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State interference in resonance Auger and x-ray emission
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Starting from a scattering-theory formulation, cross sections for Auger and x-ray decay from energeti-

cally shifted inner-shell states are derived. Two situations are studied: (i) when there are several close-

lying intermediate core-hole states with no vibrational excitations, in which case a state interference

effect is identified; and (ii) when there are several close-lying intermediate states with vibrational excita-

tions, in which case a vibronic interference effect is identified. In the latter case, the present formalism is

a many-state generalization of the vibrational interference sects derived from the same type of scattering

formalism in our previous paper [A. Cesar, H. Agren, and V. Carravetta, Phys. Rev. A 40, 187 (1989)].
Applications are carried out for spectra of some few-state model systems. It is found that a conventional

analysis in terms of discrete noninteracting (noninterfering) states, such as the one-center decomposition

model, is only valid when the ratio (R) between energy shift and lifetime is suSciently large. For states

with small R, a more complete theoretical account must be undertaken, including, e.g., the calculation of

phases of the respective transition moments. The presented formalism applies to resonance Auger or x-

ray emission spectra, to Auger and x-ray emission from core-electron shake-up states, and also, under

certain circumstances, to emission from chemically shifted core-hole states.

PACS number(s): 32.80.Hd, 31.10.+z, 33.10.Cs, 32.70.Jz

I. INTRODUCTION

Intensities in radiative and nonradiative decay spectra
of inner-shell hole states have traditionally been analyzed
in terms of local selection models. These models provide
the interpretability of the spectra in terms of electronic-
structure theory of the ground-state molecule, and under-
lie much of the chemical utility of these spectroscopies.
The use and limitations of these rules are by now rather
well settled.

Along with spectroscopic innovations in terms of
discrete excitation sources, attention has turned to reso-
nance spectra of small and extended systems. In the
present study we address such decay spectra (Auger and
x-ray spectra), i.e., those emanating from energetically
shifted core-hole states. We attempt to explore on a fun-
damental level the applicability of the type of intensity
analysis usually applied to emission from isolated core-
hole states. We start out from a scattering-theory formu-
lation that has previously been used for deriving
vibrational-lifetime interference in such spectra [1]. In
the present case, we generalize this derivation to include

many intermediate short-lived states. From the results of
this derivation we identify the effect of state interference
in decay spectra of inner-shell states. The expressions are
evaluated for some few-state model systems with or
without vibrational excitations, with the transition mo-
ments used as parameters. The intensities are then calcu-
lated for different ratios (R) between the energy shift and
lifetime broadening. The consequences of the results for
different values of R for the interpretation of decay spec-
tra of close-lying states are discussed.

The effect of lifetime-vibrational interference in vibron-
ic decay of molecular core-hole states has now been
firmly established [2—7]. Several theoretical studies have

been devoted to this effect. The first theoretical studies
were given by Gel'mukhanov et al. [2,3], who started out
from the Kramer-Heisenberg dispersion formula and de-
rived an effective one-particle Green's function for the x-

ray cross sections; Kaspar et al. [4], carried out a deriva-
tion that utilizes a scattering S matrix and vibronic cou-
pling constants; while Correia et al. [5] derived the vib-

ronic cross sections for x-ray and Auger emission by
means of a time-dependent Franck-Condon formulation.
Gunnarsson and Schonhammer [8] had earlier applied a
quadratic response function formalism for Auger decay
and shown that lifetime interference effects can be sub-
stantial for solid-state species. Common to these theoret-
ical investigations is the assumption of non-post-
collisional interaction (PCI), the Born-Oppenheimer (BO)
approximation, and the local approximations for the nu-
clear Hamiltonian. The use of the general scattering for-
malism [9], rather than, e.g., the Feshbach projection
operator approach, has the main advantage that inter-
channel and intrachannel interactions, nonadiabatic
corrections, and many-body interactions may be intro-
duced at progressively more sophisticated levels of ap-
proximations. This is an important motivation for the
present work.

