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Asymptotic behavior in phase-space scattering
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The phase-space formulation of quantum scattering is discussed and the asymptotic quantities
describing potential scattering in one and three dimensions (transmittances, cross sections) are ana-

lyzed. It is found that under certain conditions the transmittance in time-dependent scattering only

depends on the momentum distribution of the incident packet, being independent of its particular
shape in coordinate space. For three-dimensional scattering, generalized cross sections are defined for
momentum coherences and a physical interpretation of the generalized optical theorem is proposed.

PACS number(s): 03.80.+r, 34.10.+x

I. INTRODUCTION

The phase-space description of collision processes has
been considered in a variety of ways by several people.
A review by Carruthers and Zachariasen [I] references
much of the earlier work which was motivated by classi-
cal mechanical and/or Boltzmann-equation applications.
Independently, one of the present authors has presented

[2] a density-operator description of quantum scattering
with the aim of organizing the structure of gas kinetic-
theory cross sections [3]. In that work and that of Turner

[4, 5] the object was to use exclusively quantum Liouville-

space (equivalently phase-space) dynamics and methods
to describe the collision process. From a study of the
asymptotic (large-distance) behavior of the Wigner func-
tion [6], a phase-space representation [7] of the density
operator, it was seen how the transition superoperator
describes all aspects of gain and loss associated with the
collision process. The advantage of this representation is

that it is possible and meaningful t;o examine the large-
distance behavior of the state of the system for a given

(outgoing) momentum. To separate clearly the interac-
tion region from the asymptotic behavior, our previous
work [2] assumed that the phase-space representation of
the transition superoperator matrix elements are short
ranged, in analogy with the usual wave-function behav-
ior. There followed an identification of a generalized cross
section which takes into account the loss from the initial
momentum state as well as the gain into other momen-

tum states.
The motivation for the present paper is to examine the

validity of the short-ranged behavior of the phase-space
representation of the scattered state. What is found is
that the short-ranged behavior assumed in Ref. [2] is not
valid. There are in fact two types of terms in the scat-
tered part of the density operator, namely, those terms
which lead to a gain in probability into a final state and
those terms that interfere with and deplete the incom-

ing state. Neither part of the corresponding transition
superoperator matrix elements is in fact short ranged,
the former being found to decay with distance only as
r while the latter oscillates without decay. In spite of

this it is shown that the result of scattering in a density-
operator formalism is still described by the generalized
cross section. Thus the present work verifies the final re-
sult of Ref. [2], although the proof of this result is more
elaborate than what was given at that time. As well,
while the previous study was limited to stationary scat-
tering (in particular incoming density matrices that are
diagonal in momentum), the present treatment includes
also the general time-dependent processes that involve
momentum coherences.

In this work the state of the system is always described
by a density operator or its equivalent signer function.
In the momentum representation of the incoming density
operator, there are diagonal elements which describe the
probability that the system is in a given eigenstate of the
free Hamiltonian and off-diagonal elements that are re-
ferred to here as coherences. Two types of coherences are
distinguished in the following. First, if the two momenta
associated with the coherence differ in magnitude, then
the free-particle energies of the two states are different
and the coherence oscillates in time with the frequency
associated with this energy difference; these are energy
coherences. Second, if the momenta have the same mag-
nitude but difkr in direction, referred to as directional
(on-the-energy-shell) coherences, there is no time depen-
dence and this merely describes the angular spreading of
the incoming state.

This paper starts by extending the phase-space de-

scription of scattering to one dimension, both for time-
dependent and stationary-state processes. There is nowa-

days a renewed interest in this subject because of the
possibility of electronic-device applications of resonant
tunneling properties [8]. It is shown how the relevant
quantities (transmittance and reflectance) are related to
the transition superoperator. The relations between the
transmittance, the packet shape in coordinate space, and
the initial momentum distribution are also spelled out.
A similar analysis is then made in three-dimensional po-
tential scattering. Connections between the asymptotic
behavior of the particle Aux, the differential cross section,
and the generalized optical theorem are made. An Ap-
pendix has been included which contains some scattering-
theory relations used in the text.
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II. SCATTERING IN ONE DIMENSION

In this section the relationship between the transi-
tion superoperator and the relevant quantities in one-
dimensional scattering is described. In a general time-
dependent collision the density operator p(t) can be re-
lated to the incoming density operator )p(t) (state of the
system in the absence of interaction) through the Manlier

superoperator

p(t) = AI, P(t).

