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X-ray attenuation and anomalous scattering factors of medium-Z elements around their X edge
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An analytic-calculation method enabling the evaluation of the real part of the anomalous scattering
factor f from attenuation measurements in the x-ray range is presented. This method utilizes a power
law to fit the variation of the experimentally observed mass attenuation coefficients as a function of the
photon energy. It uses an analytic expression involving Gauss hypergeometric functions to calculate the
dispersion term. A derivation of the relativistic correction to the dispersion term shows it to be smaller
than the one used in the scattering-factor tabulation. The calculations using this method are tested for
seven elements of medium Z: Pd, Ag, Cd, In, Sn, I and Xe, between 15 and 45 keV. Since they compare
favorably with the ab initio calculation, the present approach can be considered as an advantageous al-
ternative to the full calculation.

PACS number(s): 32.80.Cy

I. INTRODUCTION

Accurate values of atomic scattering factors are impor-
tant data for x-ray diffraction analysis and x-ray optical
designs. Recent advances in theoretical techniques make
it possible for photon scattering by bound electrons to be
predicted, in principle, with a precision better than a few
percent. Nevertheless, systematic disagreements remain
between experimental scattering factors and theoretical
predictions. Moreover, the more rigorous theoretical
treatments are not sufficiently amenable to extensive
systematic calculations because they necessitate the
"exact" numerical resolution of complex quantum-
electrodynamic programs. On the other hand, direct ex-
perimental measurements of the anomalous part of the
scattering factor are difficult to perform; they use optical
methods that are not operational beyond about 20 keV.

By using dispersion theory, the real part of the forward
scattering factor for a photon of energy Eo can be de-
duced from the dispersion integral over all frequencies of
the attenuation cross section. The experimental evalua-
tion of this integral requires knowledge of the attenuation
spectrum for all frequencies. However, over the x-ray en-
ergy range, the scattering factor obtained by direct mea-
surement is found to be in conflict with values derived
from attenuation measurements via dispersion theory.
Indeed, it is well known that the real part of the anorna-
lous scattering factor is not properly described by disper-
sion theory but that relativistic correction terms to the
dispersion relation must be included in the calculations.

The correction terms proposed by Cromer and Liber-
man (hereafter, CL) [l] and Jensen [2] are not in satisfac-
tory agreement with recent optical measurements [3—5].
In the dipole approximation, CL propose for this correc-
tion term ——', E„,/mc, where E„, is the total atomic
binding energy and mc is the electron rest energy. This
CL value underestimates the real part of the anomalous
scattering factor. However, this is the value used in the

most recent tabulations [6]. From an extension of the
classical Thomas-Reiche-Kuhn sum rule to a Dirac elec-
tron, Levinger et al. [7] have proposed for the summed
oscillator strength a correction term lower than that of
CL. Systematic comparisons between theoretical values
and accurate experimental data have suggested that the
latter could be regarded as the most reliable term even
for a many-electron system [8].

In this paper, we propose an analytical method to cal-
culate the real part of the atomic anomalous scattering
factor f' from absorption data for any x-ray energy. For
that purpose, we first consider in Sec. II the relation giv-
ing f as a function of the dispersion term and a relativis-
tic corrective term for a single-electron atom. To com-
pute the dispersion term in compact form, the absorption
data must be under a functional form. Because no recent
measurements of attenuation coefficients exist over the
x-ray energy range [9—20], we have performed prelimi-
nary measurements for some medium-Z elements [21).
Later, these data were extended; they are presented in
Sec. III for seven elements, Pd, Ag, Cd, In, Sn, I, and Xe,
in the energy range between 15 and 45 keV, in terms of a
power law E ", where n is a real number. In Sec. IV we
describe the analytical method involving the Gauss hy-
pergeometric functions proposed to compute the disper-
sion term with the help of this power law. Finally, by
taking into account the correction term deduced in Sec.
II, we determine in Sec. V the real part of the anomalous
scattering factors for the seven elements. The precision is
discussed as a function of uncertainties of experimental
attenuation coefficients and of the extension of the in-
tegrated domain.

