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Density-matrix theory of charge transfer
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A dynamic theory is presented for the description of dissipative charge transfer in molecular systems.
The quantum dynamics of the coupled electron-vibration motion are described in the framework of the
density-matrix theory. The equations of motion of the density matrix are given in a representation that
uses the Born-Oppenheimer states of the different localization centers of the electron together with the
vibrational modes coupling to the electron. A dissipative environment is introduced by separating all
molecular vibrations which do not couple to the transferred electron and providing thermal equilibrium
for them. The description allows (a) the introduction of any type of potential surfaces, (b) the descrip-
tion of any microscopic model for the coupling between the vibrational modes and the dissipative envi-

ronment, and (c) the consideration of any strength of electronic intercenter coupling. Therefore the ap-
proach allows one to study the transition from the wavelike to the hoppinglike electron motion between
the centers as well as nonadiabatic transfer, adiabatic transfer, and any intermediate type. Besides the
derivation of the basic density-matrix theory, the numerical solution of the density-matrix equations is

presented for the model of a two-center single-vibrational-mode system. The exact results of the
density-matrix equations are compared with those of approximate rate equations.

PACS number(s): 34.70.+e, 31.70.Hq, 63.20.Pw, 82.30.Fi

I. INTRODUCTION

The theoretical concepts of charge-transfer reactions in
molecular systems have been utilized in different disci-
plines extending from molecular physics and chemistry
up to molecular biology. The present state of the art is
well documented in numerous review articles, e.g. , [l —3].
It can be characterized briefly as a description which con-
siders the charge-transfer events as sequences of hopping
processes between appropriately chosen electronic states.
In the case of adiabatic transfer these states are electronic
states extending over the molecular sites taking part in
the reaction. The electronic states of isolated molecular
sites are used in the case of nonadiabatic reactions. As is
usual for hopping processes the transfer appears as an in-
coherent quantum-particle motion, i.e., any phase coher-
ence of the electronic wave function has been destroyed.
The characteristic time of such a dephasing process is
determined by the relaxation of the nuclear degrees of
freedom of the molecule and any type of surroundings
(e.g., the solvent) and lies in the picosecond and subpi-
cosecond regime.

With the utilization of femtosecond spectroscopic tech-
niques the interest has been directed towards transfer re-
actions that are not of the incoherent type. These
coherent (wavelike) or partly coherent reactions are
characterized by transfer times comparable to the corre-
sponding intramolecular relaxation time.

In the past few years different authors have put em-

phasis on such types of reactions (for a review, see [4]).
Calculations have been published, e.g., for the charge-
transfer dynamics in a benzene-radical complex [5], the
nuclear dynamics on vibronically coupled potential-
energy surfaces of ethylene, cation pyrazine, and NO2 [6],
and the exciton motion in molecular dimers and chains
(e.g., [7,8]).

Most of the approaches are based on the solution of the
time-dependent Schrodinger equation, thus being in the
limit of coherent transfer (describing the quantum dy-
namics of a closed system). The Schrodinger equation
has been treated by introducing an appropriate ansatz for
the time-dependent wave function or by using numerical
methods for a strict solution. Sometimes it can be argued
that the dynamic regime of interest appears short com-
pared to characteristic dephasing times. Otherwise the
description remains incomplete.

From the theory of femtosecond optical spectra of mol-
ecules it is known how to handle the dissipative dynamics
of coupled electron-vibration systems. Usually, one takes
the Born-Oppenheimer states of the electron-vibration
system to realize an appropriate representation of the
density-matrix equations (see, e.g. , the recently published
paper [9]). Vibrational modes that are not involved in the
electronic transition as well as those of the surroundings
or a nonpolar solvent form a dissipative environment. Its
basic effect is to produce finite lifetimes of the vibrational
modes coupling to the electronic transition. An alterna-
tive approach is to consider a sufBciently large number of
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vibrational modes —three or four —coupling to the elec-
tron. Then, intramolecular relaxation appears as a redis-
tribution of excitation energy among the different modes
[6].

The aim of the present paper is to translate the above-
mentioned idea to the description of charge-transfer dy-
namics in molecular complexes with emphasis on partly
incoherent transfer which has been extensively discussed
for molecular crystals, e.g. , in [10,11]. Our approach
starts with a general model of molecular complexes divid-
ing them into localization centers of the transferred
electron —an externally given electron in the present case
(an excess electron) —together with the nuclear modes
coupling to that electron. The remaining nuclear degrees
of freedom form a thermal environment in which the
coupled electron-vibration states are embedded. To de-
scribe the quantum dynamics of the charge transfer,
density-matrix theory has been applied in a representa-
tion of these coupled electron-vibration states (Born-
Oppenheimer states). Although such a representation is
not necessary, it allows one to simply derive the standard
hopping rates of nonadiabatic transfer.

Corresponding equations of motion for the density ma-
trix have been derived in applying the technique of none-
quilibrium Green's functions. The environmental degrees
of freedom appear via relaxation terms which are defined
by corresponding thermally averaged correlation func-
tions.

The density-matrix approach given in a representation
of the coupled electron-vibration states has some advan-
tages to standard Liouville-space methods (see, e.g.,
[12—15]). The whole set of density-matrix equations,
which contains off-diagonal contributions with respect to
the center index as well as the vibrational quantum num-
ber, allows one to account for the electronic intercenter
coupling in any order of perturbation theory. Liouville-
space methods end up with non-Markovian rate equa-
tions (generalized master equations) with a power expan-
sion for the memory kernel with respect to the electronic
intercenter coupling. Besides its practicability for numer-
ical calculations, this property of the density-matrix
equations given below makes them most appropriate to
study the change from coherent to incoherent transfer.

To carry out the numerical solution of the density-
matrix equations, first we have to reduce the infinite sys-
tem of equations of motion to a finite system in defining a
maximum vibrational quantum number taken into ac-
count. Since the size of the density matrix depends on
the electronic quantum number and the quantum number
of the vibrational state quadratically, the dimension of
the dynamic system related to the equations of motion
expands rapidly with the number of vibrational modes.
Therefore the numerical practicability of the approach is
restricted to a low number of vibrational modes.

To demonstrate how the given method works, as well
as to discuss in detail the infiuence of the increasing cou-
pling to the environmental degrees of freedom on the
transfer dynamics, we restrict ourselves to a simple model
system. Therefore we consider the case of a system of
two localization centers for the transferred electron and
of a single vibrational mode with linear coupling to the

environmental degrees of freedom (see also [2,16]).
Extending the approach of the previous papers [17,18]

we take into account Pauli statistics corresponding to
operators creating and destroying the Born-Oppenheimer
reference states. Additionally, we improve the Markov
approximation that must be made in the derivation of the
density-matrix equations in order to drop memory effects
originating from the coupling to the environmental de-
grees of freedom. This second improvement slightly
changes the corresponding equations of motion for the
density matrix and results in a somewhat different dy-
namic behavior. Quadratic contributions with respect to
the density matrix are also discussed. These terms stem
from the final-state occupation occurring in the scatter-
ing processes with the environmental quanta.

The presented method of a density-matrix description
for charge-transfer dynamics in molecular systems
comprises a considerable number of theoretical problems
and allows description of different physical systems.
Therefore the present paper has to be considered, on the
one hand side, as a comprehensive presentation of the
general theory, and, on the other hand, as a demonstra-
tion of the numerical practicability of the approach.
(Different aspects of the theoretical approach and the
corresponding results have already been published in
[17,18].)

In the following section we brieQy review the deriva-
tion of the Hamiltonian of the molecular system in a rep-
resentation using Pauli operators for the coupled
electron-vibration states. Such a representation is ap-
propriate to apply the method of nonequilibrium Green's
functions to derive the equations of motion for the densi-
ty matrix. The details of the corresponding derivation
are presented in Sec. III. In Sec. IV we specialize the
general results to the model of a dimer with a single vi-
brational mode and a linear coupling of that mode to the
environmental degrees of freedom. Section V is devoted
to a detailed discussion of the results of the numerical
calculations which have been performed for the model in-
troduced in Sec. IV. After some concluding remarks, in
the Appendix we present the derivation of an equation of
motion for the single vibrational mode of the dimer mod-
el of Sec. IV as a further illustration of the method.

II. HAMILTONIAN
OF THE MOLECULAR COMPLEX

To define a sufficiently general model for our further
purposes we present a brief derivation of a Hamiltonian
for the electron-vibration system of an electron-
transferring molecular complex (donor-acceptor complex
with intermediate spacer molecules). Therefore let us
make the following assumptions.

(a) We consider the motion of a single external (excess)
electron with coordinates comprised by x. It may be in-
jected into the mo1ecular complex from the surroundings.
Eventually, we change to the picture of an electron which
has been optically excited into the empty donor state
from a lower occupied molecular orbit.