See the Appendix for the definition of the various scatter-
ing operators and superoperators. By using resolutions
of the identity in terms of momentum states [normal-
ized according to & p" (p' )= tI)(p" —p')], the incoming
density operator is decomposed into its frequency com-
ponents, which naturally display the time dependence of
the density operator

alent representation, of this operator

1
W(z, p, t) = — e'" & p+ sh/2(p(t)(p —sh/2 & ds.

For scattering processes, it is the flux at time t and posi-
tion z that is of interest, and this is given by the integral
over the Wigner function

J( t)s= f— t(P,ept) pd

—dJ dp'dp"~p p (~ p)&~ p (0)e ""'"'.
m

In the last line, this has been reexpressed in terms of
the phase-space representative W„t~»(z, p) of a typical
frequency component

p(t) = ff dp'dp"e """"lp'&pss (2) & p"I lim p, „„=—hmnL, (~p„-+ig)(p')& p"(. (6)

Here the frequency ~ipsittt
——(p' —p" )/(2mh) is that as-

sociated with the translational energy difFerence between
p' and p". The time-dependent interacting density op-
erator can then be given in terms of the parametrized
Mufller superoperator by

p(t) = lim dp'dp"e '""p"'Al, (~„„t + irl)
g-+0

x(p'&)pp~ (o) & p"I

In order to discuss the asymptotic position dependence of
the interacting density operator, it is convenient to con-
sider the Weyl correspondence [7], the Wigner [6] equiv-

I

)otd t)
= ptp + ((e/ + Zp + ig) T((d/+ ig)ptd. (7)

The Weyl correspondence of the second term W" (the
scattered part) is given by

Note that stationary (time-independent) scattering is
completely described by the u = 0 components.

The frequency components of the density operator
obey a Lippmann-Schwinger-type [9) equation [We use
here a shorthand notation )p, „= (p' )& p"( for a
free-motion frequency component. p, „ is an operator,

p p
and should not be confused with the scalar amplitude
p&tz t(0) of the initial state, see Eq.(3).]

p)t"(s p) = (2e) t

J dse" & 2+ sit/2((ts —Ze+ itt) T(ts+ itl)p lp —sit/2 &

i exp [is(z —y)] M y, p dyds,~ —ps/m + ir/
(8)

where

ttd (2, p) = (2s) J ds e"" & p+ sit/2) —iT(ts+ ttt)p Ip sit/2 & .

The s integral in (8) can be carried out by contour
integration, closing the s contour above or below the real
axis depending on whether z —y is positive or negative.
The position of the pole depends on the value of p so the
result is

exp[is(z —y)]
~ —ps/m+ i)7

2im2T /' im(z —y)
p ( p

exp
(

)(~+

in) I e(y —~),

I

ative p, the scattered Wigner function takes the form

~"(»p)~»

m )/' im(z —y)exp
( (~+ i)7) ~

M (y, p)dy,
p -~ 4 p

W"(z, p)„&p

8 pp
im 2r /' im(z —y)

where e is the Heaviside function. For positive and neg-

exp( (~+ig) (M.(y, p)dy
m (im(z —y)

)p r (, p

This is the starting point for the following discussion.
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A. Stationary scattering

The stationary case, with ~ = 0, is discussed first,
Taking the g ~ 0 limit gives the simple results

dp «», pl —~Tip', »'» (14)

flux is (using Baranger's [10] notation for superoperator
matrix elements)

lim Wo"(z, p)„&o ———
Ã~ OO p

lim Wo'(z, p)„&o —0,

Mo(y, p)dy,
and 'T is the abstract transition superoperator. To cal-
culate the total flux at large positive z it is necessary to
add the contribution from the incoming component of p:

lim Wo (zip)P&o = — Mo(y p)dy~S'» —OO J
lim Wo'(z, p)p&o

—0.

The contribution to the flux at large positive z from the
zero-frequency term is given by

~ in

where

Wp"p (z, p)

In—W'",„,(z, p)dp =
rn 2' mh

dpf dyM (y, p)
0

= lim dp & pl —iT(ir»)polp ),
g-+0 0

where use has been made of the delta function b(s) =
(2n) ~ f dy exp(isy) arising from the y integration. For
the simplest possible initial state, a pure state with defi-
nite positive momentum p', po ——lp' )& p'I, the scattered

I

e" & p y sh/2lp' && p'Ip —sh/2 & ds
2x
1= -~(p —»').
h

The expression (14) for the scattered flux is elabo-
rated by separately considering the contributions from
the terms containing one and two matrix elements of the
transition operator T [see Eq. (A10)]:

«p plT I»' p' »=«p, » I
&~ I

p' »
' » + «», plTs I» ', »

' »
«p, »IhT lp', p'»=& plTlp' && p'I» & —& pip' && p'IT~Ip &

«p, » l»~ I
p', p' », =& plTI»' && p'ITt Go Ip & —&» IGoTIp' & & p'IT~

Ip &

The corresponding fluxes are

SC
j1,X—+OO

The flow at large negative z is calculated by similar
means. The important de'erence is that there is no con-
tribution from Tj, so that

dp b(p —p')(Tpp —T„, ) = 2 Im Tp p /h,

0

dp«p, pl~Tip', p'»

= - „,h IT-P P
I' (2o)

j2)X~OO dp (2i 7r)b(E„—E„')ITp

dEP b(EP —EP )iT P IPg2 E P P PP

These scattering (W") contributions to the flux at large
positive and negative z are equal. This is in agreement
with flux conservation. The results are summarized in
the following, where j'" is the incoming flux, j+ is the
reflected flux, and j+ is the transmitted flux:

by making use of the condition p & 0. Addition of these
two contributions and use of the one-dimensional optical
theorem (see Appendix) gives

(21)

dp«p, »I ~TIp', p'»— Note that j = j'" + j
The reflectance coefficient R&l is defined as the ratio

between the magnitude of the reflected flux and the in-
coming flux, while the transmittance coefBcient T&I is the
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2

2xn I
dp «p, pl —TIp', p'»

P —OO

(22)

ratio between the transmitted and incident flux. It fol-
lows from the above definitions that

This means that j+ = j'"(1—Rp~) and therefore T„I =
1 —Rpj, as it should for total-flux conservation. These
are general results.

B. The w g 0 components

For ~ g 0 the asymptotic Wigner function oscillates
spatially according to

W"(z, p)p&p
———

p
exp[i~(z —y) jM„(y, p) dy

tKSe2'I daf dye'"~ )'("p+sh/2~ —imp [p —eTi/2), (23)

where a = m(sr+ ig)/p. As z ~ oo the y integration can be performed to give a b function. On taking the limit

g ~ 0 this is simply b(s —@). After carrying out the s integral

W (z, p)p&p —e p & p+ m~h/2p( —i'Tp ~p
—m~h/2p ) .

Z~OO P
(24)

Note that the contribution to the flux from the coherences oscillates both in time and space due to (5) and (24).

C. Time-dependent scattering

The transmittance (T ) in the time-dependent case is discussed next. This is defined as the integral over all

time of contributions of positive flux at asymptotically large z. In particular, there is the question of whether or not
the nondiagonal coherences (a g 0 components of the density operator) contribute to the transmittance. However,

since the only time-dependent factor in (3) is the exponential e ' ' and the definition of the transmittance involves

an integration over time, this provides a delta function b(u) which precludes any of the u g 0 components from
contributing:

OO OO

& T& = lim dt —W(z, p, t)dp
rn

= lim dt dp — WpIp«(z, p)e '"&'&"'pp
p (0)dp'dp"

m

=2m lim pdp-
m

W I„«(z, p)b(~plpl )ppip»(0)dp'dp" (25)

The reason for the notation ( T ) will become clear later. It is convenient to divide this integral into incoming
and scattered components & T )= & T )'" + & T)"according to the decomposition Wpjp«(z, p) = W~P~„(z, p) +
W;„„(z,p). Writing b(uplp«) = mhb(ip'( —(p"))/(p'(, dividing the integrals into positive and negative integration

intervals, interchanging the integration limits, and using the explicit expression for W, „,one obtainsPP

& T&'"= pp p (0)dp',
0

(26)

as it should be. This equation states that in the absence of interaction, the positive part of the momentum distribution
finds its way to the asymptotic region at large positive z. The scattered component becomes

(T) = 2z' «p, pl —Tlp', p" » V ~ (o)b( p -)dp'dp" (27)

It is clear that there are four ways to satisfy the frequency 6 function, thus

OO OO

&T&"=—2irih dp dp' —, «p, pP ~p', p' && pp p (0)
0 0

+ «p, plTI —p', p'» V pp (o)+ «p, plT[ -—p', —p'» tp p p(o)--
+ «p, pl& lp', -p' » t p —p (0)j (28)
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& T&"= — Ri, pp „(0)dp',
0

with the further consequence that

(29)

&~' pp'p'(0)dp
0

(30)

Thus if the whole initial packet is directed forward, the
whole packet contributes to the "average" transmittance.
On the contrary, if some of the packet is directed away
from the scattering center, then there can be interference
terms contributing to the transmittance. These are on-
the-energy-shell terms including directional coherences.
This effect can be particularly important at low average
energies and jor with packets having a broad momentum
distribution.