The present theory applies to resonant Auger and x-
ray processes (fluorescence x-ray emission) as these gen-
erally occur from (Rydberg) series of close-lying core ex-
cited states embedded in a continuum. The spectra of
such resonance processes are thus considerably more
complex than the corresponding normal Auger or x-ray
spectra from the main, well-isolated core-hole states. The
theory applies equally well to decay from close-lying sa-
tellite, shake-up states, or to any situation with close-
lying core-hole states, such as spin-orbit splitted states.
Interesting systems for these studies are given by surface
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adsorbates where particularly intensive shake-up states
lie close to the main lines. Under certain circumstances
the theory also has a bearing on spectra from chemical
shifted states of extended systems. The results indicate
that, even for high-energy primary excitation, there may
be shifts in energy levels derived from x-ray-emission-
spectroscopy (XES) and Auger-electron-spectroscopy
(AES) spectra in comparison with those derived from
absorption-type spectroscopies.

II. THEORETICAL MODEL

Many phenomena associated with the atomic and
molecular x-ray and Auger processes are successfully un-
derstood within the frame of the multichannel resonant
scattering theory [9]. The presence of a set of N electron-
ic discrete states embedded in the continuum of E degen-
erate electronic states causes the (angle-averaged) cross
section for emission of (x-ray) photons or (Auger) elec-
trons to show rapid variations within a certain range of
the spectral energy centered about some values charac-
teristic for the particular atomic or molecular system un-
der consideration. Spectral parameters like the resonance
width and level shift emerge from such theory as a mea-
sure of the strength of the configuration mixing between
discrete and continuum states. Nonvanishing incoherent

amplitudes of probability for the alternative direct and
the diverse resonant events distort the line profile corre-
sponding to a particular electronic transition from a usu-
al Lorentzian-like shape to the so-called Fano profile.

The multichannel resonant scattering theory as applied
for the atomic [9] and molecular [1] x-ray and Auger
transitions has been formulated under the simplifying ap-
proximation of only one discrete electronic (vibronic)
state embedded in many electronic (vibronic) continuum
states. This refers to the normal situation when the de-

cay takes place from one main core-hole state only.
Within a broader context, solutions to the problem of
configuration interaction between electronic states be-
longing to the discrete and continuum part of the spec-
trum of a Hamiltonian operator have been offered by
Fano [10]. He considered the particular cases of (i) one
discrete state in one continuum state, (ii) one discrete
state in many continua, and (iii) many discrete states and
one continuum. Solutions for the general case (iv) where
many discrete states are embedded in many continua
were first given by Mies [11]. The latter author em-
phasized the role of the overlap of neighboring reso-
nances and the effects on a spectral line profile for a pho-
toabsorption or a scattering process of the ratio between
the relative (energy) position of the resonances and their
widths. Later, Davis and Feldkamp [12] reconsidered the
general case (iv) above and applied the theory to photoab-
sorption and photoemission of Cu in the region of the 3p
threshold. The general problem of discrete states embed-
ded in continuum states has also been treated in terms of
projection operators by Feshbach [13],who presented an
equivalent solution for the general case (iv) in his third
paper of the series on the subject [14]. In the present
work we consider x-ray and Auger emission as mul-
tichannel resonant scattering processes for the more gen-

at a continuum interval of energy E lying well above the
threshold for core ionization for the (atomic or molecu-
lar) system under consideration. The wave function
(I)+E(r,R) satisfies the usual outgoing boundary condition
for scattering states,

Qp(r'; R)y'~'(R)
(I)+~(r, R) —g~

p 2lf'1r kp

[ k
&

r + ()&( e ) ]
—[k p r + ()&( E ) ]

where Sp (E) is the scattering matrix "on the energy
shell" and 8&(e) represents a phase shift related to the
resonant scattering process.

The total Hamiltonian operator 8 in Eq. [1] is a sum of
the Hamiltonian operators for the molecular system 8~,
the radiation field A'R, and the radiation-molecule in-

teraction term 8~+, i.e.,

0M+BR+~MR (3)

It is convenient that we further divide the molecular
Harniltonian into

HM = T+H,), (4)

where 8,( is the electronic Hamiltonian and f' is the
kinetic-energy operator for the nuclei. In Eqs. [1] and