II. THEORETICAL BACKGROUND

In relativistic perturbation theory the scattering factor
f for the forward electronic Rayleigh scattering by a
single-electron atom is
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where ca is the Dirac velocity operator; e, k, and m are, respectively, the polarization vector, the wave vector, and the
angular frequency of the incident and scattered light. The ket li & defines the state of the bound electron of energy

E; =mc +E; and
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n n n

where ~n+ & and In & define intermediate electron states of positive and negative energy. The sums are taken over all
positive and negative intermediate states except the positive energy states occupied by other atomic electrons. One has

E +=me +E + and E = —mc —E (3)n+ n+ n n

%e note

f =f '+f (4)

where f + and f are the terms with the sums on the positive and negative states, respectively.
In a nonrelativistic calculation including relativistic corrections to first order, the term f + is reduced to the usual

nonrelativistic term
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where the subscript NR refers to nonrelativistic states.
By taking into account the relation
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where P denotes the Cauchy principal part and 5 the delta function, the second term becomes
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By equalizing the real and imaginary parts, one obtains
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n

where f" is the attenuation term; it is related to the attenuation cross section rr by the optical theorem

f"(~)= g o; „(~),
4mcro

with ro the classical electron radius.
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sion relation
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2
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The dispersion term [f (co)]d;, is related to the imagi-
nary part f" of the scattering factor through the disper-

In this relation, the integral is extended over the whole
electromagnetic spectrum It is easy to show that
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Then, f' differs from (f')d;, by a correction term in-
dependent to the attenuation cross section, which is ab-
sent in the treatment by CL.

Finally, we obtain
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Next consider the term f . By assuming A'co((2mc~
and developing the operator relative to the states of nega-
tive energy up to second order, we get
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Then the scattering factor for a one-electron atom is
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making the real part of the anomalous scattering factor
equal to

For a Z atom, the forward-scattering factor can be
written

The first term on the right-hand side corresponds to
fo; the others corresPond to (f fo ) i,«,d,

—
(f fo )p d d . . . . The term fo (and also fo ) is ob-
tained by replacing the matrix element denominators by
2mc . Letusnotethat
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(22a)

(22b)

fo++fo =fo (15}

where fo is the main part of the scattering factor which
is equal here to 1 (or Z in the general case of an atom of
atomic number Z).

We obtain

The correction to the dispersion term is lower than
that proposed by CL. It agrees with the correction term
proposed by Levinger et al. for the summed oscillator
strength.
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III. EXPERIMENTAL MEASUREMENTS

A. Apparatus
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Finally,
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we have

By introducing the total kinetic energy & T), which is
related to the total energy of the atom by the virial
theorem

(18)

The experimental setup used in the present investiga-
tion is described in detail elsewhere [21]. It consists of
40-cm bent-crystal transmission spectrometer in the Cau-
chois geometry. The dispersive analyser is (100) mica for
which the first order of Bragg reflection is predominant.
The characteristics of the crystal, namely, dimensions
and quality, determine the instrumental resolution at
lower energies, up to about 20 keV. By assuming the
crystal to be perfect, the width of the instrumental func-
tion is 10 eV at 20 keV.

The x-ray source is the bremsstrahlung emitted by a
sealed x-ray tube with a tungsten anode, supplied by a
highly stabilized generator; the voltage and the electron
intensity have a stability better than 10 per 1%
supply-voltage variation.

The detector is an ion-implanted passivated silicon
crystal giving, at room temperature, an energy resolution
DE=2.6 keV at 14.4 keV, i.e., sufficient to eliminate pos-
sible higher harmonics by means of an amplitude discrirn-
inator. This type of detector was preferred to a NaI(T1)
scintillator, in spite of its lower efficiency, because an
anomalous response of the NaI crystal occurs in the vi-
cinity of the iodine K threshold at 33.2 keV, that is,
within the spectral range of interest. The linearity of the
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detector response has been carefully checked; this charac-
teristic is important in the vicinity of an absorption edge.

The spectrometer is computer controlled; repeated
scans of each spectral region have been performed in
various configurations: e.g., different positions of the
sample and different thicknesses of absorber sheets.

C. Data acquisition

The spectra are recorded continuously between 15 and
45 keV in 50-eV steps. Above approximately 20 keV, the
energy resolution is determined by the 30-pm aperture of
the detector slit which is kept constant throughout the
scan. This aperture gives an energy spread of 13 eV at 20
keV and 60 eV at 45 keV which is consistent with the
value chosen for the step. Errors introduced by devia-

tions from the mean thickness of the sample were re-

duced by measuring the transmitted intensity for several
positions of the sample and by using different samples.

The acquisition is carried out in the following se-

quence: (i) background noise without radiation, (ii)

transmission spectrum, (iii} incident radiation spectrum.
The spectra are calibrated in wavelength from absorption
edges of well-known wavelength. Wavelength is convert-
ed to energy by the relation

E(keV ) A(A) = 12.3981 . (23)

The energy precision depends on the spectral range and
the absorption edge used for the calibration; it is 20 eV at
the Ag K edge.