III. THREE-DIMENSIONAL SCATTERING
In our [2] previous work on the phase-space represen-

tation of scattering processes the emphasis was on sta-

The full expression for the transmittance is therefore the
sum of (26) and (28). However it is expected on physical
grounds that the contributions in the last equation from
negative momenta (—p') should be small or negligible in

a standard wave-packet collision. If this is the case, only
the first term in (28) remains. In this approximation,
Eqs. (19), (22), and (28) imply that the scattered part of
the transmitted packet takes the simple form

tionary scattering, where the initial density operator is

assumed diagonal in momentum states but with possible
nondiagonalities in internal states. That formalism is im-

mediately applicable to potential scattering by dropping
the internal-state labels. In the present work momentum
oA'-diagonal components will also be dealt with. These
arise naturally in time-dependent scattering as shown in
the expansion of the density operator (2). In Ref. [2] it
was assumed that the phase-space function M(x, P), the
three-dimensional analog of Eq. (9), is localized. This
allowed a clear distinction to be made between the col-

liding motion and the asymptotic behavior of the scat-
tered state. With the aid of this separation, a generalized
collision cross section was identified. Here this assump-
tion is examined and it is found that the localization of
M(x, P) is not strictly valid, in particular for the inter-

ference terms corresponding to the contributions that are
linear in T to Z, see Eq. (17). It is then one of the ob-

jectives of this section to show that the generalized cross
section is still appropriate for the description of the col-

lision process. A brief summary of the work reported in

Ref. [2] is given first, then the problems and their reso-

lution are addressed.
Except for the change from one to three dimensions,

the basic formalism of this paper, namely, Eqs. (1) to
(9), is still applicable. Thus the Wigner function for the
scattered part of the frequency component of the density
operator [analog of Eq. (8)] is

W"(r, p) =(2z) dse"'" & p+ sh/2i(~ —Lo+iiI) 'T(~+ i'))p ip —sh/2 &

exp [is (r —x)] M x, p dxds
(2z)s ~ —p s/m+ i)7

m exp(i/(:ir —xi) /' r —x
dx)

p ir —xi' ' ( ir —xi
(31)

where

M(xp) = (2s) J ds s"'"( p+sfi/S( —s1'(s y sS)p„~~p —sfi/2 & (32)

and the integration over the free motion resolvent and
the method of writing the result is discussed in Ref. [2].
K = m(ur + ill)/p and p is the unit vector in the direction
of p. In the earlier work [2] the asymptotic behavior of
the scattered state was obtained by letting iri ~ oo and
resulted in the identification of the generalized (both gain
and loss contributions are included) cross section

I

nent p, „= ip' && p"
i

of the incoming state. From

Eqs. (17) and (32), this contribution is

Mi(x, p) =
i

e '" " & 2p —p"iTip' &
hsh (,

~p-p = (j'") ' «P Pl —iTIP P» (33) —8 '"(9 9)l" & p" ITti2p —p' & i.

where j'" = ll'"i = p'/mh is the magnitude of the in-

coming planar flux. The validity of this result is to be
discussed.

(34)

A. Terms linear in T

The contributions to M(x, p) that are linear in T
are studied first by taking a typical frequency compo-

Clearly, as a function of x, this oscillates and is not short

ranged. But because of its simple structure, it is possible

to exactly compute its contribution to the scattered part
of the Wigner function via Eq. (31):
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16m / e '(P P )'/" 2'(p' —p). /5

(p —(2p —p + i'9 ( p —p') —P" + z9

An understanding of the properties of this contribution to the Wigner function is made difficult by the presence of the
oscillatory exponentials. It is easier to evaluate first its contribution to the particle flux before looking at the behavior
at large distances. The particle flux contribution is found by the three-dimensional analog of Eq. (5), neglecting the
initial weighting factor pplp~~(O),

ji (r, t) = —Wi (p, r) e ' r'r"'dp
nl

/ p II i(P-p") r/5 p I ei(p'-P) r/rh

PiTi ' "iTt(p dP (36)

where the changes of variable, P = 2p —p" in the first term and P = 2p —p' in the second, have been made in
order to simplify the integrals, and the time-dependent exponential factor has been explicitly included in accordance
with the density-operator decomposition (2). In order to carry out the P integration, it is convenient to express the
T matrices in a representation that is half position, half momentum, for example,