(b) The molecular complex considered contains locali-
zation centers for the transferred electron which are the
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H=T, (x)+T„(X,Y)+ g V,' '(x,X)+V„. (2.1)

The Ts are the operators of the kinetic energy of the elec-
tronic and nuclear (vibrational) system. The nuclear con-
tribution V„to the total potential energy splits into three
parts corresponding to the system of interaction coordi-
nates, the system of the coordinates of the environment,
and to the contribution which couples both systems, re-
spectively,

V, (X, Y)=V' '(X)+V' '(Y)+V' '(X Y) (2.2)

lowest-unoccupied-molecular-orbital (LUMO) states of
the excess electron in the isolated donor, acceptor, or
spacer molecule.

(c) These localization centers m = 1,2, 3, . . . are de-
scribed by respective pseudopotentials V,' ' for the single
excess electron which can be attributed to the total elec-
tronic system of the neutral molecular complex.

(d) The whole set of nuclear coordinates will be divid-
ed into two subsets. The first subset contains those coor-
dinates which couple to the excess electron via the pseu-
dopotentials. They will be denoted X and are usually
named interaction coordinates. The set of interaction
coordinates plus the transferred electron form the
relevant system of the molecular complex. The second
subset of nuclear coordinates does not appear in the pseu-
dopotentials. These coordinates are denoted Y and define
the (dissipative) environment for the relevant system.

Therefore our Hamiltonian reads

[T,(x)+ V,' '(x,x)]y (x;X)=e (X)p (x;X)

and the nuclear part

[T„(x)+s(X)+ V,' '(X)]X ~(x)=E ~X M(X) .

(2.3)

(2.4)
With respect to the electronic spectrum we have restrict-
ed ourselves to the lowest excess electron state which cor-
responds to the LUMO state of the neutral molecule.
Therefore a further electronic quantum number does not
appear. The c + V„' ' are the corresponding vibrational
surfaces. The whole set of vibrational quantum numbers
has been denoted M for short. The energies E M define
the spectrum of the coupled electron-vibration states.

To give the representation of the Hamiltonian (2.1)
with respect to these states we have to calculate the fol-
lowing matrix elements:

For the density-matrix description of the transfer dynam-
ics we change to a representation of the total Hamiltoni-
an in the eigenstates of the single localization centers of
the relevant system (single-center Born-Oppenheimer
states). The nuclear modes of the environment will be
handled separately. Such a treatment is necessary to
avoid any perturbation theory with respect to the strong
electron-vibration coupling within the relevant system.
Furthermore, providing weak or intermediate coupling to
the environment this interaction can be taken into ac-
count in the lowest (second) order. Within the adiabatic
approximation the eigenvalue problem of the single local-
ization centers splits into that of the electronic part

(m, M~H~n, N ) =f dx dX p' (x;X)X' sr(x)Hq&„(x;X)X„N(X)

~M, «N «N f d q mxm, M g Ve g«X«, N
kAn

+&., „ fdxx.' (X)V„""(X,Y)X.„(X)+5 „H„'E'. (2.5)

The first contribution on the right-hand side (rhs) follows from the solution of the eigenvalue problem of the relevant
system, Eqs. (2.3) and (2.4). The second contribution can be simplified applying a Condon-type approximation which
results in

fdx dxy'X' ~v,'" "'tp„x„„=f dx dxp' (x;X,)X' M(X)V,'" "'(x,x, )tp„(x;X,)X„„(X)
(2.6)

where Xo indicates a set of equilibrium positions of the
interaction coordinates and hc, ' ' denotes the shift of the
electronic level of center m due to the action of the po-
tential field of center k. Here, we have neglected elec-
tronic overlap integrals. V' „'is the overlap integral of
the potential of center k and of the electronic wave func-
tions of centers m and n. The Franck-Condon factor FFc
reads

(2.5)] will be denoted

E ~N(Y)= fdxx* M(X)v„' '(X, Y)X ~(x) . (2.8)

Due to the neglected electronic overlap, o8'-diagonal con-
tributions with respect to the center index do not appear.

The fourth contribution in the matrix element (2.5)
contains the Hamiltonian of the vibrational degrees of
freedom of the environment:

F„c(mM,nN)= fdXX' M(X)X„N(x). (2.7) = T ( Y)+ V~ ( Y) . (2.9)

The coupling of the interaction coordinate to the envi-
ronment [the third contribution to the matrix element

Introducing bra and ket vectors for the electron-vibration
states of the relevant system the desired representation of
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the Hamiltonian (2.1) reads

& m M IH I n, N & I m, M & & n, N
~

m, M;n, N

= gH„„AtA„. (2.10)

Note the introduction of the indices p and v which
comprise mM and nN, respectively, and the replacement
of the matrix element by H„„.The projector
~m, M &&n, N~ has been expressed by level operators At
and A with commutation relations of Pauli operators:

with

&@~X,~v&=5
„ f dXX (X)X,X (X) . (2.18)

III. NONEQUII, IBRIUM GREEN'S-FUNCTION
TECHNIQUE

The neglected electronic overlap results in 5 „.The ex-
plicit values of this matrix element are well known for the
case of harmonic oscillator functions and can be found in
Sec. IV A.

( A„,A, )+=5„,+2(1—5 „)A tA„. (2.11)
A. DeSnition of the nonequilibrium Green's function

The introduction of level operators is appropriate for ap-
plying the Green s-function technique for the derivation
of equations of motion for the density-matrix elements.
According to Eq. (2.5) it is useful to divide the matrix ele-
ments H„ into the following parts:

H„,=H„'„'+5 „EMN( Y)+5„~„'', (2.12)

where the first contribution is that of the relevant system

p, I 5mM, nN nN+5mM, nN y ~En
k(An)

+(1—5 „)g V~"„'FFc(mM,nN) .
k(An)

(2.13)

To simplify this formula we include the quantities hc, '„'
into the definition of E„N. Of course, the representation
of the Hamiltonian is an approximate one since we only
took into account the LUMO state of the single localiza-
tion centers. Therefore excited vibrational states have to
be restricted to energies below the next electronic level.

The given representation of the Hamiltonian (2.10) al-
lows us to define the reduced (one-particle} density matrix
(RDM) which is of basic interest for the discussion of the
charge-transfer dynamics:

p„(t)=tr[@'(t)AtA, ] . (2.14}

The employed statistical operator k(t) is defined by the
relevant system plus the environment.

If the RDM is known all expectation values of interest
can be calculated. To characterize the transfer dynamics
it is useful to depict the diagonal elements of the RDM,

P„(t)=p»(t) . (2.15)

P (t)= QP„(t). (2.16)

These quantities represent the occupation probability for
the vibrational levels M at center m. If the number of in-
teraction coordinates is larger than three or four it is
more appropriate to consider the total electronic occupa-
tion probability of center m (the trace of the RDM with
respect to the vibrational quantum numbers),

In the following we apply the nonequilibrium Green's-
function (NGF} technique to derive equations of motion
for the (one-particle) reduced density matrix defined in
Eq. (2.14}. This method of nonequilibrium quantum
statistics and quantum dynamics is originally due to Kel-
dysh [19] and has been extensively reviewed in recent
years [20—23]. The derivation given below follows that
of Ref. [24]. The presented approach has two important
advantages with respect to other techniques.

(i) In contrast to common methods it avoids dealing
with the complete statistical information contained in the
statistical operator k(t). Instead, one only considers
from the very beginning a reduced quantity in taking a
genera1ization of the RDM. Especially, one directly ob-
tains equations of motion for all elements of the RDM.

(ii) The formal similarity of the NGF technique with
equilibrium Green s-function approaches makes it possi-
ble to translate directly the different perturbation tech-
niques.

Of course, one has to pay for these advantages by some
technical difhculties. As already mentioned we provide a
suSciently weak coupling of the relevant system to the
environmental degrees of freedom. Such an assumption
allows us to restrict the RDM equations to the second or-
der with respect to this coupling. Therefore, following
the treatment of [24], we have to introduce an additional
interaction of the environmental degrees of freedom to a
time-dependent external field u (p, , v; t )

H,„,(t)= QE„,(Y(t))u(p, v;t) .
P, V

(3.1)

This expression has only forrnal character and will be
used to formulate the perturbation theory with respect to
the system environment coupling (2.8). For that reason
we provide that the time dependence of the statistical
operator k(t) is given by the system Hamiltonian (2.10)
supplemented by H,„,.

To derive the NGF we shift the time dependence of
k(t) in the RDM (2.14} to the level operators, and then
split the time-evolution operator into a part depending on
the system Hamiltonian (2.10) alone and a remaining
part. We obtain

p „(t)=tr[k( —ao )StTSA„(t)A„(t)] (3.2)
The expectation value of the single interaction coordinate
X, follows as

&X. &= g &pix. iv&p„.(t)
P, V

with k( —ao }as the statistical operator at minus infinity.
T is the usual time-ordering operator and the operator S
reads
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ooS=S(ao, —ao)=Texp —— dt H,„,(t) (3.3)
)l Ec;,Ec =G (P„t,;P, t, )

l
Qm I, m li

Expanding expression (3.3) for the RDM with respect to
H,„,there appear time-ordered as well as anti-time-
ordered contributions, originating from the nonequilibri-
um situation in which S and its Hermitian conjugate
occur simultaneously under the trace.

