertainty of 3%.
Taking into account the limitation of the CI wave func-
tion used, it is found that correlation in the ground state
(the so-called static correlation} does not seem to be
relevant, at least for the present case. Note that in our
formalism the electronic repulsion is considered as a
first-order perturbation during the collision (the so-called
dynamic correlation). Hereafter, we use HF wave func-
tions to calculate the next reactions involving capture to
ground and sing1e excited states. However, if we dealt
with double excited states, we would certainly be forced
to use very precise CI functions.

In Table I we compare our results with those of Croth-
ers and McCarroll [10] (column C-Mc) calculated with
the Pluvinage electronic wave function, which includes
correlation. Even though the theoretical methods are
different, the similarity of the values is a new indication
that the use of HF orbitals is appropriate.

We also display the results of Gayet, Rivarola, and Sa-
lin [6] calculated with the CDW within the IEM and us-
ing the same HF bound state without (column IEM-
CDW) [case (i)] and with (column IEM-CDW) [case (ii)]
relaxation. At this point it is interesting to compare our
calculations within the IEM using the same method, i.e.,
the exact-impulse approximation. To this end, we have
calculated exact-impulse amplitudes corresponding to a
one-electron system and we have proceeded as in case (i)
of Gayet, Rivarola, and Salin [6]. The results shown in
the table (column IEM-IA) are very similar to those of
the IEM-CDW [case (i)) [6]. The differences between the
IEM and the two-electron model considered here lie in
the presence of the term I/r, 2 (sometime called dynamic
correlation) as an active perturbation, and not in the use
of elaborated initial electronic wave functions (static
correlation), such as the use of CI.

The high-energy limit was roughly fitted to be v in
the velocity range 10—15, in agreement with the result of
McGuire [24]. It may be an indication that the shake-
over process is included through the terms Af„' A„',"+
and Af„" A„';'+. We do not know whether the high-
energy limit has been reached at these velocities. It
should be noted that by using IEM amplitudes and
neglecting all double-scattering terms (those leading to
v

" in single capture), the cross section should tend to
ZT Z~ v [24,14].

B. Nonresonant symmetric collisions

We are interested in the following double-capture pro-
cess:
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TABLE I. 1s ~1s double-electron-capture cross sections {in cm ) for He +-He collisions. E is the
projectile impact energy (in keV). Experiments are taken from McDaniel et al. [21], involving capture
to all the states: IEM-CDW, independent-electron-model results with the CDW as reported by Gayet,
Rivarola, and Salin [6] without (i) and with (ii) relaxation, respectively; IEM-IA, independent-electron-
model results with the exact-impulse approximation using the HF single-z wave function (see text); C-
Mc, the best calculations of Crothers and McCarroll [10] with Pluvinage electronic wave functions
within the CDW approximation; this work, the second order with the impulse approximation as calcu-
lated in Sec. IV A using HF wave functions. The use of CI wave functions gives the same results within
the two significant figures.

E (keV) Experiment

5.1 X 10

9.5X 10-"

2.6X 10

3.6X 10-"

IEM-CDW

16X10-" (i)
13X10 ' (ii)
18X10-" (i)
11X10 ' (ii)
3.1X10 ' (i)
1.7X10 ' (ii)
3 4X 10 20 (')

1.7 X 10 ('i)

IEM-IA

13X 10-"

18X10-"

3.4X 10
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5.0X 10-"
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He ++He(ls )—+He(ls, ls2s, ls2p)+He + . (4.5)

We will here concentrate on 180 keV impact energy
where experiments are available. Obviously, the singlet
state is considered. The initial bound state was again
represented by the 5-z Clementi-Roetti wave function
[19], and the final ones were described by variational
wave functions [25]. State-to-state total cross sections
were calculated to be 5.7, 1.8, and 0.97X10 ' cm for
1s ~1s, 1s ~1s2s, and 1s ~ls2p, respectively. It
makes a total cross section of 8.5X10 ' cm, which
compares reasonably well with the experimental value
[26] (around 6.20X10 ' cm ).

For the present case, we have studied the influence of
the intermediate states. For 1s ~1s2s double capture
we found that the main contribution comes from the in-
termediate states (nT= is, nJ, =2s) and (nT= is, np = Is);

individual contributions [27] were found to be 4.5 and
4.6X 10 ' cm, respectively. Other intermediate states
such as (nT=2s, nz=is) and (nT=2s, nI =2s) were
found to be of the order of a few percent. For 1s —+1s2p
we analyzed the influence of five intermediate states in-
cluding the n = 1 shell around the target and n = 1,2 shells
around the projectile. Similarly, we found that (nr =Is,
n~ = 2p) and ( n T

= ls, nz = ls) are dominant. Again, con-
tributions from other intermediate states were found to
be small. We conclude that for the present system the
most relevant intermediate states are those corresponding
to the final state, and other states can be neglected, as we
did in the previous section.