& p(T[p' &= h f dr'e ' "'~"
& r'[T(p' &. (37)

Introducing cylindrical coordinates (P„, u, 8) for P with the direction R = (r —r')/~r —r'~ being the symmetry axis,
the P integral in the first term then becomes

f (P+p) iP(r —r')/ soooo[PR+p]e„(r —r') /th

~I2 P2 + i~ p'2 —P„2 —u2 + ig

oo [~R + pll]eiaulr-r'I/5
= —27r2i

~

~Q GB.
0

(38)

Cylindrical symmetry of the integral has been used in the first step to eliminate all but the P„R contribution to the
vector P in the numerator. Contour integration with closure in the upper half plane has allowed the P„ integral to
be carried out, with only the pole at m = (gp'2 —uz + ii))+ contributing [(g)+ designates that square root having

positive imaginary part]. A further change in variable, from u to m (u du = —zu dku) allows the final integration to be
done and completes the analytical evaluation of the P integral of Eq. (38). Note that the to contour goes from p' on
the positive real axis to +ioo, as g ~ 0, so that the integral becomes

27rzh - ihR '+ I+ ei I
— I/s

r —r' r —r'

The second P integral is of the same form, being the complex conjugate of the first, together with an interchange of
p' and p". Thus ji' can be exactly expressed as

ji'(r, t) = e ' r' "' dr' R
~

p'+,
~

+p" ( r'~T[p' ) e
Q / fr —r'f q /r —r'f j

e
—ip" [r—r'//5

r r d R
f + p ( p f

T $

/
r I ) e P

' . / rh

h /2 /r —r'/ [r —r'/) (4O)

It is well known [11—13] that for large r, the exponential exp(ip r//h) can be approximated according to

exp(ip r/h) ih(pr) [b(r + p)e '""/ —b(r —p)e'""/ ], (41)

while ~r —r'( r —r r'. With the use of these asymptotic formulas and recognizing that the r' integrals can be
performed after taking the asymptotic limit, the one-particle scattered flux is given by (neglecting terms depending
nr os)
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(rp'+p") & p'rlTlp' »(r —p")e*'" " '"'"
pll hr2

+ (rp" + p') & p" ~Tt~p"r & b(r —p')e' "
phr2

x „,(rp'+p") & p'r~T~P' & 6(r+p")e' "

+, s(rp" y p') ( p")T((p"r ) b(r+ p')e '(r + )"l"). (42)

If an integral over time is to be performed, as is the case
when computing the total number of scattered particles
for a given direction, only zero-frequency components
contribute (see the discussion in Sec. III C). But for zero
frequency, )p'( = )p"), the last two terms in the former
expression vanish, and the time dependence disappears.
The contribution to the scattered spherical flux (num-
ber of particles per steradian per second, per momentum
cubed of the incoming beam) is then

ji~ (r) = lim r r jr~oo
-2xi

h
[& p'rlTlp' »(r —p")

p'p" ITt
I

'' ~( —p')] (43)

Note the "double-interference" effect associated with the
two directions in the incoming angular coherence. The
linear (in T) contribution to the total flux, irrespective
of the angle and time, from a given on-the-energy-shell
component, is then obtained by integrating this scattered
spherical flux over all angles

Note that both j&~" and j&
' are scalar quantities. The

generalized optical theorem has been applied to express
the linear (in T) result as a quadratic (in T) integral.
It will be seen later that this integral exactly compen-
sates the total flux from the quadratic (in T) term of
the transition superoperator. In other words, the total
scattered flux through a spherical surface for a given co-
herence vanishes, j = j& + j& ——0, and this implies

I

j&
—— dij& r = —&pp T —Tp )

h

dP & PITIP' »(&r —Eil ) & p'P" ITt lp &
h

= 2xmp'

h
dp & p'piT~p' && p'p" ITt lp'p &

(44)

particle conservation (the total flux from the incoming
part of the density operator is also zero). While the gen-
eralized optical theorem is usually given as an abstract
relation [15], the present formalism gives it a physical
content, which can be formulated in the following way.
"The total flux due to any on-the-energy-shell coherence
vanishes. " This statement is well known for the partic-
ular case p' = p", which corresponds to standard sta-
tionary scattering [13], but to our knowledge, had not
been spelled out for a general zero-frequency coherence,
That these coherences contribute to the scattered differ-
ential flux (integral over time of the spherical flux in a
given direction) is an interesting result. In practice, this
means that density operators whose incoming parts have
the same diagonal elements in momentum representation
but different coherences do not necessarily give the same
differential flux. Thus, for the theoretical modeling of a
scattering experiment in which only the average energy
and energy resolution, typically the two first moments of
a Gaussian distribution, are specified it is not equivalent
to compute the differential fluxes from the time evolution
of a Gaussian packet (retaining nonzero coherences), or
from a stationary density operator having identical in-

coming diagonal elements to the Gaussian packet. For
the special case where the incoming state is diagonal in
momentum (direction as well as magnitude), the stan-
dard "forward interference"

ji'" = & p'ITt —Tlp' »('- p')
h

/2 2

h
~(r P ) dpi & P'ITIX

2m )
(45)

is obtained.

