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Electron-impact excitation of the T and V states of ethylene: An ab initio study
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We report total and differential cross sections for electron-impact excitation of the T (@ ’B,,) and
V (1B,,) states of ethylene from threshold to 20 eV. The calculations were carried out using the com-
plex Kohn variational method. For collision energies above the threshold for excitation of the V state,
we carried out three-state close-coupling calculations using accurate multiconfiguration target states.
An averaged natural orbital technique was used to obtain a compact representation of the V-state wave
function that properly reflects the mixed valence-Rydberg character of this state. The total and small-
angle differential cross sections for exciting the optically allowed V state are sensitive to the inclusion of
high partial-wave contributions, which were computed using a simple perturbative scheme. In the ener-
gy range between the T and ¥ states, where only two electronic states are open, we carried out dressed
two-state calculations using optical potential techniques to incorporate the effect of closed channels. We
found significant d-wave resonance behavior in the T-state excitation cross section near 5 eV. At higher
energies, the T-state differential cross sections are backward peaked, while the ¥ state cross sections
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show strong forward peaking that is typical of an optically allowed transition.

PACS number(s): 34.80.Gs

I. INTRODUCTION

For many years theoretical treatments of the electron
scattering from complex polyatomic molecules were lim-
ited to electronically elastic scattering, often using model
potentials and excluding electron exchange. Reliable
computational methods for treating electronic excitation
were absent. In addition, the difficulties of performing
the necessary differential and integral cross-section mea-
surements were such that accurate data for many mole-
cules simply did not exist. Since these data are needed
for many practical applications, including plasma chemi-
cal processing and deposition, gas laser modeling, astro-
physical processes and atmospheric modeling, as well as
for fundamental spectroscopic purposes, the need for reli-
able theoretical methods is espeeially acute. To exacer-
bate matters even further, these cross sections are often
required for transient species such as free radicals or
molecular fragments which are difficult to prepare
and/or detect in the laboratory.

We have developed and successfully applied the com-
plex Kohn variational method (CKVM) [1,2] to both dia-
tomic [3-7] and polyatomic [8-11] electron-molecule
scattering problems. The CKVM has proven to be a reli-
able tool for the study of the elastic and electronically in-
elastic scattering of electrons from polyatomic molecules.
Our approach is ab initio in the sense that we solve the
Schrodinger equation from first principles without the in-
troduction of any arbitrary parameters or experimental
information. Both the target wave function of the mole-
cule and the scattering wave function at short range are
determined variationally using a linear combination of
Gaussian orbitals to describe the electrons. To account
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for the asymptotic regions in the scattering channels, the
Gaussian basis set is augmented by a set of “free” func-
tions for each open channel. The Kohn variational prin-
ciple [12] for the T matrix is used to determine the op-
timal coefficients in the expansion. Since one of these
coefficients is associated with the outgoing scattered
wave, it is possible to extract a variationally stable 7" ma-
trix from the solution of a set of algebraic equations
whose dimensionality is determined by the number of
open channels retained in the calculation.

In contrast to a number of other approaches, the
CKVM is based on a Hamiltonian formulation of the
scattering problem. This feature makes it possible for us
to take advantage of many of the tools of modern
electronic-structure theory in calculating most of the re-
quired matrix elements. In our formulation of the Kohn
method, which makes use of separable expansions to
eliminate large classes of continuum matrix elements
[13], the only additional matrix elements required are a
relatively small set of free-free and bound-free integrals.
These are efficiently computed using three-dimensional
numerical quadrature [14]. A detailed account of the
procedure can be found in our earlier publications
[5,7,10,14—16]. The electronic-structure codes we em-
ploy [17] allow us to use correlated target states as well as
optical potentials derived from large scale configuration-
interaction (CI) calculations to include final-state correla-
tions. In essence the scattering calculation may be
viewed as an elaborate electronic-structure calculation on
the wave function of the transient negative ion which is
connected to the outside world by the free-free and
bound-free integrals needed to correctly describe the
asymptotics.
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In this paper we report results for the (m—u*)
electron-impact excitation of ethylene (C,H,). Ethylene
is important as an industrial gas and as a prototype for
heavier hydrocarbons; it has been studied experimentally
by a number of researchers. These experiments have pro-
vided useful information on the total and momentum-
transfer cross section for low-energy electron collisions
with C,H,. However, little information currently exists
on angularly resolved elastic or state-specific electronical-
ly inelastic scattering of electrons by C,H,.