To avoid this complication the NGF technique formal-
ly enlarges the time region [19—23]. Therefore we intro-
duce Keldysh's time contour C=C++C . It extends
from —~ to + ~ ( C+ ) and back from + ~ to —ao

(C ). If time runs along this contour we use the argu-
ment ~ instead of t. Furthermore, we assume that the
external field u introduced in Eq. (3.1) differs depending
on which part of the time contour (C+ or C ) is con-
sidered. S and S in Eq. (3.2) are consolidated into a sin-

gle S operator defined on C and we obtain the NGF as
the two-time generalization of the RDM (see also [24]):

; tr[k( —~)TcSCA(1)A (1')]
G(1, 1')= ——

tr[A (
—ao )Sc]

Xtr[k( —ao }A„(t,}A„(tl)]
(3.6b)

ifiG (pt, vt)=rt „p„„(t). (3.7)

Only two of the four functions contained in the NGF are
independent from one another. As in the equilibrium
case the causal function, e.g., can be expressed by 6
and G as

, EC (Pl 1 Pl' 1')

follow. The tilde on the level operators indicates that the
time dependence is given by the system Hamiltonian plus
H,„,. To account for the Pauli-commutation relation of
the level operators, Eq. (2.11), we have introduced the
prefactor rt „.rt equals —1 for m =n and 1 for mAn

In the limit t& =t&. =t the correlation function 6
reproduces the RDM,

= ——«A(1)At(1')» . (3.4) (tl tl')6 (P alt ply qltl)

Here, 1 (1') abbreviates pl, r, (pl, rl ). Tc is the generali-
zation of the usual time-ordering operator to C and the
new S operator reads

+:-(t, t, )G—(Pl, t, ;P, , t, )

(3.g)

l
Sc=Tcexp —— dr H,„,(r)

C
(3.5)

The time integration has to be taken with respect to the
whole contour C.

The artificial assumption that u and hence H,„,are
different on C+ and C guarantees Sc%1. The limit in
which this difference is removed combined with the re-
striction of the time argument to the branch from —~ to
+ ~ has been named the physical limit [23]. Taking this
limit, the NGF splits into four different functions de-
pending on which part of the contour the time arguments
are positioned. Taking ~& and ~&.EC+ the causal func-
tion follows, for v, and ~& EC we obtain the anticaus"'.
function. In the remaining cases the correlation func-
tions

B. Equations of motion

If one derives equations of motion for the NGF there
occurs a new type of Green's function. This new type
can be expressed by a functional derivative of 6 with
respect to the external field u [23,24] in the following
way:

5((K„(Y(r) ) )) +i% G(1, 1') .
5u p, v;'7

We introduce the abbreviation

(3.9a)

where " is the unit step function. It is the aim of the fol-
lowing calculations to derive an equation of motion for
the RDM, i.e., the equal-time case of G starting from a
general equation for the NGF.

= ——tr[ k( —~ )A„(t1 ) A„,(t 1 )] (3.9b)

(3.6a}
I

and obtain the following equation of motion for the
NGF.

5G(v, r, , 1')
iR 5 „H'' —4(p, , v;r, )

—G(v, r„l')=5(1—I')+iAQ

[ ,+r= , r+; Ee 0+(0—) for r, EC+(C )] . (3.10)
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X5(ri —ri. ) . (3.11)

Moreover, let us rewrite the second term from the rhs of
Eq. (3.10) by introducing the nonequilibrium self-energy
by

The formal 5 function on the rhs comprises 5„„andthe

5 function with time arguments from the contour C.
Such a function equals the usual 5 function if ~, and ~,.
are from the same branch of C. Otherwise it is zero.

It is convenient to shorten the term in parentheses on
the left-hand side (Ihs) of Eq. (3.10) by the inverse of the
zero-order NGF [24]:

fd26 '(1,2)6(2, 1')=5(l —1') . (3.13)

Comparing Eq. (3.13) with Eq. (3.10) we can identify 6
with Go —X. Therefore Eq. (3.13) is the nonequilibrium
version of the Dyson equation.

With this equation the functional derivative in Eq.
(3.12a) can be shifted from 6 to G '. If one replaces the
derivative of 6 by the derivative of the zero-order
function (3.11) one obtains the self-energy in the second
order with respect to the system-environment coupling
(2 &):

56{v, r„2)
X(1,1')=i%Q f d2 G '(2, 1') (3.12b)

5u(p, ,v;r,+)

and the inverse of the NGF has been defined according to

56(v,r„1')
i fi g =f d 2X(1,2)6(2, 1'),

5u (p„v;xi+ )

fd2=y f d~2.
Pg

The self-energy reads

(3.12a)

X(1,1'}=i% g G(v 'T, ;v T )8(p v r, ;v p, 'T .} .
V(, V)r

(3.14)

This expression contains the NGF of the environmental
degrees of freedom

l
8(iu, v, r, ;v, .p, , r, .)=——[((K„„(Y(r,))K„„(Y(r, ))})—4(iu, ,v„'r,)4(iu, , v, ;r, .)] . (3.15)

Note that the functional derivative automatically produces the correlated part of the environmental NGF.
With the above-given expression for the self-energy the equation of motion for the NGF is closed provided we take

the propagator 6 as a given quantity. According to the assumption of weak coupling between the relevant system and
the environment the environmental degrees of freedom are not disturbed in their stochastic motion by the relevant sys-
tem. Therefore we handle the environment as a heat bath and take the statistical average contained in 8 as that with
respect to thermal equilibrium.

To derive an equation of motion for the RDM from the nonequilibrium Dyson equation we have to carry out the
physical limit. The single equation for the NGF splits into four different equations for the causal, the anticausal, and
the correlation functions 6 and 6 . Since the causal and anticausal function are determined by 6 and 6 it
suffices to take the equations for 6 and G (for more details see [24]). These equations read (note the change from ri
and r, to t

1
and t, . )

= g f dF [X'""(p,„r,;v, r)6~(v, 71M, r, . )+X~(1M„r,;v, r)6'""'(v, r;1M, r, )] . (3.16)

The conjugated equation is obtained if one takes the time
derivative with respect to t&. . The renormalized matrix
elements of the system Hamiltonian contain the contribu-
tion from the environmental coordinates

The relations are the same for the nonequilibrium sel'f-

energy. The respective correlation parts follow as

X {1Mi ri iui ri )=«X 6 (vi ri vi ri }
V), V)r

H'""'(r )=H'"+e(p, V. r ) (3.17)
(3.21)X8 (p,v t, ;v, p, t,).

The retarded and advanced NGF's of Eq. (3.16) are
defined according to

(3.18)

6 (p»t»p, t, .)= —:-(r, t, )C(p»r»p, —, t, ) {3.19)(adv)

where the so-called spectral function 6 is given by [23,24]

(pi, &i',pi, ti )—G (p„t,;p, r, , )—6 (p„&,;p, &,, ) .

(3.20)

where 8 (8 ) is defined in the same way as 6 (6 ).

C. Density-matrix equations

In the next step on the way to the RDM equations one
has to reduce Eq. (3.16) to an equation containing a single
time argument only. For that reason one introduces sum
and difference times t=(ti+ti. )/2 and ht=ti t, re-—
spectively, and carries out a Fourier transformation with
respect to ht.
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i'p„(t)=g „p„(t)= dco 6 (v,p;co, t } .
2%

(3.22}

Note the definition of p„and the arrangement of the ar-
guments of G in a somewhat different manner.

As can be seen from this relation we are able to obtain
the RDM equations in carrying out the following manip-

Using this mixed time-frequency representation the
RDM can be obtained as

ulations with respect to Eq. (3.16) (and its conjugated ver-
sion): (i) Introduction of sum and difference time, (ii)
Fourier transformation of the whole equation with
respect to the difference time and replacement of all func-
tions by their mixed time-frequency representation, (iii)
frequency integration of the resulting equation. Howev-
er, before doing that it becomes necessary to take the
difference of the direct equation and the conjugated equa-
tion to remove terms proportional to co.

We obtain (for details, see [24])

+ g f dt f e ' "' "[X (v, ic;co, t) —X (v, tc;co, t)G (ic,p;co, t)]
dc' dc& —2l(N —B)[t—t] )

277

+(c.c.;p~v) . (3.23)

The abbreviation at the end of this expression indicates that the rhs has been completed by adding the complex-
conjugated version of the terms shown with interchanged p and v.

The structure of the rhs of Eq. (3.23) is well known from the NGF technique [20—23], in which the self-energy contri-
butions reQect the scattering with respect to the environmental degrees of freedom. The non-Markovian character of
these expressions accounts for the retardation of the scattering processes.