C. Asymmetric collisions

Figure 4 shows double capture of multicharged ions on
helium.

i p-17

X ++He(ls )~X' '+(ls )+He++, (4.6)

10+—

cv g 19
E

Xo 10-

4J
tA

Q 2l

Vl
CD

]Q 22

and compared with the available experiments [28,29].
For the initial electronic orbital, we have used the 5-z HF
Clementi-Roetti wave function [19], while for the final
one we have used the 3-z HF function for the He('S)
isoelectronic series [19]. In general, our theory follows
the experiments. For B + impact, the agreement with
the data is better than expected if we consider that we
have not taken into account capture to excited states,
which would increase the cross section. On the contrary,
such an increment would improve the Li + results.

1P 23
0.5

v/Zp

V. DIFFERENTIAL CROSS SECTIONS

The differential cross section is simply

FIG. 4. 1s ~1s double-electron capture by Li'+ and B'+
on helium targets as a function of the ion velocity normalized to
Zp. The data involve capture to all states. Solid line, the
present theory as calculated in Sec. IV C; ~, experiments from
Shah and Gilbody [28];,experiments from Hippler et al. [29].

do"'
dO

Ef ~ - 2Id &2XA
P )

—ig.P
(2m. )

(5.1)

where A, is the Coulomb parameter of internuclear in-
teraction. In principle, A, should be ZTZ~/U; however, to



2972 M. S. GRAVIELLE AND J. E. MIRAGLIA 45

Q+lo
i

s y i &

[
I i I

10-&O

E

l0-11

b

lo-12

I

1

eL (mrad)

10-(3 I I I

0

to account for the distortion of the Coulomb charges, for
example via eikonals, instead of the simple Born wave
functions. (ii) The calculations should account for the
full distortion of the passive electron during the collision.
Within our formalism, this means to giving an exact ex-
pression for the factors C"&'+—. Unfortunately, this it
would necessitate a much more detailed calculation than
the present one. (iii) It would be beneficial to also calcu-
late the principal part neglected in our calculation [see
Eq. (2.7)]. The task is very difficult, and would be prohi-
bitive for our present computing system.

Capture to double excited states can also be calculated
with this formalism; however, special attention should be
paid to the description of the final state. Although we

apply this formalism to double capture, it is evident that
it can be extended to other double processes such as cap-
ture and excitation, capture and ionization, double exci-
tation, etc. Further, to treat multiple processes, we
should resort to higher perturbation orders; e.g. , for tri-
ple capture, we should deal with the third order.

FIG. 5. Differential cross section for double-capture
He ++ He( ls ) involving capture to 1s, 1s2s, and 1s2p states

for 60 keV/amu impact energy. The data involve capture to all

states. Dashed and solid lines, 1s ~1s and total differential

cross section calculated with the second-order impulse approxi-
mation, respectively; dotted line, classical trajectory Monte Car-
lo calculation from Meng and Reinhold [26]; 2, experiments
from Irby et al. [30].
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be consistent with our approximation [see Eq. (3.12)], we
have to rest the asymptotic phase of the passive electron,
giving A, =(Z& —1)Z&/v. The differential cross section is
plotted in Fig. 5 for the symmetric case He + + He( ls )

involving capture to 1s, 1s2s, and 1s2p states for 60
keV/arnu impact energy. The present theory compares
well not only with the experiments [30] but also with the
classical trajectory Monte Carlo calculations [26].

It should be noted that we are dealing with a sym-
metric case where Zz- =ZP =2. In this case, the
Coulomb parameter in the initial channel is equal to that
of the final one: i.e., (Zr —1)Z~/v =Zz(ZP —1)/v
=2/U, therefore we can build up a common value A..
However, in an asymmetric case, the use of a unique pa-
rameter is not evident. This problem would be solved by
keeping the phase factor of the passive electron in Eq.
(3.12) throughout the calculation.

VI. CONCLUSIONS

Double capture has been studied as a second order in
the distorted-wave formalism. This second order
represents the double process as two subsequent single-
capture processes involving also relaxation and the inter-
mediate cascade, and it was calculated with the exact-
impulse approximation. Within this formalism and for
1s —+1s double capture, we find that there are not ap-
preciable differences between the use of CI and HF wave
functions to represent the electronic state.

Some improvements could be made in our calculations:
(i) there should be improvement of the intermediate states

APPENDIX
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M~+MP+2
(M~+1&(Mp+i i(Mp+2) 't

' '

MP
rz&=R +
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The transformation formulas are, for any masses (see

Fig. 2),
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and another relation can be easily obtained from these.
The transfer momentum vectors can be defined by

(E„E—I )
Pz., =g —g„+—+ z,

U

K;.RT —K„.R= —UT).rT, —Up] Ip] Up2'rp2,

K R Kf 'Rp = PTj rT& Pp) rp) Pp2 I p2

(A3)

(A4)
(&„—&I )

Pp) = —g+g„+ —— z, (A6)

For heavy nuclei, using energy conservation, these vec-
tors read

vUTi=g+ —+ ' " z,
U

Pp2=o

where e; f„arethe initial, final, and intermediate two-
electron binding energies, the z axis was chosen to be
along the velocity, and g and g„arethe transversal mo-
menta given by

Up&= uz,

v

U
(A5) sJ =Xfsine(cosy, sinqr, O),

tJ„=K„sin8„(cosy„,sing„,O) . (A7)
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