The low-energy elastic scattering of electrons by C,H,
contains two prominent features: a Ramsauer-Townsend
(RT) minimum at ~200 meV [18,19] and a shape reso-
nance of 2B2g symmetry at 1.8 eV [20]. The resonance is
of the 7* type, quite similar to the well-known shape res-
onance in N, [21]. The width of the resonance is larger
than that in N, and vibrationally resolved measurements
[22] reveal a much less detailed structure consistent with
a shorter-lived negative ion. Recent complex Kohn vari-
ational calculations [11] on the elastic scattering of elec-
trons from C,H, using optical potentials constructed
from large-scale CI calculation§ have confirmed the ex-
istence of the RT minimum at 200-300 meV in C,H, and
have produced a B,, shape resonance at 1.84 eV with a
width of 460 meV, in excellent agreement with available
experimental information [20]. The calculation was not-
able in that it was the first to confirm the existence of a
RT minimum in a molecule possessing a permanent
quadrupole moment and suggests that such minima may
exist in the cross sections for many nonpolar molecules.

The experimental situation for electronically inelastic
scattering in C,H, is far less satisfactory. There have
been several electron-energy-loss measurements that
identify the positions of a few of the excited states of the
molecule [23,24], a few trapped-electron experiments
[25,26] that report threshold excitation functions for a
few transitions, and some relative differential cross-
section experiments [27] that show the qualitative
features expected of forbidden versus allowed transitions
in any atomic or molecular target. We reserve further
discussion of these experiments for Sec. IV of the present

paper.
II. THEORY

The complex Kohn method has been described in pre-
vious papers in some detail. We will only give a brief
summary here and concentrate on those aspects of the
formulation most relevant to the problem at hand, name-
ly, the generation and use of accurate multiconfiguration
target states and the special techniques needed to treat
optically allowed transitions. The scattering of an elec-
tron by an N-electron target molecule in the fixed-nuclei
approximation may be described by a wave function of
the form
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where yr is an N-electron bound-state wave function of
the target, F rr, the scattering wave function for an elec-

tron incident in channel Iy, and ©, a set of square-
integrable (N +1)-electron wave functions used to de-
scribe “penetration,” polarization, and electron correla-
tion effects not present in the open channel (first sum)
portion of Eq. (1). The antisymmetrizer A ensures that
the overall wave function changes sign when any two
electronic coordinates are interchanged.

In the complex Kohn method the scattering functions
Frr, are themselves expanded as a linear combination of

bound functions, as well as outgoing continuum func-
tions, g§ and regular continuum functions f, which
behave asymptotically as

sin(kpr—Im/2)

f(r) ~ — )
fin ~ Ve "
r expli(kpr—Im/2)]
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where kp is a channel momentum. Rather than the
“conventional” choice for the outgoing continuum basis
functions, which is simply to use Ricatti-Hankel func-
tions regularized at the origin with an arbitrary cutoff
function, we use the dynamically determined functions
[16,28]

gfin=9v/[VvF, (3)

where 9} is the partial-wave free-particle Green’s func-
tion, V is any short-range function (we use a simple ex-
ponential), and F; is the regular Ricatti-Bessel function.
It is simple to show that this function satisfies the asymp-
totic form specified in Eq. (2). We found that this choice
for the continuum basis functions gave much better con-
vergence than the conventional one.

In practical applications both xr and ©, are expanded
as linear combinations of configuration state functions
(CSF’s) which are themselves constructed from antisym-
metrized products of one electron orbitals. The Frr_ are

required to be orthogonal to the entire set of orbitals used
in the construction of the CSF’s in order that the overall
(N +1)-electron functions form an orthonormal set.
Therefore a subset of the ©,, the so-called penetration
terms [29,30], are introduced in order to compensate for
the orthogonality constraint imposed between the F rr,

and the molecular orbitals used to construct the target
wave functions. A more detailed discussion of Eq. (1) can
be found in Ref. [5]. For the purpose of this discussion it
is important to note that, since the size of the scattering
space depends on the product of the number of target
CSF’s times the number of scattering functions, it is
desirable to keep the orbital set used in the construction
of the target CSF’s as small as possible. Moreover, if we
can achieve a compact representation of the target states
in terms of a small set of molecular orbitals, then the
number of penetration terms needed to relax orthogonali-
ty constraints can also be made small. We have recently
shown [5] that close-coupling calculations which employ
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a large number of variationally determined penetration
terms can be plagued by pseudoresonances at intermedi-
ate energies unless these terms are appropriately restrict-
ed. Thus it is essential to invoke methodologies which
reduce the molecular-orbital subspace used to construct
the target CSF’s to a small number. Our approach is to
start with a reasonably large orbital basis, construct a
configuration-interaction expansion that reproduces the
major correlation effects present in the ground and excit-
ed states of the target, and to then use natural orbital
techniques to drastically reduce the orbital space needed
to reproduce the original CI energies and wave functions.