Since the rhs contains the correlation functions 6 and G this equation is not closed with respect to the RDM. To
end up with a closed equation we have to express the correlation functions by the RDM. For the present reasoning it is
sufficient to take the following zeroth-order expressions [24]:

6 (p, v;co, t )= 2iri5(fico—(E„+E—„)l2}(5„+p„~),
6 (p, v;co, t ) = —2iri5(fico —(E„+E„)I2}p„&.

These expressions guarantee the relation (3.22) and obey the sum rule for the spectral function

f d co C (p, v; co, t )=5„

(3.24)

(3.25)

(3.26)

Taking the expressions (3.24) and (3.25), Eq. (3.23) for the RDM changes to

——g f dt f e " " [X (v, ic;co, t)p„„(t)X(v, ic;co,—t)[5„„+p„„(t)]]
K

+(c.c.;p~v) . (3.27)

For further calculations we need a definite expression of the self-energy parts X and X . Equation (3.21) together
with the expressions (3.24) and (3.25) for the correlation functions yield

X (p„p,;co,t)= g B (p, ,v„v,p, ;co (E +E )l2fi,—t)X '

Vl, Vli

[5„„+p,„(t)](for X )

p, „(t)(for X ). (3.28)

The non-Markovian contributions in Eq. (3.27) will be taken into account by a procedure carried out in [24]. For this
purpose we separate the lowest-order time dependence of the RDM which is given by the exponential factor
exp[(i lfi)(E„E„)t] [compare E—q. (3.27)]:

p„„(t)=exp (E„E)tp„—(t) . — (3.29)

Provided that the remaining time dependence of the RDM is slow compared to the oscillating contribution we can take
p„outof the time integration. This procedure has not been applied consistently in the previous papers [17,18]. But
there appear only differences of minor importance.
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The time dependence of the environmental correlation functions disappears because of thermal equilibrium condi-
tions, and we can carry out the remaining time integration. For that end one has to replace t —t by t and to take notice
of the well-known formula

dt e'"'=i l(co+i E); s 0+ .
0

The RDM p„„is reconstructed according to Eq. (3.29) and we obtain

(3.30)

lp—„„(t)=— E—„p„„ig— V„„p„„+5„—kC&(n, N, K;t)p„„
K

J dco[e (nNL, nLK;co)p„„z/(co co—tcL is)—
K, L

—8 (nNK, nLM;co)pmL „tcl(co co ~t——is)]

X X de nNL& kL K&)pkL' nLP» (~ kKL' is)+(c c'&P'
K

(3.31)

Here, we took into account that K„„[conp)rae Eq. (2.8)]
and thus C&(p, v;t) are proportional to 5 „.Further-
more, we have introduced the abbreviation

co MN (E M ~—tc)~& (3.32)

The derived equations of motion (3.31) for the RDM are
of a very general type. They only contain the restriction
to a second-order system-environment interaction and
the assumption of thermal equilibrium conditions for the
environment. The functional type of the system-
environment interaction has not yet been specified.

The first and the second term on the rhs of Eq. (3.31)
describe the internal dynamics of the relevant system,
here transitions between the different centers are realized
by the second contribution. The corresponding inter-
center coupling has already been reduced by the Franck-
Condon factor.

The remaining contributions to the rhs of Eq. (3.31)
follow from the coupling to the environment and describe
the dissipation of vibrational energy of the relevant sys-
tem. Note that the approximation used for the system-
environment coupling separates the processes of inter-
center transfer and the dissipation of energy into the en-
vironment.

Expressions for the coupling to the environmental de-
grees of freedom similar to those contained in Eq. (3.31)
have also been obtained in Ref. [15], in which time-
resolved light scattering at a two-level system has been
considered. The coupling of the single vibrational mode
to the environment used there is nearly identical to Eq.
(2.8).

The quadratic contributions with respect to the RDM
[see the last term of Eq. (3.31)] follow from those parts of
Eq. (3.27) which contain the RDM together with the 5
symbol [compare the upper row in Eq. (3.28)]. Hence
these contributions perceive the final-state occupation in
the transition processes. However, if the occupation
probability is distributed among different levels these
terms are of minor importance.

IV. THE TWO-CENTER
SINGLE-INTERACTION-COORDINATE SYSTEM

A. Density-matrix equations

E ~=a fico,g +A'co„(M—+ —,'), (4.1)

is the electronic energy at Q=0 and —%co„g gives
the so-called polaron shift. The Franck-Condon factors
(2.7) reduce to a single integral. Here we give the corre-
sponding Hilbert space expression

FFc(mM, nN ) I ~„=FFc(M,N; g —g„)
=(Mls(g )s (g„)IN& (4.2)

with

( fM
IM&= lo& . (4.3)

To carry out numerical calculations we restrict our-
selves in the present paper to the minimal system (a
molecular dimer) of two electronic centers and a single
interaction coordinate X (=Q). The coupling between
the interaction coordinate and the set of environmental
degrees of freedom [ Y] [ =q&, compare Eq. (2.8)] will be
taken in the lowest order of a power expansion. The cor-
responding coefficients [the first derivatives with respect
to Q and q& of the potential V„' ' introduced in Eq.
(2.2)] are given by K&. More complicated cases are
planned to be published elsewhere.

The resulting two-center one-interaction-coordinate
problem will be further simplified by assuming that the
two vibrational surfaces are parabolas of the same curva-
ture which are shifted with respect to the origin of Q by
the amount —2g . The constants g represent the di-
mensionless electron-vibration coupling constants.
Furthermore, the eigenvalue problem of the interaction
coordinate is that of a harmonic oscillator with frequency

The set of vibrational quantum numbers M is re-
duced to a single integer. The energy E M of the diabatic
states can be written as
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Q=C+C
The shift operator S~ reads

(4.4)

The phonon operators are related to the dimensionless in-
teraction coordinate according to

1)sr+ n

X
g "n!(M —n )!(N —n)!

min(M, N )

FFC(M, N;g) =v'M!N!g ++e

(4.7}

St(g )=exp[g (C —C+)] . (4.5)

From the above representation of the Franck-Condon
factor we can deduce two useful relations needed later,
namely,

Within the same notation the linearized coupling of the
interaction coordinate to the environment can be ex-
pressed by the following matrix element:

K M„(q.)=&M~S(g ) yrc~q(gs (g„)~N&

and

FFC(M, N;g) =FFC(N, M; —g} (4.6a)

with

= g g&(m;M, N)q& (4.8)

v'M+ 1FFC(M+ 1,N; g }=gFFC(M, N; g)

+~NFFC(M, N 1;g) .—
gg(m M~yN)=(v M+15M+~ N+vM5M

5M, x2g (4.9)
(4.6b)

For the numerical calculation we use the following ex-
pansion:

Inserting this expression into the general formula (3.15)
for the NGF of the environmental degrees of freedom
one can deduce the correlation functions

8 (p&v& , v&p&. , 'co, t)='5 „5„gg&(m&',M„N,)g&(m, ;M&,N, )D (g, g';co, t) . (4.10a)

The NGF with respect to the coordinates q& is generally defined as [remember Eq. (3.4)]

D(g, r;g r }=——(«y(g/, r )q(g$, r$ )))—«q(g, r )))«q(g, r ) 8
fi

(4.10b)

Since we take the environment as a large collection of harmonic oscillators with frequency co& staying in thermal equi-
librium the explicit time dependence of the correlation functions D+ vanishes, and they become diagonal with respect
to the mode index g. Therefore the mixed time-frequency representation needed in the RDM equations reads

D (g, co) = — [5(co+co&)[1+ n (co&) ]+5(co+co&)n (co&)], n (co)= [exp(Pfico) —1] (4.11)

& ( ( ) corresponds to the upper (lower) sign in the argument of the 5 functions. The expressions for D simplify the
RDM equations (3.31) to

8 l

5 pp (t }
g

@ pp +
g X ~~,sxpistc,

K

—g J
& f D (g, co)[(N+1}p„„/(co+co„ie)+v'(N+—1)(N+2)p„+2/(co co„is)——

27TR

+v'(N —1)N p„zl(co+co, i e)+N—p„„/(coco„is—)—
—2g„[VN+Ip„„+,/(co co, i E)+v'—N p„—, l(co+co, —ie)]]

+ gXg f D (g, )Iso'(M+1)(N+1)p„++,/(co+co„ie)+v'(M—+1)N p„+,„,/(co+co„—ie)
oo

+v'M (N+1 }pq, „+)I(co co„is)+ M—N—p„~„~/(co co„ie)——

—2g„[vM+ lp„+) /(co —co„i)+EO'M p„)—/(co+co„js)]j—
+ g &g f 2~ +(g, co) g p~ „[(11.'+ l)(N+1)p„+,„+,/(co+co„—ie)

K



45 DENSITY-MATRIX THEORY OF CHARGE TRANSFER 2877

+(c.c.;p~v)

+ (E+1)Np„+&, &/(to+co, —is)

+VK(N+ 1)p„,,+ &/(to —to„i—s)+ O'KN p„,„,/(to to—„—is)
—2g„[&K+lp„+,„/(to+co„—is)+ &Kp„,,/(to —co, —is}]]

(it =2, 1 if n =1,2 and p+I =m, M+I) . (4.12)

Note that those contributions which contain frequency denominators of the type co—ic have already been neglected.
Furthermore, we took into account the prefactors g „[seeEq. (3.6b}] following from the Pauli statistics of the level

operators.
To arrive at the final form of the equations appropriate for a numerical solution we drop the real part of the frequen-

cy denominators, thus neglecting a spectral renormalization of the electron interaction-coordinate system due to the
coupling to the environment. The frequency integration results in environmental correlation functions with frequency
arguments co„and —co, . These expressions together with the sum taken over the mode index of the environmental de-

grees of freedom can be comprised defining the frequency-dependent damping rate of the interaction-coordinate quanta

y(co)=2m.a(co)[1+n(co)] .