[2], r and R stand collectively for the coordinates of, re-

spectively, all electrons and nuclei present in the molecu-
lar system; r for the coordinate of the escaping particle;
and r' (collectively) for the coordinates of the electrons
remaining on the residual ion. %'e shall assume that the
primary photoelectron is emitted with a high kinetic en-

ergy so that, according to the sudden approximation,
final-state interaction between the escaping
(photo)electron and the residual ions can be neglected.
Also, we consider only angularly averaged cross sections,
i.e., we do not consider any rotational degree of motion
or rotational interaction for the whole scattering process.
One energy label,

gp= —,'kp =E —Ip,

suffices therefore to identify the secondarily emitted x-ray
photon or Auger electron. This energy refers to the Pth
singly (x-ray) or doubly (Auger) molecular ionization
threshold I&=E&"—E"'"'"'. The core-hole ionization
process proceeds by the intervening of one photon with

energy %co impinging on the molecular system. Since in
what follows we shall take the electronic energy of the
neutral initial state E"'"'"' as the reference energy level,
the total energy for the whole system will be E=A~.

eral case (iv) formulated for the molecular case with a
number of electronic states and with vibrational degrees
of freedom included.

When speaking about the x-ray and Auger processes as
scattering events, we will be referring to the solution of
the Schrodinger equation

H4+F(r, R) =E4+F(r, R)
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Throughout we assume the validity of the adiabatic
Born-Oppenheimer factorized form for the asymptotic
molecular wave functions for all relevant residual elec-
tronic states defining the possible continuum open chan-
nels. This means that

1( (r, R)=Q (r;R)y' '(R), a=1,2, . . . , E
will be the approximated form for the (ground-state)
electronic-vibrational wave function of the neutral mole-
cule, the initial vibronic state in the scattering process, as
well the electronic-vibrational wave function correspond-
ing to the several final singly (x-ray) or doubly (Auger)

charged ions. Analogously, the electronic-vibrational
wave function of the discrete (core-hole) ionic states lying

in the continuum is approximated as

P„(r,R:aE)=y„(r;R)Y„E(R)

(the reason for the a and E indices in the above equation
will be made clear later).

The scattering functions on the subspace of the contin-
uum background will be denoted by 0' +—,(r, R) and they
are chosen to satisfy the scattering outgoing or incoming
wave boundary conditions, respectively,

k&r +8&(e) —[k&r +8&(e) j
Q&(r';R)y'P'(R) [5& e S& (E—)e j

%.*,(r, R)— (8)

P„(rR)~0 as r~~ . (10)

By virtue of the factorizations of Eqs. (6), we construct
the usual nuclear Born-Oppenheimer potential energy for
the several possible electronic states defining the E open
continuum and N discrete resonant channels as

E (R)=(Q (r;R)~H„Q (r;R)),
E„(R)=(q&„(r;R)~H,

& jp„(r;R)),

(a,P= 1,2, . . . , E), where S& (E) is the scattering matrix
on the shell related to the direct single- or double-
ionization scattering process [1,2j. These functions form
an orthogonal and noninteracting subset of continuum
functions, orthogonal but not noninteracting to the sub-
set of the discrete functions t P„(r,R) I:

((4'&z(r, R) 0' +—,(r, R)) }=5 P(6" +e 8&
—e'), —

((P„(r,R)~%—+,(r, R)) }=0,
((P„(r,R)~8~4 +—,(r, R)})%0.

We shall not require more of the set of N discrete wave
functions I P„(r,R:aE) I than that they are linearly in-

dependent and that they fulfill the basic boundary condi-
tions for discrete states,

H y'; '(R)=8,y' (R), a=1,2, . . . , & (13)

where 6; corresponds to the electronic-vibrational ener-

gy of the several states u which include the initial neutral
and the final single or doubly ionized molecular species.
The yet unspecified functions Y „z(R)describe the nu-

clear motion of the molecular system in the nth core ion-
ized intermediate states. One important aspect of the
theory at this point is that these functions, unlike the vi-
brational wave functions y' '(R), are not required to be
eigenfunctions of the nuclear Born-Openheimer operators
H„.Another important aspect of the theory is that it is

developed in such a way that nonadiabatic corrections to
the Born-Oppenheimer approximation can progressively
be included in the scattering functions 4+—,(r, R) of the
subspace of the continuum background functions. The
inclusion of nonadiabatic effects is certainly relevant con-
sidering the density of the single or, more crucially, the
doubly ionized final states.

We seek a solution for the Schrodinger equation (1)
with the eigenfunctions satisfying the boundary condition
of Eq. (2) in the space of functions spanned by the E con-
tinuum [4+E(r,R) I and X discrete IP„(r,R:aE)I linear-

ly independent functions. This solution is written as

and the corresponding nuclear born-Oppenheimer Ham-
iltonian operators

H =T~+E (R),
H„=fg+E„(R).