One of the excited states included in the present study
is optically allowed from the ground state. For such
dipole-allowed transitions, many partial-wave com-
ponents are needed to properly describe scattering for
small deflection angles of the incident electron and to ob-
tain converged total cross sections. The reason is that
the underlying direct transition potential for such transi-
tions gives rise to a long-range interaction which behaves
asymptotically as D-r/r>, where D is the transition di-
pole moment.

It is neither possible nor necessary to carry the full
complement of partial waves in a coupled-channel varia-
tional calculation to obtain converged cross sections.
Beyond a certain [ cutoff, the partial-wave components of
the scattering functions do not penetrate the interior part
of the molecular target. In this weak-scattering limit, it
is sufficient to employ a perturbative treatment such as
the Born approximation. There is a considerable litera-
ture on the subject of electronically elastic scattering of
electrons by polar molecules [31], where similar con-
siderations about the underlying electron dipole interac-
tion apply. In many of these studies, a Born closure for-
mula is used to accelerate convergence of integral and
differential cross sections. The same general considera-
tions apply to the case of excitation cross sections for op-
tically allowed transitions. However, the way we imple-
ment Born closure differs from the procedures that are
traditionally applied in several key respects. We use a
numerical procedure to construct the laboratory-frame
cross sections from the partial-wave T-matrix elements,
rather than the analytic procedures that are typically
used. This in turn allows us to apply Born closure direct-
ly to the scattering amplitudes rather than to the
differential cross sections. We will describe the method
in some detail below.

The partial-wave Born approximation for a particular
T-matrix element contributing to an inelastic dipole-
allowed process I'—T" is given by

BrEY  =2Vkekp [ ik r) Y () (xrHXr)
Xj](krr)Ylm(’l\')dBr . (4)

Consistent with this approximation is the replacement of
the transition potential by its asymptotic form [32]

Ver(r)=(rHxr)
= fX[‘(rl, D
~D%/r?, (5)
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where D is the transition dipole moment for the transi-
tion in question and T is a unit vector in the body frame
of the molecule. In this limit, the partial-wave T-matrix
elements can be evaluated in closed form [33]. It is also
possible to evaluate the full-body-frame, fixed-nuclei T
matrix (scattering amplitude) in this same limit [34]:

, krky' —itkme—kr)r DT
<kr.|BT”|kr>=——‘/ rr fe tkr k) —D—rd3r

872 r?
_ VkrkpiDX ©
 2mlkp—kp|

where k'=(kp.—kp)/|kp—kp|. We next write the
partial-wave expansion of the exact body frame T matrix
in the following form:

R
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where we have merely added and subtracted the Born ap-
proximation to the partial-wave expansion of the exact T
matrix. The point to note is that the sum now contains
differences between exact and Born partial-wave ele-
ments, which rapidly approach zero as / (/') get large.
For C,H, we found that retaining terms up to and includ-
ing I (I’)=5 was sufficient to converge the T matrix to a
few percent. Note that it is essential to employ a con-
sistent phase convention in evaluating the various contri-
butions to Eq. (7). It is also necessary to define the transi-
tion moment D used in the Born approximation to the T
matrix in the same coordinate system that is used in the
electronic-structure calculation.

In order to obtain differential (and total) cross sections
corresponding to a random orientation of the target mol-
ecule with respect to an incident electron beam in the lab-
oratory frame, cross sections obtained from the body-
frame scattering amplitude must be averaged over all
orientations of the target in a laboratory-fixed coordinate
frame [35]

do™ _ (4n) I dad cosBdy
dQ k% 82

{kp|TTT

k2. ®)

The integration in Eq. (8) is over the three Euler angles
that orient the vectors ki and k- with respect to the tar-
get. The angle between kp and k. is the laboratory
scattering angle.