B. Terms quadratic in T

The quadratic (in T) contribution to M(x, p) is found
in an analogous manner. From Eqs. (17) and (32) the
formal expression is

M2(x, P) = dse'"' & p+ sh/2~T~P' && p"~T [p —»/2 &
(2ir)sh

1 1

(p"s —(p —sle/2) s —iri p's —(p+ eh/2)s + iei)
(46)

It is desirable to show that this is local in z, i.e. , that it falls off fairly rapidly with z so that the asymptotic properties
of the scattered Wigner function as discussed in Ref. [2] would be valid. For this purpose, the asymptotic behavior of
M2(x, p) is now examined. It is found to decrease but not as rapidly as was expected.

In order to carry out the s integration, it is again useful to introduce the mixed representation (37) of the transition
operator so that M2(x, p) can be written
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Mm(xp, ) = f dr d'r "& r'(T(p' && p" (T (r" &

-' ' ( + 5/ )/5
' "-( —5/ )/5

1 1

I,p"2 —(p —sh/2)2 —ir/ p'2 —(p + sh/2)2 + ir/ j (47)

The s integration can now be explicitly carried out. Each resolvent needs to be treated separately and if the trans-
formation from s to P = p+ sh/2 is made for the second resolvent, , then the P integral can be read off of the result,
Eqs. (38) and (39). The first resolvent is integrated in an analogous manner so that

4mi, „&r')T)p' && p")T )r" &
Ms x, p dr'dr"

)2x —r' —r")

x e
~

~

2i(x-r'). p/h -ip"12x-r'-r" 1/& 2ip'(r"-x)/h ip'12x-r'-r" 1/" (48)

It is now appropriate to consider the behavior as z ~ oo. On the basis that the potential V is short ranged, the vector
magnitude can be expanded as )2x —r' —r"

l
2z —x (r'+ r") while the exponential involving x can be expanded

using Eq. (41). Of the two terms in Eq. (41), only one can at least partially compensate the spatial oscillations
arising from the exponential involving the absolute value. For each term in Eq. (48), only the partially compensating
exponential term has been retained, to give

2'
M2(x, p) 6'(x —p) dr'dr" ( r')T)p' && p' )Tt)r

h h3pZ2

e2i(p-p )z/hei[(p' -2p)p r +p' p r l/5 + e2i(p -p)x/he[2ip r '-p'p (r'+r )]/5

2'
~(» P) g [e & (2p p )PITIP' && p")Ttlp"P &

h pZ2

+e2'(& &1 /" ( p'p)T)p' &( p")Tt)(2p —p')p &].

For the special case of on-the-energy-shell collisions, so that p = p" = p', this reduces to

M2(»p) - ~(x —p) g & p'p)T)p' &( p")T )p'p & .
h'p'z2 (50)

In all cases this shows that M(x, p) falls off as z 2. It was expected that this would decay with z somewhat as rapidly
as does V(x), but this is not the case. The resolvents limit the decay rate. However this is still sufflcient to warrant
the use of the asymptotic methods of Ref. [2].

The asymptotic behavior of W'P(r, p) has been discussed in Ref. [2]. Alternatively, the properties of the corre-
sponding scattered flux js~ can be examined. It follows directly from Eq. (31) and the form for T2, Eq. (47), that

j2'(r, t):— —W~"(r, p)e ' ~'~"'dp
m

4me '~"."'
dr'dr" & r')T)p' && p")Tt)r" &

(2n) h

f
e-i(r'-r) (p+»/2)/~ ei(r"-r) (p-s&/2)/&

x dp ds
[p"~ —(p —sh/2)~ —ig][p'~ —(p + sh/2)2 + ig]

'

Here the free Liouville resolvent has been cancelled by the numerator arising from combining the tvro Hamiltonian
resolvents (technically there is a difference of ir/ and 2ir/, but as r/ ~ 0 this difference vanishes). Now it is noticed
that the combinations p + sh/2 are the natural variables for the last integrand. Thus changing variables from p and
s to these combinations, the latter integrals can be performed using Eqs. (38) and (39). It follows that

mme
R.