The spectral density of the environmental degrees of freedom reads

a(to) = g K~([5(to co~) 5(—to+to—g)] .1

(4.13)

(4.14)

The damping rate at frequency to„(—co„)determines the lifetime of the coupled electron-vibration state due to the
emission (absorption} of a single environmental quantum.

If we use the relations

g K&D (g, +co„)= i fiy( —+to„) (4.15a)

and

gK&D (g, +to„)= ifiy( Woo„)— (4.15b)

we obtain the final form of the RDM equations (v„„=V„„/l):

p„„(t)=—iso„~„„+ig(v„„«p„«—v «g «)—
—,'&(M+1)(M+2)y(to„)p„+2,

—
—,'&(M —1 )M y( —a)„)p„q„——,'&(N+1)(N+2)y(to„)p„,~2

—
—,'&(N —1)N y( —to„)p„„

+ (M+1)(N+1)y(co„)p„+,,+,+ MN y( —co, )p„
+—,

' (M+1)N [y(to„)+y(—co„)]p„+&„&+—,
' M(N+1)[y( )to+y( —co„)]p& & +&

+(g —g„}[M+ ly(co, )p„+)„+~My( to„)p„),&N—+ ly(ri)„)p—~ „+)—&N y( to„)p„„)]-
+'[ (~y. ) —y( —~.)]g K+1[ M+1(P„+i,P +&, P„+&,+&P, )+v M(P„&,P +~, P„i,—+ip,.)

+ N+1(PI, ~+ ipse, v+1 Pl.,xPz+ 1,v+1) N (Pl., ~+ip~, ~ i PI,&~+1,v 1}—v'

+2(gm gn )(Pp, r+ lpga, v Pp, aP&+1,v)] (4.16)

Here, we have introduced the complex transition frequen-
cies

co„„=(E„E,)/A—
+i I ,'(M+N)[y(co„)+y(—co„)]—+y(—co„)].

(4.17}
They contain the transition frequency between diabatic

I

levels p and v and the finite lifetime of these levels due to
the coupling to the environment.

The above equations of motion of the RDM differ in
three aspects from those used in the previous paper [18].
First, we have considered here the full linearized version
of the interaction-coordinate environment coupling in-
stead rescaling Q to the quantity 5Q=Q 2g g P . It-
yields the additional terms proportional to g . However,
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the numerical results are only slightly changed compared
with those of [18). Second, the RDM equations have
been derived taking into account the non-Markovian con-
tributions from the coupling to the environment (see Sec.
III C). This improvement avoids the occurrence of the
damping functions (4.13) with frequency arguments oth-
ers than k~„.And third, we have specified here the
quadratic terms with respect to the RDM.

It can be proven simply that the above RDM equations
conserve the total probability g~„„.Furthermore, as
one expects, the effect of the coupling to the environment
is twofold. On the one hand this coupling produces the
dephasing rates

I st =
—,
' [(M+ 1)y( —co„)+My(co„)] (4.18)

of the vibrational level M. This quantity is contained in
the transition frequencies (4.17). On the other hand real
transitions occur accompanied by the emission and ab-
sorption of environmental quanta described by the third
up to the last term of the rhs of Eq. (4.16). (This will be-
come more obvious below when we derive an equation for
the diagonal elements of the RDM. )

If the vibrational quantum number in the RDM is in-
creased y(co„)occurs as a prefactor, and if the quantum
number is decreased the prefactor is given by y( —co„).
In the mixed case the prefactor contains y(co„}as well as

y( —co„).
Finally, it is interesting to note that the linearized ver-

sion of the RDM equations (4.16) leads to a simple
damped-harmonic-oscillator equation for the interaction
coordinate Q. However, the oscillatory motion is dis-
turbed by an "external" force proportional to g g P
This distortion comprises the complicated dynamics of Q

I

(see Sec. V}. Details of the derivation of the equation
mentioned can be found in the appendix.

B. Generalized master equation

To gain a deeper understanding of the underlying
physics of the RDM equations (4.16) we indicate the ap-
proximations necessary to change to the generalized mas-
ter equations (GME) and afterwards to rate equations of
the nonadiabatic electron transfer. The GME's represent
non-Markovian equations of motion for the diagonal ele-
ments of the RDM. Although of approximate type such
GME's have the advantage of characterizing the transfer
dynamics in a configuration space with a considerably re-
duced dimension compared to the case of the RDM equa-
tions. First, we change from the complete RDM p„ to
its diagonal elements P„=p„„,the occupation probabili-
ties of the Born-Oppenheimer states. Afterwards, one
can derive non-Markovian as well as Markovian rate
equations for the total electronic site-occupation proba-
bilities P =g~P„.

The physical background allowing such a reduced
description consists in a decreasing lifetime of excited vi-
brational states compared to the intercenter transfer
time. If the vibrational lifetime becomes short enough
the electron quickly relaxes at the given center before any
transfer can happen. In that limit the transfer dynamics
can be described by simple rate equations.

To end up with the standard (linear) rate equations we
neglect the nonlinear contributions in the RDM equa-
tions (4.16). The diagonal set of the remaining equations
reads

a P„=—[My—(co„)+(M+1)y( co„)]P„+—(M+1)y(co„)P„+,+My( —co„)P„,—2+Im(v zp ~)
N

—v'(M+1)(M+2)y(co„)Rep„+z„&(M 1)—My( —c—o„)Rep„
+&M(M+1)[y(co, )+y( —co„)]Repq+,

„

(4.19)

The GME's will be obtained if we succeed in replacing
the terms containing off-diagonal elements of the RDM
by diagonal ones. There occur two different types, name-

ly, those being off diagonal with respect to the center in-
dex and the vibrational quantum number (p N) and

those being diagonal with respect to the center index
(p„+x.„+L',K,L = —2, . . . , +2). To replace both types
it is necessary to write down the corresponding equations
of motion. If we solve these equations we can insert the
solutions into the original equation (4.19). Once again,
there appear off-diagonal parts of the RDM. Thus we
can repeat this procedure, resulting in a perturbation ex-
pansion for the memory kernels of the GME's.

We start by determining an approximation for the first
type of the RDM elements, namely p N. In the
lowest-order approximation with respect to the memory
kernel we obtain

a
p~ ~~ ie mtcpl ~tc+iv N I (P„P~tc) (4.20)

with the solution

EQ r t
+iU dt e

mN, p

X [P (t t ) P "N(t t )] .—

(4.21)

Taking the Markov limit of this expression

[P (t t )=P (t)] we real—ize that the given approxima-
P P

tion can be characterized by the perturbation-expansion
contribution U N /comN, p p, m¹

To take into account off-diagonal elements of the
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+(M+ 1 }y(co„)P„+,+My( —co„)P„
—g f dt K„„(rr)[P„(—r) P„(r—)]

N

+2+ Im[u ~p ~(0)e " "'] .
N

(4.22)

The first term describes the decrease of the occupation
probability of the level p resulting from intracenter tran-
sitions to the neighboring levels M+1 and M —1 with
rates y( —co„)and y(co„),respectively. The reverse of
these processes leads to an increase of probability as
represented by the second and the third term.

The integral term describes intercenter transitions. As
a consequence of the time integration (memory eff'ect) and
oscillating parts in the kernel, the integral term may
create oscillating contributions to the occupation proba-
bilities. The kernel itself reads

(4.23)

It oscillates with the frequency co N=(Ez Ez)/A'—
and disappears in a time given by the inverse rate of the
intercenter dephasing

(4.24}

The last contribution in Eq. (4.22) stems from the initial
value term in Eq. (4.21).

To discuss the dynamics described by the GME's it is
useful to assume that the level Np at center 1 is initially
occupied with probability one, and to discriminate three
different processes.