D. Results

The mass attenuation coefficient r (expressed in cm /g)
is given by the Beer-Lambert law

1 1~=—ln —,
pt T

(24)

where t is the mean thickness of the sample; p is the
volumic mass under the conditions of measurement (it is

B. Samples

The metallic elements are studied in solid state. The
thicknesses of the absorbing screens vary from 30 to 46
pm; the absolute values are known to a precision of about
1 pm, and the uniformity of the thickness is better than
1%. With these values for the thickness, the transmit-
tance T, i.e., the ratio I/Io, where I and Io are, respec-
tively, the intensities measured with and without a sam-

ple, ranges between 0.1 and 0.7 over the whole spectral
range of interest.

Iodine is studied in aqueous solution of NaI (0.4mol/1)
prepared with doubly distilled water. The liquid is con-

tained in a cell with plastic films which are highly trans-

parent to x radiation. The effective thickness of the cell is

5 mm +0.02 mm.
Xenon is studied in gas phase at room temperature; it

is contained in a 112 mm+0. 02 mm long cell under a
pressure of 190 Torr. The windows are beryllium foils.
The samples are chemically pure and no correction has

been applied to account for possible impurities.

p=KE (25)

where K and n are the parameters tabulated by Leroux
and Think [23]. The rather good agreement between the
two curves suggests that the total attenuation coefficient
could practically follow a similar law in the spectral
range of interest. Differences between the two curves

may be due to scattering processes (Compton and Ray-
leigh) whose cross sections are not in the theory described

by a power law. Figure 2 shows an estimation of the rela-

tive contribution of the scattering effects for two elements

(Sn, I) ainong those being studied [24]. It appears that
these effects remain small in the spectral range con-

deduced from the data tabulated in the Handbook of
Physics and Chemistry [22]); and T =I /Io is the
transmittance, (Io is determined after subtraction of the
background). At each energy, mean values of r are ob-

tained from a sequence of T values measured for a given

sample. When more than one sample is used for a given
element, an average ( r ) was calculated from the set of r
values.

The precision of the value of ~ for a given energy de-
pends on two types of errors: (i) the systematic errors
due to the apparatus and to the method used and (ii) the
errors due to uncertainties in the parameters of the rela-
tion (24). Systematic errors can arise from the presence
of radiation that is scattered or re-emitted by the absor-
bant screen, or by any part of the apparatus, and reaches
the detector. This effect decreases towards the lower en-

ergy, that is to say, with the increasing Bragg angle, be-
cause the scattered beam is clearly separated from the
direct beam. Belo~ 35 keV, we have assumed that an er-
ror of this type is not present when correct conditions of
adjustment are respected. On the other hand, towards
the higher energies, we have detected the presence of
scattered and nondispersed radiation occurring at the
detector. The presence of this radiation introduces a sys-
tematic error in the measurement of ~. In practice, we
have limited the determination of the attenuation
coefficient to the energies lower than a limit value that
depends on the quality of optical adjustment. In all

cases, the values measured beyond 41 keV have not been
taken into account.

Accidental errors are due to the uncertainty on the
thickness of the samples and the specific mass p which
occurs in the calculation of r from the relation (24}. We
have estimated the error on these two factors from a
large number of measurements made with various sam-

ples, as mentioned above. A statistical analysis of the
data gives the error to be +3%. The error on the
transmittance T is negligible. The energy calibration of
the spectrometer does not introduce noticeable error. In
fact, one expects the precision to be better than for deter-
minations performed at some discrete energies because
the measurements are fairly continuous.

Then the precision on our values of ~ is +3%. Figure
1 shows the experimental variation of ~ versus the radia-
tion energy for a 30-pm-thick In sample compared to the
mass photoabsorption coefficient p computed according
to the variation law
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FIG. 1. Indium: (a) experimental mass attenuation coeffi-

cient and (b) mass photoabsorption coefficient computed from
parameters tabulated in Ref. [23].