It is traditional to use rotational harmonics to express
the body-frame T matrix in terms of laboratory frame an-
gles so that the orientation dependence of T and hence
the averaging required in Eq. (8) can be performed
analytically [35]. This is one aspect of our treatment that
differs from the usual approach. We elect to perform this
integration numerically, keeping the angle between k-
and k- fixed. This approach avoids the complex angular
momentum algebra necessitated by an analytic formula-
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tion [36] and substantially reduces the complexity of the
coding required. Moreover, it allows us to use the Born
closure formula for the T matrix, Eq. (7), directly in Eq.
(8). We use numerical quadrature to evaluate Eq. (8).

J

cos(a)cos(B)cos(y ) —sin(a)sin(y)
kp(a,B,7)= |sin(a)cos(B)cos(y)+cos(a)sin(y)
—sin(B)cos(y)

To appreciate the manner in which our technique
differs from traditional procedures, it is instructive to ex-
amine the way in which cross sections are usually evalu-
ated. The rotationally averaged differential cross section
for an arbitrary polyatomic molecule can be expressed in
terms of a completion formula that takes the form of a
Legendre expansion [36]:

do™l =
= A; P;[cos(8)], (10)
da & A

where the A4, coefficients can be expressed in the form
A4,=TX,T. an

T is the partial wave T matrix and X, is a (complicated)
symmetric matrix [36] whose explicit form need not con-
cern us here. The essential point is that for dipole-
dominated transitions, the 4, coefficients with large A
values get most of their combination from terms involv-
ing T-matrix elements with large / values, for which the
Born approximation gives good values. Therefore Eq.
(10) can be well approximated as
dofT Mo

do™ + 34 — ABom)p, [cos(0)] (12)
o) dQ =, A A A )

This is the way in which Born closure was originally used
to accelerate convergence by Itikawa [38], for example,
and by Crawford and Dalgarno [39]. Equation (12) has
also been used in more recent angular frame transforma-
tion schemes [31,40,41] as well as in recent ab initio [42]
and model potential studies [43]. A notable exception
can be found in the work of Fliflet and McKoy [44], who
used the momentum-transfer representation of Siegel,
Dill, and Dehmer [45] to express the differential cross
section in the form of an incoherent sum before applying
Born closure:

do'r
dQ

=3 B2, (13)
Je
where the expansion coefficients B’ have the form
Bl)= 3 X/TEE, Y.(Q) . (14)
Lm,I',m’

A Born-closure formula is then applied directly to Eq.
(14) and the result used in Eq. (13).
We note that Eq. (8) as well as Eq. (13), express the
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Starting with an initial pair of wave vectors kro and k ’l-o
in the body frame, we can express the wave vectors need-
ed to evaluate the integrand [Eq. (7)] for any set of Euler
angles, from the expression [37]

—cos(a)cos(B)sin(y ) —sin(a)cos(y) cos(a)sin(fB)
—sin(a)cos(B)sin(y ) +cos(a)cos(y) sin(a)sin(B) |kr . 9)

sin(B)sin(y) cos(B)

I

differential cross section as the squared modulus of an
amplitude and will always produce a physical result no
matter how severely the partial-wave series is truncated.
This is not necessarily the case with Eq. (12), which can
produce negative cross sections if the angular momentum
sums are not converged. This is most likely to be a prob-
lem at large scattering angles where doLl. /dQ is not
necessarily a good approximation to the true cross sec-
tion. Indeed, Gibson et al., [42], who used Eq. (12) in
their study of excitation of the optically allowed B '3,
state of H,, reported problems with convergence at inter-
mediate scattering angles. We found that we could ob-
tain convergent cross sections at any scattering angle
with a relatively small number of variationally obtained
T-matrix elements.

It is also interesting to note that it is possible to evalu-
ate the scattering amplitude in the Born approximation
for an arbitrary polyatomic molecule analytically when
the target wave functions are expanded in Cartesian
Gaussian basis functions [46]. However, the resulting ex-
pressions are considerably more complicated than what is
achieved in Eq. (5) by using the simple dipole approxima-
tion to the transition potential. The essential point to
bear in mind is that it is only the high-order partial-wave
T-matrix elements that are needed for convergence.
These terms are insensitive to the short-range part of the
transition potential. The exact Born and dipole Born 7-
matrix elements will of course differ for small values of /
(I'), but these terms cancel out of Eq. (7). Therefore the
dipole Born approximation achieves a considerable com-
putational economy without any compromise in accura-

cy.