(12)

Throughout we shall reserve the use of parenthesis (
~

}
and angular brackets ( ~

) for integrations over the elec-
tronic and nuclear coordinates, respectively. We write
the vibrational eigenfunctions of the nuclear Hamiltonian
of Eq. (12) as'' '(R),

4+E(r, R) =gqv„(r;R)Y+„E(R)

+g J de'+&;(r, R)8& (e', E) .
P

(14)

((ql&,.(r, R)[H —E~4+z(r, R)) }=0 (15)

and that 4+@(r,R) and 4'+,(r, R) satisfy the boundary
conditions of Eqs. (2) and (8), respectively. We obtain

The coefficients 8&+ (e', E) are determined by requiring
that
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de'%&&(r, R)([M p(e', E)] ~Y+ E(R) &

4+@(r,R)=%+,(r, R)+g tp (r;R)Y+ z(R)+g lim J~~0 (E —6p
e—' —i v)

(16)

M+p(e', E)= (y (r; R) ~(8 E)
~

4—p, (r, R) ) . (17)

Notice that M+p(e', E) acts as a difFerential operator on
the space of the nuclear wave functions. In addition to
the wave function of Eq. (16), the above procedure also
provides us with the elements of the resonant transition
matrix:

Tp (E,e', F. )=Tp (E,e', e)

+y & [M.p(~', E)]'lY.'.p(R) & . (1&)
n

Tp (E,e', e) in the above equation is an element of the
transition matrix for the direct single- or double ioniza-
tion scattering process. The continuum indices e—=e and
e'—= e& correspond, respectively, to the energy of the in-
coming photon (@=A'co) and the energy of the scattered
x-ray photon (e'=fico" "")or Auger electron (e'=e "s").
The solution for the proposed problem will be completed
as soon as we find the wave equation to be satisfied by the
nuclear wave functions Y+„E(R).To this end, if we re-
quire that

g(y (r;R)~(P —E)~4+z(r, R)) & =0 (19)

is satisfied for n =1,2, . . . , N. Then with help of Eqs.
(16) and (17) we get

g[ +..(R)—H „—F.„(E)]IY.'„,(R)&=lM.+.(~,E)&,

(20)

where

4 „=(q (r;R)~q)„(r;R))

and

H „=(y(r;R)~A'~qr„(r;R))

are, respectively, the overlap and the electronic Hamil-
tonian (energy) matrix elements within the subspace of
the discrete functions Iy„(r;R)].The set of complex,
nonlocal, and energy-dependent quantities F „(E)are
operators on the space of nuclear wave functions and are
defined by

where we have made use of the equality

lim . =P +iirf (xp)
f(x) f(x)

v~p X +Xp+l V X Xp

(P denotes the Cauchy principal value of the integral).
The new introduced quantity M+p(e', E) is an element of
the interaction matrix between the functions belonging to
the discrete and the continuum subspace,

F „(E)=glim I
p v~Q

=g lim I
p v~o

de' M p(e', E) &([M p(c', E)] ~

E 6p Ei'v
de' M+p(e', E) &([M„+p(e',E)] ~

E 6p 6 iv

(21)

X[E—H. —F..«)]IY+.~(R) &
= 1M+.(~,E) &, (22)

where the objects F „(E)and M (e,E) have been
redefined accordingly. The physical content of Eq. (22) is
quite clear: Y„+z(R) is a wave function that governs the
nuclear motion of the molecular system in the metastable
or quasidiscrete states n defined by the (diagonal) shifted
nuclear Hamiltonian H„+b,„„(E).It has a positive gain
of probability amplitude from the right-hand-side source
term M„+(E,E) while it decays with a total rate of
-fi/I „„(E)to all alternative x-ray or Auger final states
P=1,2, . . . , K. Since no effort has been made to diago-
nalize fully the optical Hamiltonian H„+F„(E),the N
nuclear wave functions Y„+E(R) will be coupled to each
other by the residual interaction potential given by the
nondiagonal elements of the level shift and width opera-

which can be interpreted as a measure of the strength of
configuration interaction between the discrete and con-
tinuum electronic states. More precisely, this discrete-
continuum coupling enters in the effective nuclear optical
Hamiltonian H „F„(E—) through the diagonal part of
F „(E)while the nondiagonal terms give rise to a
second-order contribution to the configuration mixing
within the subspace of the discrete electronic functions
y„(r;R) due to the presence of the underlying continuum
wherein the discrete electronic states are embedded.