FIG. 2. Relative contribution of the scattering effects (Ray-
leigh and Compton) on the total attenuation cross section for Sn

(a) and I (b), fram Ref. [24].

sidered, except just below the E edge where they amount
to about 12% and they display a weak energy depen-
dence, especially above the E edge. Thus, we have tenta-
tively treated these scattering terms as if they could be in-
cluded in the power law and set for the variation of the
attenuation coefficient ~ with E and X,

IV. CALCULATION OF THE DISPERSION TERM

f"(E)= Er(E)A

2hcraN
(27a)

In terms of the mass attenuation coefficient ~ at the

photon energy E and by taking into account the relation

(3), the imaginary part of the scattering factor is

ln[r(E)]= —n ln(E)+CE, (26a) =CqEr(E), (27b)

1n[r(A, )]=n ln()(, )+C~ . (26b)

A logarithmic least-squares regression is used to deter-
mine the values of Cz (Cz) and n on each branch of the
curve, that is to say, on each side of the I( threshold. The
results are listed in Table I.

Our values of n are given with two decimal figures. It
should be noted that many authors claim a much higher
precision. In our opinion, there is some uncertainty on
even the first decimal figure depending on the number of
data used to perform the regression and on the extension
of range. This is confirmed by the large dispersion of the
published data which are generally obtained from mea-
surements for only some discrete energies.

where A is the atomic mass and N is the Avogadro num-
ber.

Then the dispersion term is

~ E rE
0

(28)

The dispersion relation is strictly valid so long as the
integration domain is rigorously the interval [0,+ ~]. In
fact, the absolute values of the mass attenuation
coefficient are not known with sufficient accuracy over
the whole electromagnetic spectrum and the integral ex-
tension is truncated. The domain of integration must
largely exceed the region of interest. We restrict the in-

TABLE I. Parameters (Cz, Cz, n) of the power law fitting the measured attenuation coefficients for
seven medium-Z elements.

Pd
Ag
Cd
In
Sn
I

Xe

10 CE

49.870
61.787
68.719
71.264
90.419
77.344
85.151

E &E„; A, )A~

62.529
65.446
70.267
74.782
81.932
94.327
97.514

2.65
2.72
2.74
2.73
2.78
2.67
2.69

10 CE

414.687
600.270
681.686
554.224

1102.644
750.427

1127.210

E )E~', A&A~

395.167
443.586
477.810
469.200
593.340
586.129
691.397

2.76
2.86
2.89
2.81
2.99
2.84
2.94
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tegration domain to the x-ray region and compute the in-
tegral

(29)

where E denotes the low-energy integration threshold.
Using the experimental power laws which describe the

energy dependence of the mass attenuation coefficient on
each absorption branch, the preceding relation can be
rewritten:

2 n 2 2 —
nK

(30)

where q designates an occupied electronic inner shell oth-
er than E shell, and q+1 the occupied inner shell having
an energy higher than q. Eq is the absorption-edge ener-

gy of the inner shell q and c,n are the parameters
characteristic of the power law which describes the
mass-attenuation-coefficient dependence versus the pho-
ton energy on the branch q. The calculation essentially
reduces to the computation of the integral y(EO, E,n):

E2 n

y(ED, E,n)=P J dE, (31)
E2 E2

E—2b

y(EO, E,n ) = 2Fi(l, b;b+1;z ) (32a)

if one sets

n —1 Eob=, z=
2

' F.
(32b)

The integral (31}is rapidly computed so long as the hy-
pergeometric function is judiciously expanded:

(i) inside the unit disk lz l
( 1, a simple series expan-

sion is relevant:

where n is a real number larger than unity. To do this,
we can follow the method used by one of us in a previous
paper [25]. It was shown that y(E ,0E,n) can be ex-
pressed with the help of Gauss hypergeometric functions
F

2Fi(l, b;b+1;z )

b ln—(1—z )z

oo b
b(1 —b) g — (1—z2}t'

p=o P.

(35)

where b =I (b +p)/I'(b) and I stands for the I func-

tion. From these relations, a computational algorithm
can be built to obtain the dispersion term of the atomic
scattering factors from the measurement attenuation
coefficients.

V. DETERMINATION OF ANOMALOUS
SCATTERING FACTOR FOR MEDIUM-Z ELEMENTS

From our experimental data and the computational
procedure described above, we have calculated the real
part of the anomalous scattering factor from relation
(22a) for seven medium-Z elements in the energy range
between 15 and 45 keV. Let us recall that (,E) is the
ground-state energy. Henke et al. [26] have given a con-
venient expression of E„,/mc as a function of the atom-
ic number Z. Consequently, we express this term as fol-
lows:

oo 2p

F~2(i, b;b+ 1; )z=2b g b+p
(33)

=—,'1.03X10 Z +—', 2. 19X10 Z
me me

(36)