III. COMPUTATIONS

Ethylene is a closed-shell molecule with a ground state
(N) of ‘Ag symmetry. The first excited electronic state (@
or Mulliken’s 7 state [47]) is of * B, symmetry and is lo-
cated 4.6 eV vertically above the ground state, while the
'B,, state (Mulliken’s V state) is located experimentally
at 7.65 eV. While the (m—#*) triplet state is well
characterized at the Hartree-Fock level as a valence state,
characterization of the ¥V state proved to be a difficult
task for theoreticians for a number of years. Extensive ab
initio calculations have confirmed that the ¥V state is
mostly valencelike with a small Rydberg admixture [48].
(The lowest Rydberg state of ethylene is located ~7.1 eV
above the N state.) It was our desire to obtain relatively
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simple representations of the excited states that preserved
their valence character. This is especially important for
the V state since previous theoretical studies have shown
that Hartree-Fock calculations produce a Rydberg-like
state [49] and no single-configuration wave function was
able to achieve the proper valence-Rydberg balance.

All calculations were carried out at the equilib-
rium geometry of the ground state (Roc=1.339 A,
Rcy=1.086 A, H-C-H=117.6°). The basis set we em-
ployed for the target state calculations consisted of
Dunning’s (9s/5p) carbon basis [50] contracted to
[4s /2p] and Dunning’s (5s) /[ 3s] basis for hydrogen [51].
We included a set of d functions for polarization on each
carbon atom (a; =0.45), along with a full set of diffuse p
and d functions (ap=0.05, a,;=0.085) at the center of
mass and p functions (a,=0.2) on the hydrogens. The
ground-state self-consistent field (SCF) energy in the basis
is —78.0401 a.u. We then performed a Tamm-Dancoff
CI calculation which consists of all single excitations
from the ground-state SCF wave function. McMurchie
and Davidson [48] have noted that such a calculation
does remarkably well in describing the V state compared
to their more extensive CI calculations. We next ob-
tained natural orbitals by averaging the density matrices
for the ground, T, and V states. Ordered on the basis of
occupation number, the first eight natural orbitals corre-
spond to those strongly occupied in the ground state,
while the ninth orbital is a valencelike 7*(b,,) orbital.
We also retained the next three natural orbitals which in-
cluded a 0*(b,,), a Rydberg b,,, and a b,, orbital. To
generate the target wave functions used in the scattering
calculations, the all singles CI calculations were repeated
using this smaller set of twelve natural orbitals. The
values we obtained for the N—T and N —V excitation
energies were 3.64 and 8.20 eV, respectively, compared to
the values of 3.55 and 7.90 eV we obtained using the full
orbital basis. The calculated value for the out-of-plane
extent of the V state, as measured by (W¥|3,x?¥), is
very sensitive to deficiencies in either the basis or the CI
[48]. We obtained a value of 14.3 for this quantity, com-
pared to McMurchie and Davidson’s best value of 17.8.
Finally, the value we obtained for the N — ¥V transition
moment was 1.65 a.u., compared to McMurchie and
Davidson’s value of 1.76.

In order to generate the square-integrable basis orbitals
for the complex Kohn variational calculations, we used
the entire set of natural orbitals, less the twelve target or-
bitals, plus additional orbitals, depending on the total
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symmetry being studied, constructed from the functions
listed in Table I. Finally, we included partial-wave con-
tinuum basis functions up to / =5, |m|=4 in our calcula-
tions. Details about the numerical schemes used in the
evaluation of bound-free and free-free matrix elements, as
well as other technical aspects of the complex Kohn
method, have been given elsewhere [5-16].

We carried out three-channel calculations over the en-
ergy range from 9 to 20 eV, where the N, T, and V states
are all energetically open. For these calculations, the
only Q-space terms [second sum on the right-hand side of
Eq. (1)] included in the trial wave function were the
penetration terms generated from the dominant config-
uration in each target state which are needed to relax the
orthogonality constraints imposed on F IT,- These terms

are generated by considering the direct product between
the target natural orbitals and the three configurations
[ 12 [ Jw=*, °B,,, and [ ]#7*, 'B,, and retaining those
terms consistent with the Pauli principle. We did not use
any minor components of the target wave functions to
generate penetration terms since inclusion of such terms
can give rise to spurious behavior at higher energies un-
less special projection techniques are employed. This
point is discussed at length in Ref. [5].