Here one should note the relationship to the theoreti-
cal descriptions of resonant electron-molecule scattering
experiments [15]. In the more elaborated formulations,
such as the Feshbach projection operator method [13,14],
or configuration interaction in the continuum states
[16,11], the electron-molecule scattering cross sections
for vibrational excitation and dissociative attachment are
given by complex, energy-dependent, and nonlocal opera-
tors analogous to the F „(E)operator appearing in Eq.
(21). The use of a nonlocal versus a local operator has
been rather extensively discussed in connection with reso-
nant electron scattering, where the 2.3-eV resonance in
Ni is the prime example [17].

Without loss of generality, Eq. (20) can be simplified if
we construct the electronic functions of the discrete set
[qr (r;R)] in such a way that they form a set of ortho-
normalized and noninteracting functions with respect to
the electronic Hamiltonian matrix (8,i ) „.Furthermore,
if we neglect nonadiabatic couplings within this subspace
of electronic functions, Eq. (20) reduces to
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=ImF „(E)
=2~y lM.*.(&,@.) & ([M„*.(~, ~.)]'I,

a

del „(E,e)
b, „(E}=ReF„(E}=QPf

a a

(23)

Quite naturally, the index a in Eq. (22) should be associ-
ated to the set of quantum numbers of the initial vibronic
(usually the ground state) of the neutral species, which,

tors b, „(E)and I „(E),respectively. As a result of
these couplings the position and width of the nth reso-
nance will differ slightly from those obtained by an ap-
proximated treatment of only the diagonal part of the op-
tical Hamiltonian H„+F„(E).As could be noticed, the
imaginary and real parts of the F„„(E)operators have,
above, received the proper symbols

r „(E)=yr„..(E)

upon interaction with the radiation field, is resonantly
promoted to a vibronic core-hole state. The decay, on
the other hand, proceeds into each energetically open
(continuum) channel a=1,2, . . . , IC at a partial rate
I mn;a'

If we now formally solve Eq. (22) for Y+ E(R),

~Y ~(R))=g[E H„——F „(E)]'~M„+(e,E}),

(24)

and substitute this result into Eq. (18), we obtain the ex-
plicit expression for the elements of the resonant transi-
tion matrix in.terms of a number of computable parame-
ters, namely, the vibronic transition moments for the ex-
citation and deexcitation processes, M„+(e,E) and
M„&(e',E},respectively; the resonance positions and their
widths (the diagonalized form of) H„+b, „(E)and
I „(E),respectively; and the smoothly energy-varying
transition amplitude for the direct single- or double-
ionization process T& (E,e', e):

T& (E,e', e)=T& (E,e', e)+g([M„&(e',E)] ~
E H„X—„(E)——I „(E—)

mn
n mn 2 mn ~M„'.(s,E)) . (25)

At the expected energy range for x-ray photon or Auger electron decay, the amplitudes for the resonant events
overwhelm the amplitudes for the direct single- or double-ionization processes. This means that the transition ampli-
tude for the whole scattering process can be well approximated by only the second term in the right-hand side of Eq.
(25}

iM„+(s,E)) .T& (E,s', s) =g( [M„&(s',E)] ~
E H„b,„(E—) —I —„(E)—

mn
n mn 2 mn (26)

In order to get an explicit functional expression for the resonant transition amplitude, we insert the spectral resolution
of the optical nuclear Hamiltonian,

H„+b, „(E)+—I' „(E)=g~g',"E'(R))Z„,(E)(y',@(R)~,
V

Z„„(E)=@„,(E)+ y„„(E), —
(27)

into Eq. (26) to obtain

Tp (E,s', s)=gg ([M„p(s',E)] ~g'„"'(R))[E—Z„„(E)]'(g'„"'(R)~M„+(s,E)) . (28)

The energy dependence on the transition matrices M„&(s',E) and M„(s,E},as well on the eigenvalues Z„(E)of the
nuclear optical Hamiltonian, can be removed from our further considerations since the resonances we are addressing
are relatively narrow. The apparent symmetry of the electronic and vibrational indices (quantum numbers) in the above
equation is remarkable. It implies that for the ordinary cases where the energy difference between two adjacents vibra-
tional levels is smaller than the corresponding difference for the electronic levels, it is expected that vibrational rather
than electronic interference will be the leading effect distorting and shifting a vibronic band profile from its standard
(Lorentzian} form and position. Quite interesting, however, is the case where a pair of vibronic bands of the decaying
core-hole electronic states have an energy shift comparable to the displacement between two (populated) adjacent vibra-
tional levels. In this case the competing decay will show an equal contribution from the two groups of possible vibra-
tional and electronic interferences.