As the first process we introduce the intracenter relax-
ation indicated by the first three terms of the GME's.
The characteristic time of this process is the inverse of
y(co, ). The second process is the dephasing of the wave

function at center 1 with respect to center 2. Its charac-
teristic time is given by 2/y(co„). The third process is the
electron transfer without any coupling to the environ-
ment, the coherent transfer. The electron moves from
level Xp at center 1 to the levels at center 2. If the state
Np at center 1 is degenerate with state X at center 2 one
expects an oscillatory behavior with frequency 2

~ u» 2~ ~

in the beginning of that motion. Later, this will be super-

RDM in Eq. (4.20) other than p z requires the solution

of the corresponding equations of motion. This solution
would also give powers of the basic contributions

u„/co„„andy/co„„.For example, the lowest-order
solution for the above-mentioned second type of off-
diagonal parts of the RDM p„+z„+Lwould contribute
terms of the order y/co& „.

In the following we restrict ourselves to a memory ker-
nel for the GME's of the order ~u N „~/~co„-z( in in-

serting the expression (4.21) into Eq. (4.19). Therefore we
have to drop all off-diagonal functions of the type

p„+x„+L.Those would contribute the order y /~co„„~.
The resulting GME's read

P„=——[My(co, )+(M+ 1)y( —co„)]Pq
a

imposed by transitions to neighboring levels %+1,%+2,
and so on. If there is no degeneracy with level X at
center 2 one can expect an oscillatory behavior with fre-
quency co» z&+4~u» zz~ )', where N is the level

nearest to Np.
If the damping rate y(co„) is small compared to

~ u»» ~
the electron oscillates between the two centers.

In that case the memory kernel K N(t r) —remains

large for all t. In the contrasting case y(co„)& ~u» 2~~

transfer dynamics are dominated by intracenter relaxa-
tion at first. If this process is finished the transfer to the
neighboring center becomes significant. Since oscillating
contributions to the memory kernel have been damped
out, the occupation probabilities themselves do not show
any oscillating behavior.

P„(r)=f(M)P (4.25)

which takes into account the finished intracenter relaxa-
tion by providing a thermal distribution over the vibra-
tional levels

—Pfizer„—PM Ace„f(M)=(1—e ")e (4.26)

This ansatz leads to a mutual compensation of the intra-
center relaxation terms in the GME's. The remaining to-
tal occupation probability P of center m has to be deter-

mined separately. As a second approximation one can
take the Markov limit of the GME's since the memory
kernel extends over times [the intercenter dephasing time
(4.24)] small compared with the time region of interest.
Since the last term of the GME's (4.22) vanishes in the
same time region we can drop this contribution.

A summation with respect to M gives the following
rate equation:

P(t)= —k —(t)P (t)+k (t)P (t) (4.27)

with time-dependent rate coefBcients for the transition
between center m and center m

k (r)=2 g ~u ~ ~~'f(N)
M, N

X Im[(e "—1)/co - ] . (4.28)

For t »max(r~&) this expression approaches the stan-
dard rate coeKcient k of nonadiabatic electron
transfer. Taking into account the time dependence of the
rate coefFicients one can hope to extend the range of va-
lidity of the rate equation into the transition regime from
the coherent to the incoherent transfer. (The numerical
results given below justify this reasoning. ) Therefore we
split the total time-dependent coeScient

C. Rate equations

If one concentrates on the system dynamics on a time
scale larger than the intracenter relaxation it is possible
to formulate rate equations in carrying out three different
approximations. First, one can introduce the separation
ansatz for the occupation probabilities
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k ~(t)=k +5k (t) (4.29) —P„=—
—,
' [y(co„)—y( —co„)]

a

quadr

into the standard rate coefficient of nonadiabatic electron
transfer (see, e.g., [2]}

X [(I+1)P„+,P„M—P„IP„].
(4.36)

2(r +r„)
mm X ~ mM mN f 2 +(r +r )2

M, N ~mM mN M N

(4.30)

and the time-dependent correction

~ "m+~N ~'

bk (t)=2 g ~v M, tnNt f(N)
~ +(r +r„}2

X [co sin(co t)

—( I +I' )cos(co - 1 ) ] . (4.31)

Employing the separation ansatz (4.25) and carrying out
the summation with respect to the vibrational quantum
numbers this expression vanishes. Therefore we can con-
clude that the quadratic contributions may be of minor
importance in the regime of incoherent transfer. Non-
vanishing contributions are of the order yv„„/co„,and
yy/co„„with respect to the resulting memory kernel.
The conclusion about the minor importance of the quad-
ratic terms will be further justified by numerical calcula-
tions published elsewhere.

V. NUMERICAL RESULTS

P, (t)= —,'[1+D(t)],
P, (t)=-,'[1—D(t)],

with

(4.32)

(4.33)

D(t )=PI(t ) P2(1)

D(0)e
—A(t, 0)

This last expression shows that the most important con-
tribution originates from the vibrational ground state
with exponential time dependence according to
exp[ —y( —co„}t]. If the absorption processes of environ-
mental quanta are improbable (k&T « fico„) this term
gives a significant correction to the standard rate expres-
sion.

The solution of Eq. (4.27) can be cast into analytical
form

The results given below of the numerical solution of
the RDM equations extend earlier studies of the same di-
mer model. In Ref. [25] the limiting case of the coherent
charge motion has been extensively discussed. The nu-
merical calculations have been based on the solution of
the time-dependent Schrodinger equation for the isolated
dimer (the relevant system without any coupling to the
environment).

Expanding the time-dependent wave function with
respect to the single-center Born-Oppenheimer states
defined in Eqs. (2.3) and (2.4) one obtains for the expan-
sion coeScients f„

(5.1)

or, considering the simple structure of H„'' for the
present case,

+ f'dte """[r (-t}—k2I(t)]
0

(4.34) f„=i cog—„—i g v—
„

fa
(5.2)

and

A(t, t)= f dt'[k»(t')+k»(t')] . (4.35)

These equations will be used in the following section for a
comparison with exact solutions of the RDM equations.

We also note that the terms in Eq. (4.19) proportional
to p„+z„+L,which give contributions to the GME's of
the order y /co„+z„+L,describe intracenter relaxation
processes accompanied by the emission and absorption of
two environmental quanta. Using the separation ansatz
(4.25) to derive the corresponding rate equation these
contributions also vanish like the single-quantum pro-
cesses.

Now, let us consider the simplest correction to the
GME's following from the quadratic contributions in the
RDM equations (4.16). The lowest-order contribution to
the GME's is obtained if we neglect all o8'-diagonal ele-
ments of the RDM in the tc summation in Eq. (4.16).
This approximation has to be carried out after changing
to the diagonal elements of Eq. (4.16). We get

The solution of these equations is equivalent to the solu-
tion of the RDM equations in the limiting case of infinite
lifetime of the vibrational quanta. Therefore the results
of the foregoing paper can be used to corroborate the va-
lidity of the present calculation in the case of small vibra-
tional damping rates.

In [25] we introduced reduced quantities in scaling all
energies with respect to the energy of a vibrational quan-
tum fico, and in renormalizing the time with respect to
the vibrational period 1/co, . The same reduced quanti-
ties will be used here. The system is characterized by the
parameters a=v/co„and the electron-vibration coupling
constants which will be taken symmetrically as
—

g& =g2 =g & O. The electronic energy levels of the two
centers are set equal (eI=E2) in correspondence to Ref.
[25].

Although only two parameters (a and g) remain a rich
scenario of charge motion can be studied by varying the
type of initial state. A pronounced transition from
charge localization at the initially occupied center to
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lq'(&=0)&=S'(g&)INo&lg & . (5.3)

The corresponding initial values of the RDM read

(5 4)

In the numerica1 calculations we have investigated three

charge oscillation between the two centers appears in the
intermediate case a=1 for the coupling g =2.

Using the well-known localization parameter v /2g co„
for the characterization of the system one expects strong
localization for the above-mentioned parameter values
because v/2g co, =—,'. Localizing the electron initially at
center 1 without any vibrational quantum we are in the
region of nuclear tunneling. Because of weak tunneling
in the present case the electron remains localized up to
t —= 190/co„. Exciting two or three vibrational quanta one
enters the region of activated transfer where the activa-
tion energy Nofuu„(No is the number of initially excited
vibrational quanta) becomes comparable to the so-called
polaron shift %co„g . Now, the electron oscillates be-
tween the two centers with a frequency roughly given by
the Franck-Condon factor (4.2) for a horizontal transition
FFc(Np No' 2g). This oscillation is usually called
coherent charge motion.