In the energy range from 4 to 8 eV where, in our calcu-
lation only the N and T states are energetically open, we
performed two-state calculations and included additional
correlation terms to incorporate the effect of closed chan-
nels. The Q-space terms in this case consisted of the
same penetration terms referred to above along with a
class of CSF’s which we have previously referred to as CI
relaxation terms [10]. These terms are simply the direct
products of the L? scattering orbitals used to expand
F rr, and all of the states (excluding N and V) that can be

formed from the CSF’s used in our target CI calculation.
These terms can thus describe the effects of target distor-
tion and polarization to the extent that the limited space
of natural orbitals used can represent virtual excitation of
the target. These effects become increasingly important
as the collision energy decreases. Indeed, we know from
our earlier study of elastic scattering in C,H, that the
2Bzg shape resonance we found at 1.8 eV is sensitive to
target distortion effects and is pushed to higher energy
when these effects are not included [11].

The cross sections we report in the following section
include variational contributions from 24,, 2B,, *By,,
’Byy» By, and ’B;, symmetry. The ’B;, symmetry

TABLE I. Cartesian Gaussian functions used to supplement the target basis set.

Center Type Exponent(s)
Carbon s 0.08
Carbon Dx>PysD: 1.0
Carbon dxz,dyz,d,z,dyz 5.0,1.5,0.15
Carbon d,, 15.0,6.0,2.4,0.96,0.38,

0.15,0.06,0.025,0.01,0.004

Center of mass s 0.0085,0.005
Center of mass Px>Py>P: 0.017,0.0085,0.005
Center of mass 0.04,0.02,0.01

dXZ)dyZ)dZZ)dxzydyz
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component was found to contribute negligibly to the
N—T and N —V excitation cross sections, but was in-
cluded in the total (elastic plus inelastic) scattering cross
sections we report. Finally, the dipole Born approxima-
tion was used to converge the N—V cross sections, as
discussed above.

IV. RESULTS AND DISCUSSION

The calculated integral cross section for N — T excita-
tion is plotted in Fig. 1 as a function of incident electron
energy. For comparison, we also show, in the Fig. 1 in-
set, the °B,,, m—m* excitation function measured by
Van Veen [25] using the trapped-electron technique. We
have made no attempt to shift our calculated excitation
energies to coincide with experiment. Therefore, to facil-
itate the comparison with Van Veen’s data, the cross sec-
tion is also shown as a function of excess electron energy.
The sharp peak near 1.4 eV in the measured excitation
function is clearly seen in our calculated cross section, as
well as the broad maximum at higher energy. The latter
feature occurs ~1.4 eV higher in our calculated cross
section than it does in Van Veen’s experiment. Van Veen
interprets the 1.4-eV peak as a core-excited shape reso-
nance with the configuration 7(7*)%. This would give the
resonance overall 2B, symmetry. However, our calcula-
tions indicate that this feature is clearly associated with
the 2B2g symmetry component. Moreover, analysis of
the optical potential revealed no isolated eigenvalue in
this energy range. Our conclusion is that it is actually
the tail of the low-energy 232g elastic shape resonance,
which has the configuration (7)?7*, that causes a peak in
the N— T excitation cross section just above threshold.
To test this hypothesis we recomputed the *B,, contribu-
tion to the cross section, omitting the (7)°m* config-
uration from the Kohn trial wave function. This calcula-
tion gave a structureless N — T excitation cross section,
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FIG. 1. Total cross section for N— T excitation in ethylene.
Inset shows the 7— 7* excitation function measured by Van
Veen (Ref. [25]).
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FIG. 2. Differential cross section for N— T excitation in
ethylene at 4.0, 5.0, and 6.0 eV impact energy.

which supports our analysis of the N — T threshold peak.

Further insight about the N — T excitation process can
be gained by examining the differential cross sections
(DCS’s), which are plotted in Figs. 2—4. As Fig. 2 shows,
in the vicinity of the threshold resonance peak the
differential cross section has pronounced d-wave charac-
ter with a broad minimum near 90°. At higher impact
energies, the angular distributions become more compli-
cated and begin to develop a pronounced backward peak-
ing, which is typical of triplet excitation. There have
been no direct measurements of the N—T differential
cross section. Trajmar, Rice, and Kuppermann [27] have
reported measurements of the ratio of the N— T DCS to
that of the E Rydberg state at one energy (20.4 eV above
the @ state threshold) between 10° and 80°. Our results at
20 eV indicate that the N— T DCS shows only a slight
increase over this angular range, in qualitative agreement
with their conclusion.