(ii) Outside the unit disk lz l
) 1, a change of variable

z ~z ' together with an analytic continuation gives

2F&(l, b;b+1;z )

oo —2p—bz
—2 g + ( 22) b(34—}

0 (1 b+p) sinn—b

(iii) ~hen lz2I becomes close to unity, the convergence of
the series involved in (34) may be tedious; then it is con-
venient to perform an analytic continuation after the
change of variable z ~1—z . After some algebra, it
yields

The integration domain for the computation of J(EO)
is limited towards the lower energies by the Mv absorp-
tion edge and towards the higher energies by a criterion
of convergence during the computational process of the
series. The variation of the real part of the anomalous
factor f' is given for Pd, Ag, Cd, In, Sn, I, and Xe in

Figs. 3(a)-3(g).
The precision on the anomalous factor depends on (i)

the relative uncertainty of the attenuation coefficient and
(ii) the extension of the integration domain. Figure 4(a)
displays the precision on the anomalous factor due to a
relative uncertainty of +5% of the attenuation
coefficient. The calculation is carried out for Ag. The
first singularity at 25.5 keV coincides with the E edge,
while the second one at 33.25 keV corresponds to a
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Flax. 3. Real part of the anomalous factor f': (a) Pd, (b) Ag, (c) Cd, (d) In, (e) Sn, (f) I, and (g) Xe.
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FIG. 5. Comparison between the dispersion term of the
anomalous scattering factor obtained from our computation
method (solid line) and the data (dots) tabulated by Sasaki [6]
from the CL theory [1]. The data are for Sn (a) and I (b).
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FIG. 4. Uncertainty on the anomalous factor of Ag due to:
(a) uncertainty of ~ and (b) extension of the integration domain.

change of sign in the quantity f,+5% f,.
The choice of the integration domain may be more

severe than the relative uncertainty of the attenuation
coefficient. Figure 4(b) shows the relative error of the
anomalous scattering factor computed for Ag resulting
from an integration domain limited to the interval
[L,—ao ] with respect to the integration domain extended
to the Mv edge, that is, in the interval [Mv —oo ].

Except for Sn and Xe above the E edge, the dispersion
(f')d;,~

in relation (1) is in close agreement with the real
part of the anomalous term (f+

)cz computed from CL
theory [1,6]. To make this assertion more quantitative,
we report in Fig. 5, for Sn and I, the values of the real
part of the anomalous factor tabulated by Sasaki from the
CL theory [6] and using the corrective term

3 2 2mc

Eo

mc

and the data obtained from our computation method, to
which we have added the same corrective term 5 for a
direct comparison. Therefore, our semiempirical ap-
proach, which consists in fitting the total attenuation
coefficient by a power law, is satisfactory. The discrepan-
cy observed for Sn and Xe likely arises from a difference

between our experimental measurements and the CL
theoretical values; our computational method may not
necessarily be incriminated. On the other hand, the real
part of the anomalous term f ' is not directly comparable
to the dispersion term (f')d;,~

because of the presence of
the corrective term. It follows that the ultimate accuracy
in atomic factor calculated from attenuation coefficient
values obtained either empirically or from ab initio cal-
culations is closely dependent on this corrective term.
The corrective term that we propose on a theoretical
basis (see Sec. II) makes the values of the real part of the
anomalous scattering factor in better agreement with the
direct experimental (interferometric) determinations than
the CL corrective term. This fact was previously dis-
cussed by Smith, especially for Si and Ca [8].

VI. CONCLUSION

It is known that a corrective term due to the relativis-
tic and retardation effects must be added to the nonrela-
tivistic real part Z+(f')d;, . On a theoretical basis, we

propose for this term an expression different from that
used in the recent tabulations of scattering factors: We
find an agreement between this expression and the value
expected from direct comparison between calculated and
experimental values.

We have developed an analytical method to evaluate
numerically the dispersion term from experimental at-
tenuation coefficients. For this purpose the experimental
absorption data are presented in a functional form. The
variation of the attenuation coefficients as a function of
the photon energy is fitted using a power law. This ana-
lytic treatment leads to values in agreement with those
obtained by ab initio relativistic quantum calculations.
This constitutes an interesting result because this method
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can be implemented easily and does not require long
computing time. Nevertheless, it must be emphasized
that the precision of the proposed method depends both
on the quality of the measurements and on the extension
of the integration domain retained in the dispersion rela-
tion. By taking into account our proposed correction
term and by using our simple computational method, it is
possible to obtain rapidly and accurately the atomic
scattering factors of a large number of elements in the x-

ray region; the method can be implemented as a routine
in numerical codes for crystallography and optics.
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