)
p'+ )+R') p"—

xe'n I' ' I/" ( ')T)p' && p")Tt)r" & e

27I'm p + p & ~ p gg " "e ' ~'~"' & p'r)T)p' && p")Tt)p"r &,2 2
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where K'—:(r —r")/~r —r" ~. This flux is in the radial
direction and decays with r as appropriate for the ra-
diation condition. But it also oscillates in time and space
due to the energy nondiagonality of the incoming state.
In the particular case where p" = p' both these oscilla-
tions vanish but there can still be a coherence between
different directions. The scattered spherical flux in the
radial direction is then

~(v.v )-~ = j'"(p)/j'"
rnh' «p, pi —i&[p', p" », (54)

generalized scattering cross section was given by Eq.(33).
Generalizing this to the case where there is a coherence
in the initial-momentum direction defines

jz~ (p)
—= lim r p j2'

2

h
& p'plTlp' && p" ITt lp'i & (53)

where p = r. This completes the comment on the total
scattered flux made following Eq. (44). In Ref. [2] the

with the implicit assumption that the momentum magni-
tudes P" and P' are equal and using j'j'"(P) = jj~"(P) +
jz~"(p) for the spherical flux due to the ~p' && p"

~

co-
herence. The validity of the second equality is now shown
in detail:

rnh'
pi P "P « P PI —i&IP P

—imh3
W

Ij dP &PITIP &~(p P ) ~(p P) &O'IT Ip&

+2m & plTlp' && p" IT Ip &
I

(,p"' —p' —iq p" —p'+ i)7) .

[& P"l&lp'»(P P') —~(P P ) & P'IT~IP' &]

+(2mmh) & p'p)T(p' && p")T )p'p & . {55)

Use has been made of the restriction that p" = p' in order
to convert the difference of resolvents into a b function.
After taking into account the factor mhs/p' which con-

verts the spherical flux into a cross section, it is seen that
the last expression is precisely the ratio j'j'"/j'".

C. Time-dependent scattering

So far, the stress has been on particular components
of the incoming density operator, and more specifically
on zero-frequency components (diagonal elements and di-

rectional coherences). Nevertheless, the physical flux in

a time-dependent collision is given by an integral over
all components of the incoming state, and this usually
involves energy coherences as well as the zero-frequency
components. In this subsection the various integrated
physical Quxes include the coherence contributions, and
the special relevance of the zero-frequency components is

justified by resorting to time integration.
Different fluxes associated with coherences have been

previously represented as functions of position and time.
However they also depend parametrically on the coher-
ence momenta. Here it is useful to indicate this de-

pendence explicitly in their arguments. Thus j"
j"(r,t;p', p") and j'j'" = j'j"(p, t;rp', p"), where p =
r. While for directional coherences the r and t depen-
dence of j'I'" vanishes, for an energy coherence this flux

does oscillate with time and distance from the origin, see

(42) and (52).
With this notational convention, the total scattered

flux at given position and time becomes, using the three-

I

dimensional analog of (5):

J"(r, t) = ff dp'dp"j' (r, t;p', p")prr«(0) (56)

and the corresponding spherical flux is

(P " t) = OdP dP t (P " t'P P ') Pr r-(0)

From the explicit form for the time dependence, the in-

tegral over time of this quantity gives

N' "(p) =— Qt J' "(p, r, t)

dp'dp" j""(i,r, o; p'p"),

~((p' -p" )/2 )V ~ (o) (»)

~sph(- )
I

I ll
dp dp, 0(pip&t) p

tr p/2 pl/2
x6

~ P~ p (0).
2m

This is independent of r because the b function requires
the magnitudes p' and p" to be equal. Assuming that
the flux due to the incoming part of the density operator
is negligible at this angle ¹&"represents the fraction of
particles that arrive asymptotically in a given unit solid

angle. It can be written in terms of the generalized cross
section as
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Clearly only directional coherences contribute to the
time-averaged spherical flux.

IV. DISCUSSION

Special attention has Leen paid to the asymptotic be-
havior of the particle flux. This has allowed the gen-
eralized differential cross section (in three dimensions)
or the transmittance (in one dimension) to be expressed
in terms of the transition superoperator. In a previous
work, the expression for the differential cross section was
obtained by assuming that the Weyl transform of the
transition superoperator decays as rapidly as the interac-
tion potential. It has here been shown that this expected
behavior is not correct. But using a proper derivation,
the original result, namely identifying a generalized cross
section and relating it to the transition superoperator,
remains valid.