Figure 5 shows our result for the N — V total cross sec-
tion. To illustrate the importance of including higher
partial waves, we have plotted the results obtained both
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FIG. 3. Same as in Fig. 2, for 7.0, 8.0, 9.0, and 10.0 ¢V im-
pact energy.
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FIG. 4. Same as in Fig. 2, for 12.0, 15.0, 18.0, and 20.0 eV
impact energy.

with and without the inclusion of the Born correction.
As expected, the Born corrections become increasingly
important as the energy increases. At 20 eV, the Born
terms account for ~30% of the total cross section.

Figures 6 and 7 show the differential cross sections we
have obtained for the N —V excitation process. Al-
though there is some interesting structure between 30°
and 120° that develops as the energy increases, the
predominant characteristic we notice is that the cross
sections become increasingly forward peaked as the
electron-impact energy rises. This is typical of an opti-
cally allowed transition. As far as we know, there have
been no direct measurements of the N — V cross section.
Because of the strong overlap of the V state and the Ryd-
berg states of ethylene, an unambiguous measurement of
the N — V cross section would be quite difficult.

Sueoka and Mori [52] have measured total electron-
scattering cross sections for C,H, using a retarding po-
tential time-of-flight method. To compare with their
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FIG. 5. Total cross section for N — V excitation in ethylene.
Comparison of theoretical results obtained with and without
Born correction.
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Scattering Angle

FIG. 6. Differential cross section for N— V excitation in
ethylene at 9.0, 10.0, and 12.0 eV impact energy.

data, we have combined the elastic cross sections ob-
tained from our CKVM calculations with the N—T and
N —V excitation cross sections. The results are plotted
in Fig. 8 along with the measured data of Sueoka and
Mori. Several features are worth noting. The experimen-
tal data shows a minimum near 3.5 eV, approximately 1.5
eV above the 2B 2¢ €lastic shape resonance. Our cross sec-
tion does show a minimum, but it occurs closer to 5 eV
and is not as deep as what is found experimentally. We
have already commented on the fact that the truncated
set of target natural orbitals we employed in these calcu-
lations limits the extent to which low-energy target dis-
tortion can be described. As a result, the ZBZg elastic
shape resonance is evidently coming out at a slightly
higher energy than it should [11] and the minimum near
5 eV is consequently not deep enough. Our total cross
section is also seen to be systematically lower than experi-
ment in the energy range 7—10 eV. However, this is con-
sistent with the fact that the total cross-section measure-
ments include the effect of Rydberg excitations which we
have not considered here. Recall that the lowest Ryd-
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FIG. 7. Same as in Fig. 6, for 15.0, 18.0, and 20.0 eV impact
energy.
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FIG. 8. Total scattering cross sections for ethylene. Compar-
ison of theoretical results and experimental results of Sueoka
and Mori (Ref. [52]).

berg state of ethylene lies 7.1 eV vertically above the
ground state. Moreover, in contrast to valence-state exci-
tation, one expects the excitation cross sections for Ryd-
berg states to fall off rapidly from threshold. Comparison
of our results with experiment therefore suggests that
Rydberg excitation accounts for ~10% of the total
scattering cross section in the 7—10 eV range. The sum
of our elastic N—T and N — V cross sections lies within
the experimental error bars from 10 to 20 eV.

V. CONCLUSIONS

We have applied the CKVM to study electron-impact
excitation of the T and V states of ethylene. We have
demonstrated how the CKVM allows one to carry out
coupled-channel calculations of electronic excitation in a
polyatomic molecule using accurate multiconfiguration
target wave functions. Our intention has been to supple-
ment the limited body of experimental data presently
available on this molecule. Our calculations have con-
firmed the existence of resonance structure in the N—T
excitation cross section near threshold and have clarified
the nature of the threshold peak. Our calculations sug-
gest that this structure arises from interaction between
direct background excitation and a lower-lying 2Bzg elas-
tic shape resonance. We have also quantified the N—V
excitation cross section, for which no direct measure-
ments have been made. Finally, by comparing our results
to measured total cross-section data, we have been able to
estimate the magnitude of Rydberg excitation in this mol-
ecule.
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