Increasing the coupling to the environment (decreasing
the vibrational lifetimes) these oscillations are masked by
the intracenter relaxation down the ladder of vibrational
states. Such a relaxation destroys the phase coherence of
the electronic motion between the two centers. The
transfer dynamics changes to the incoherent type (hop-
ping motion) for which one expects an exponential time
dependence of the occupation probabilities P

For a numerical integration of the equations of motion
(4.16) one has to reduce the infinite set of equations to a
finite number. Therefore we introduce an upper limit for
the number of vibrational states N,„.The remaining
contributions to the equations of motion will be dropped.
%e choose N,„=20. A dynamic system with
(2'N,„)=1600 degrees of freedom results. This num-
ber follows if one takes into account that the RDM splits
into a real and an imaginary part and has the property
pp, v pv, p'

The chosen number for N,
„

is sufficient to allow a
stable solution of the equations of motion with a standard
Runge-Kutta method of fourth order up to times of
t =200/co„. The stability has been proven by checking
the conservation of the total probability
g„p„„=P,+Pz= 1. This equation could be fulfilled
with an accuracy of 10

As demonstrated during the derivation of the rate
equations in Secs. IV B and IV C one can drop the quad-
ratic contribution to the equations of motion (4.16) in a
first approximation. The resulting linearized RDM equa-
tions will be used throughout the present analysis. A de-
tailed discussion of the quadratic terms with respect to
the RDM will be given elsewhere.

For all calculations discussed in the following the ini-
tial state has been prepared as an eigenstate of center 1

with No excited vibrational quanta

=2 g &M+1Rep„+,„+2g(2P&—1), (5.5)

and the mean number of vibrational quanta

= g [(M+gz }p„„—2g M+1Rep„+,„].
(5.6)

The time dependence of Q completes the description of
the transfer dynamics by P& and Pz. Moreover, the
quantity 8'indicates the exchange of energy between the
dimer and the environment. The initial values of Q and
W are given according to the initial values (5.4} of the
RDM as

and

Q(0) = —2g, =4 (5.7)

W(0) =No+g f =No+4 . (5.&)

Q(0) is the equilibrium position of the interaction coordi-
nate in the isolated monomer 1. The appearance of g &

in-
dicates that W has been defined with respect to the vibra-
tional quanta of the dimer without the excess electron,
i.e., the basis of the oscillatory states corresponding to
the harmonic potential centered at Q =0. The tempera-
ture of the environment has been taken as k& T=0. 1Acu„
re6ecting a high-frequency vibration in the dimer.

The results are ordered with respect to Xo and the cou-
pling strength to the environment. In Fig. 1 we present
the occupation probability of center 1 for different values
of the scaled spectral density a(co„)/co„[seeEq. (4.14)].
The considered time region extends up to t,„=5/0co„.

This range is sufficient to display the different dynamic
behavior in the following cases.

For No =0 and in the weak-dephasing limit
a/co„=10 [full curve in Fig. 1(a)] the electron remains
localized at center 1 during the time interval considered.
Such a localization appears because the Franck-Condon
factor of the vibrational ground states F„c(0,0;2g) is
small for the actual values of the electron-vibration cou-
pling. Increasing the coupling to the environment the lo-
calization is removed. In the case of three initially excit-
ed vibrational quanta (No =3) we reach the region of ac-
tivated transfer: the occupation probability oscillates
with a frequency of about F„c(3,3;2g)co„as shown in

Fig. 1(b) (see also [25]). The damping of the oscillations
is of minor importance in the time region considered.

Taking a value of a/co„below 10 one can definitely
reproduce the results of the solution of the time-
dependent Schrodinger equation (5.2) in [25]. As expect-
ed, the time dependence of P becomes independent of
the initial state in the case of large damping rates [com-

different types of quantities, the electronic occupation
probabilities (2.16), the expectation value Q of the in-
teraction coordinate (2.17}

Q =2g (+M+ 1Rep„+&
„—g p„„)
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pare the dashed and dash-dotted curves in Figs. 1(a) and
1(b)]. For these examples the characteristic time of intra-
center relaxation r„~= I /y (ro„) amounts to
~„1=2'„/2+a-=1.59 and 0.159, respectively. Since we

consider a symmetric model for the dimer the electronic
occupation probability becomes distributed uniformly
over both centers with the asymptotic values P ( Dc ) = —,'.

The above-discussed low-temperature examples display
charge-transfer dynamics accompanied by relaxation pro-
cesses dominated by emission processes of environmental
quanta. Considering temperatures of kz T=Ace„with
pronounced absorption processes the time dependence of
P does not change significantly. Furthermore, one can
also notice only minor differences if one compares the re-
sults of Fig. 1 with the corresponding results of the fore-
going paper [18] in which we used a somewhat different
type of RDM equations and a reduced interaction-
coordinate environment coupling (see also the discussion
in Sec. IV).

To complete the results of Fig. 1 we display in Figs.

(a} .

0.8-

0.6-

2(a) and 2(b) the corresponding time dependence of the
interaction coordinate. Using the initial condition No =0
the already discussed localization behavior of the charge
for large vibrational lifetimes can be observed as weak os-
cillations of Q around the initial value of 4. Increasing
a/co, this behavior changes to a diffusive one with the
asymptotic value Q(ao )=0 corresponding to the sym-
metric dimer model.

Contrarily, for No =3 we observe large oscillations of
Q for a/co, =10 [full curve of Fig. 2(b)]. These oscilla-
tions are in phase with the corresponding oscillations of
P . For larger values of the electronic intercenter cou-
pling (approaching the case of adiabatic electron transfer)
the electron motion will become faster compared to the
oscillations of Q, so that P~ will be out of phase with the
oscillations of Q.

Increasing a /co„above the value of 0.01 the motion of
Q becomes diffusivelike. The time dependence of Q (like
that of Pi) is independent of the initial condition for the
two smallest values of the vibrational lifetimes.

If one carefully compares the curves of P, and Q one
can notice the importance of the off-diagonal elements of
the RDM. In Eq. (5.5) Q was defined by means of the
RDM. If the off-diagonal elements Rep„+,„areof
minor importance the time dependence of Q follows that
of Pi scaled by the factor 4g [second contribution in Eq.
(5.5)]. This can be seen for a/co, =0.01 and 0.1 for both
cases NO=0 and 3. In contrast, for the case a/co, =1

0.4-

0.2- 4

0
0 10 20 30 40 50

3-

2-

0.8

0
0 10 20 30 40 50

0.6

0.4

0.2

0
0 10

I

20 30 40 50
0

0 10 20 30 40 50

FIG. 1. Electronic occupation probability at center 1 vs
scaled time co„tfor k&T=0. 1%co„a/co,=10 (full line), 10
(long-dashed line), 0.1 (dashed line), and 1 (dash-dotted line); the
number of initially excited vibrational quanta is (a) Np=0, (b)
Np =3.

FIG. 2. Expectation value Q of the interaction coordinate vs

scaled time co„tfor k~ T=O. 1k'„a/co„=10 (full line), 10
(long-dashed line), 0.1 (dashed line), and 1 (dash-dotted line); the
number of initially excited vibrational quanta is (a) Np=0, (b)

Np =3.
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there are systematic deviations.
A further noticeable result is the behavior of P& and Q

in the case NO=3 and a/co„=0.01. Both quantities
reach a plateau value in the considered time region. If
one extends the calculations to larger times (t =200/co„,
not shown here) one observes a very slow relaxation
[compared to 1/y(co„)=15.9/co„] to the asymptotic
values P, (~)=

—,
' and Q(oo) =0. Such a slowing down

indicates the existence of a critical region of the intra-
center relaxation processes.

The relaxation processes as well as the energy ex-
change with the environment are also reflected in the
time dependence of the mean number of vibrational
quanta W(see Fig. 3). For the case No=3 one can notice
the relaxation behavior starting from the initial value 7
according to Eq. (5.8). The relaxation becomes faster as
a/co„ is increased.

However, the asymptotic values of W depend on the
magnitude of a/co„ in contrast to first expectations. Ir-
respective of the contribution g, W should reach a
thermal occupation n(co„). Due to the low value of the
temperature in the present case this would mean
W(~) =4.

For NO=3, however, W(~) decreases with increasing
a/co„. Furthermore, Wrises in time for No=0, except in

the case of a/co„=1. The values of W(~ } coincide for
the two different initial conditions as they should, but this
cannot yet be seen for the smaller damping rates in the
time interval presented in Fig. 3. The dependence of
W( ~ ) on a/co„ is shown in Fig. 4. The curve levels ofF

7-
(a)

6.
5-

3
0 10 20 30 40 50

W

5-'g

4-

3
0 10 20 30 40 50

FIG. 3. Expectation value 8' of the number of vibrational
quanta vs scaled time co, t for kz T=0.1%co„a/co„=10 (full

line), 10 (long-dashed line), 0.1 (dashed line), and 1 (dash-
dotted line); the number of initially excited vibrational quanta is

{a)Np=0, (b) Np=3.

3
O. O1

I

O. 'l

Q/LaJy

FIG. 4. Asymptotic expectation value 8'(t ~ (x) ) of the num-

ber of vibrational quanta vs a /co„ for k& T=O. 1%co„.

for low values of a/co„. In conclusion, W(~) becomes
independent of a/co„ for very low damping rates. To un-

derstand this behavior it is useful to discuss the transfer
dynamics presuming that the eigenvalue problem of the
electron-vibration system of the dimer

Ef„=gH'„'f, (5.9)

has been solved. In the case of weak coupling to the envi-
ronment the time dependence of P, Q, and Wean be in-

terpreted by taking into account that the system has been
initially prepared in a monomer state which is not identi-
cal with the eigenstates of the coupled monomers in the
dimer.