The present treatment extends the scope of the former
phase-space descriptions since time-dependent scattering
is considered. This involves momentum coherences, or
nondiagonal elements of the incoming density operator.
An expression obtained for the one-dimensional transmit-
tance in time-dependent scattering contains nondiagonal
contributions. However, only on-the-energy-shell coher-
ences are present in it. If the initial average energy is not
too low and the momentum distribution is not too broad,
this coherence effect can be neglected and the transmit-
tance becomes the average of the stationary transmit-
tances, the weighting function being the initial momen-
tum distribution. It is then interesting to see that, under
these suitable conditions and provided that the momen-
tum distribution remains the same, the shape of the ini-
tial state, pure or mixed, in coordinate space does not
affect the transmittance. This is in agreement with clas-
sical reasoning and numerical evidence [14].

In three dimensions, a precise and physically transpar-
ent expression for on-the-energy-shell matrix elements of
the generalized optical theorem has been found, namely:
"The total flux through a spherical surface due to any on-
the-energy-shell coherence vanishes. " These on-shell co-
herences are also privileged in three-dimensional scatter-
ing in the sense that they are the only ones contributing
after time integration, and the only ones whose flux is free
from time and spatial oscillations. The Aux contribution
from a particular on-shell coherence ~p' & pi, p & p"

~

is
in general a complex quantity. The real flux contribution
is obtained by addition of the effects of the conjugate
coherence ~p" & p& & & p'(. The Hermiticity of the
density operator assures that cancellation of the imagi-
nary part always occurs. Generalized cross sections are
de6ned for directional coherences. In general, these co-
herences contribute to the total flux in a given direction
together with the standard differential (populational or
diagonal in momentum) cross section, and cannot be dis-
regarded unless the experimental conditions justify do-
ing so. In particular, for an incoherent beam of sharply
peaked packets (in momentum) directed along a homo-
geneously distributed set of impact parameters there is
no significant coherence contribution [5, 16]. Mixed in-
coming states diagonal in momentum are also free from

such contributions and give strictly stationary scatter-
ing. Pure-state wave packets, on the other hand, have an
asymptotic total flux contribution due to initial on-shell
coherences. Pure wave packets are also characterized by
time-dependent nonstationary behavior due to the off-
the-energy-shell coherences.

The recent development of efficient numerical meth-
ods for propagating time dependent wave packets is fre-
quently considered a practical alternative to stationary
computations. However, care should be exercised in an-
alyzing the results, in the light of the present discussion.
A study of the quantitative importance of the coherence
contributions is in preparation.
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APPENDIX: SCATTERINC- THEORY
RELATIONS

Operator relations are discussed first, then superoper-
ator relations. The abstract Mgller and transition oper-
ators are defined as

0= 1' '0'/h 'H /h T= VOt~-0O

They are related to the parametrized operators by

BP = f lim A(E~+ie)~p &( p~ii & dp

(A1)

(A2)

rIp &= lim r(Z„+ is) Ip» (A3)

where

Q(z) = 1+ 1
r(z), r(z) = V+ V V.

1

r(z)
1

Z p

=V 1

z —H

The generalized optical theorem in abstract operator form
can be written as

with the understanding that the free-particle states on
which this operator relation acts (both ket and bra) have
energy E. The corresponding expression for the matrix
elements diagonal in momentum is the optical theorem
[15]. In one dimension it reads

(A4)

Some useful relations between resol vents and
parametrized operators are

1 1 1 1
r(z)

z —H z —Hp z —Hp z —Hp'

(A5)
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(A7)

The abstract M@ller and transition superoperators are
defined as

QIA = hm Qr(~pp+irl)lp, p )&&& pp lA && dpdp'
g-+0

(Al 1)

(AS) and

where the Liouville superoperator 2 = h [H, ] is de-
cornposed into its free and potential parts, 2 = Zo + V,

'Tlp, p' ))= lim1 (supp +irI)lp, p' )&,
@~0

(A12)

8o —h '[Ho, ], V=6 '[V, ]. (A9)
where

The abstract QI. and 'T can also be expressed in terms
of 0 and T as

h7 A = TAO —GATI . (A10)

They are also related to the parametrized superoperators
by

(A13)

The one-dimensional expressions [(A2), (A3), (All), and
(A12)] can readily be generalized to three dimensions by
changing from scalar to vector momenta.
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