This becomes obvious for the time dependence of P
&

in
the case NO=3. In the energy range in which the vibra-
tional states of the two monomers overlap strongly, the
spectrum of the coupled system is very different from the
monomer spectra; hence large oscillations occur. (The lo-
calization behavior of P, for No=0 indicates that the
reconstruction of the vibrational ground states of the
monomer in the coupled system is of minor importance. }
Similar oscillations can be observed for the corresponding
time development of Q and W.

However, if a/co„ is increased these oscillations are
damped out. Now, the dynamic behavior of the system
features a relaxation of the different quantities from their
initial values to the values corresponding to the lowest
eigenstate of the coupled system. This value is larger
than 4 in the case of W. Accordingly, W relaxes to this
value in the case of an intermediate coupling to the envi-
ronment for No=3. A respective increase of W occurs
for No =0.

If such a reasoning is true the asymptotic values of W
should coincide with g +n(co„)for weak electronic inter-
center coupling. Figure 5 shows W(t) for the same
values of a/co„as in Fig. 3 but for the intercenter cou-
pling a=0. 1. Now, the usual relaxation behavior to-
wards W(oo) =4 is obtained.

Let us return to the original case of a=1. If we fur-
ther increase the coupling to the environment the quanti-
ty a/co„not only determines the swiftness of the relaxa-
tion but also influences the spectrum of the coupled sys-
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FIG. 5. Expectation value 8' of the number of vibrationa l
quanta vs scaled time m„tfor kz T=O. 1fico„andintercenter cou-
pling a=0. 1; a/co„=10 (full line), 10 (long-dashed line),
0.1 (dashed line), and 1 (dash-dotted line); the number of initial-
ly excited vibrational quanta is No =3.

0.01
I

0.1
0/LaJ y

FIG. 7. Effective rate coefficients vs a/co„given byn b the
derivatives of the curves in Fig. 6 (full line), the derivatives of
P, in Eq. (4.32) (dashed line), and the "golden rule" (4.30)
(dash-dotted line).

In (P, - 0.5I

-5
0 10 20 30 40 50

FIG. 6. Logarithmic plot of the electronic occupation proba-
bi ity at cen erb'l t t r 1 determined from the density-matrix equations
(4.16) vs scaled time cu„t for k&T=0. 1Ace„;a/m„= u

) 10 (ion -dashed line), 0.1 (dashed line), and 1 (dash-
nal uanta isdotted line); the number of initially excited vibrationa q

No =0.

tern of monomers in the dimer. This combined in6uence
of the intermediate value of the electronic intercenter

lin and the large value of the coupling to the envi-
ronment determines the further decrease o 00 wi
increasing a/ro„. We note that in the case a jr0„=1the
linewidth of the vibrational states amounts to 2'„over-
coming the energetic separation of the vibrational levels.

The obtained characteristics of the transfer dynamics
in the case of a large coupling to the environment coin-
cide with the deviation of the time dependence o P&
from that given by the rate equation (4.27). Such a devia-
tion should be expected if one remembers that the deriva-
tion of the "golden-rule" rate coefficients (4.30) requires

For a detailed comparison we return to the data in Fig.
1(a). Since the solution of the rate equation results in an
exponential time dependence w

~ ~

e have lottedP
ln[P P( 00 ) j ver—sus time [remember Pi( 00 ) = —,'] in

Fig. 6. One notes the overall exponential decrease
n

ofP .
Figure 7 displays the derivatives of these curves which

are nothing but effective rate coefficients k,l versus
a/co„. The respective coefficients for P, obtained from
E . (4.32) and the standard rate coefficients (4.30) are
shown for comparison. It is obvious a "g
rule" rate coefficients provide an incorrect description in
the considered case of intermediate electronic intercen er
coupling.

VI. CONCLUSIONS

A genera approacA 1 roach to study the charge-transfer dy-
Wenamics in molecular complexes has been presented. e

started with the formulation of a general model of mo ec-
ular complexes which comprises (a) different localization
centers for the excess electrons, (b) molecular vibrations
(along so-called interaction coordinates) coupling to t e
transferred electron, and (c) environmental degrees of
freedom (further molecular vibrations) which only coup e
to the interaction coordinates and provide dissipative sur-
roundings for the charge transfer.

U
'

a special method of quantum statistics (the none-sing a spec'
ions of'1'b '

Green's-function technique) equations o
motion for the density matrix of coupled electron-
vibration states (the Born-Oppenheimer states of the elec-
tronic localization centers) could be derived. The envi-
ronment as een ah b t ken into account via correlation
functions. The corresponding expressions are valid or
any type of interaction-coordinate environment coupling.

The obtained type of density-matrix equations is ap-
propriate for further analytical studies as well as for nu-
merical computations. The equations allow the con-
sideration of any strength of the electronic intercenter

1 and an strength of electron-vibration coupling.
Therefore nonadiabatic electron trans er, a

'

transfer and the intermediate transfer regime can be de-
scribed.

fer d nam-N 1 calculations for the charge-trans er ynam-urnerica c
ics have been presented for the minimal mode o a imer
with a single molecular vibration and a linear interaction
b this vibration and the environmenta egetween
freedom. The necessary restriction to a finite num er o
excited vibrational states maps the infinite number o
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density-matrix equations onto a linear dynamic system
with 1600 degrees of freedom in the present case.

Using an intermediate value of the electronic inter-
center coupling (i.e., of the transfer integral) the change
from the coherent, wavelike motion to the incoherent,
hoppinglike motion upon increasing coupling to the envi-
ronment has been demonstrated in detail. The relatively
large value of the intercenter coupling strongly influences
the details of the dynamics. For large values of the cou-
pling to the environment the asymptotically approached
states of the dirner strongly depend on the magnitude of
this coupling.

The description of the charge transfer in using stan-
dard "golden-rule" rate expressions fails for the value of
the electronic intercenter coupling used.

It should be noted here that the investigations are not
primarily devoted to explaining experimental results, but
to demonstrating how the density-matrix equations work
in the simplest conceivable case, and to clarifying details
of the already complicated dynamics. More complex sys-
tems, e.g., those with two or three interaction coordinates
and a nonlinear coupling to the environment, will be dis-
cussed in the near future.

Nevertheless, the investigation of the simple dimer case
has to be continued, too. We plan further investigations
concerning the solution of the eigenvalue problem of the
dimer and the quadratic contributions in the density-
matrix equations.

d 2v
(A2)

and

Stcam„—II= — "
Q fico„g— g P —gkgqg .

dt 2 m(=] 2)
(A3)

It is the aim of the following derivation to show how the
RDM equations reproduce these relations and how the
contribution of the environment [the last term in Eq.
(A3)] is reformulated.

For the present purposes it is convenient to start with
the expectation value of the interaction coordinate opera-
tor C,

(C'}=z(r)= y(v'M+lp„„—g p„„).

Q and II are obtained as

of motion for the expectation value of the interaction
coordinate Q. As a reference let us first consider the
equations for Q which follow from Heisenberg's equa-
tions of motion. According to the definition of the di-
mensionless interaction coordinate (4.4) the correspond-
ing momentum operator reads

11=— (c—c') .iA
(Al)

2
From Heisenberg's equations we obtain for the expecta-
tion values

APPENDIX: EQUATION OF MOTION
FOR THE INTERACTION COORDINATE

i'Q=z+z', ll= (z —z') .
2

(A5)

To obtain a deeper understanding of the RDM equa-
tions it is instructive to employ them to derive equations

I

Using the RDM equations (4.16) in their linearized ver-
sion we get

g&M+Ip, +t X( „,mivp„+t,mz mw, I+F~N, I
P p, N

,'[y(co—„—)—y( —a)„)]g &M+1(p~~( p pq q~t)— (A6)

and

a—gp„„=2g Im(U ~p ~) .~s

The contribution of the environment in Eq. (A3) for
the momentum is replaced by the frictionlike term—[y(co„)—y( —co, )]II. Alternatively, one can construct
a second-order differential equation for Q,

Combining Eqs. (A6) and (A7) leads to

a—z=i co(z+ g g P )
m =1,2

—
—,'[y(co, ) —y( —co„)](z—z') . (A8)

a' a
Qt2 3t

+ [y(tg„)—y( —co„)]—+coz Q

= —2a)„g g P . (A9)
m =1,2

Note that the terms proportional to the Franck-Condon
renormalized intercenter coupling compensate each other
as can be seen using the relation (4.6b). Recalling the re-
lations (A5} one reproduces Eq. (A2) for Q.

This equation with the temperature-independent friction
term looks very simple. However, the complicated dy-
namics displayed by the RDM equations (4.16} are now
contained in the inhomogeneity of Eq. (A9).
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