The cross section for the x-ray or Auger decay will be proportional to the square of the (approximated) amplitude of
transition of Eq. [28], summed over all final channels and averaged over the initial channels. We will let the initial
channel correspond to a single electronic state a, usually the electronic ground state of the neutral molecule, in the zero
vibrational level. The set of final channels will be spanned by all singly (x-ray) or doubly (Auger) ionized electronic
states P and populated vibrational level A, that are energetically reachable from the intermediate core-hole states n:



2838 AMARY CESAR AND HANS AAQRE

or

IT~(E, E', e)ccrc ~ &P(R)~(M„p)t~g~ ~(R))( („)
v (R)~M„+~~~~~)

i
5(@pi.+r.' E)

tf V

4S

(29)

I7 (E e', e)~g ~ l~p„„~+
PA, nv (e + gpg

—g )2+ / 2
+

V 4~nV ~ V(~n' ')

n~v(~ ~ E)+ g pe,
PI.

nv, n'v'(&'& e )

(@ )

'+ ~p. —@„——'), 5V e'+@ g + i2r'
(JN, +

p&. n, „~)(JRp~,,~+
n'V, ~o

*

(30)

where, for sake of claritc arity, we have employed

~nk, bi
= X'k'(R)l(Mb*. ) I/I"(R ' (31)
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tions we list (1) resonance x-ray and Auger emission, (2)
XES and AES emission from core electron shake-up
states, (3) autoionization of a member of a Rydberg series
converging to a common ionization potential of the
ground or excited state, and (4) XES and AES decay from
adsorbed species, for which relatively strong "main" and
"satellite" states fall close to each other in the photoelec-
tron spectrum. Under certain circumstances, as dis-
cussed below, the theory also concerns (5) XES and AES
decay from close-lying chemically shifted states.

We chose here to illustrate to which extent the state in-
terference changes the XES or AES spectral line profile
of energetically shifted close-lying states. We also focus
on the more general case of a molecular system, where
two or more close-lying intermediate core-hole states and
the final electronic states are vibrationally populated. We
carry out some numerical simulations of the model sys-
tems starting out from Eq. (30). The simulation of this
equation requires several quantities: the excitation ener-
gies and transition moments, the lifetimes, and the phases
of the decay transition moments. We assume in all cases
that the core-hole states have equal lifetimes. For the
final transition moments, we consider only one final state
at a time. This is because the total cross section will be
summed over all final P states after the squaring, thus as a

straight superposition of noninterfering spectra. In reali-
ty, the crowded manifold of the final states can make it
diScult to distinguish the effects we are discussing here
on purely experimental grounds. The transition moments
and their phases are used as parameter input. In particu-
lar, we study the cases when M»=M2& and when
M»= —

M2&, i.e., when the deexcitations occur with
equal or opposite phases. We also study the case when

~M»~ && ~M2&~. In the list of examples given below, R
denotes the ratio between energy shift and lifetime.

(1) Two state-mod-el systems with varying R. Here
R =8, 11, 15, and 24 (Fig. 1). Equal transition moments
and equal phases are assumed. For R =24 one discerns
only a minor displacement of the Lorentzian profiles, and
a conventional intensity analysis can be carried out. For
R =8, however, some effect of state interference can be
discerned on the Lorentzian tails, e.g., a decrease of in-
tensity in between the peaks and an asymmetrization of
the line profiles.

g) Two state m-odel systems with jinxed R and diferent
transition moments (Fig 2). D.ifferent ratios of transition
moments (RM)=1, —,', —,', —,', are assumed for an energy-
lifetime ratio R =11. For smaller values of RM, the rela-
tive effect of state interference increases for the weak
transition but decreases for the strong transition.
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FIG. 2. Two-level state interference. Varying transition mo-
ments. See caption to Fig. 1.
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FIG. 3. Two-level state interference. Varying phase. See
caption to Fig. 1.
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FIG. 4. Electronic and vibronic state interference in the Auger spectrum of the S2p3/2 ]/2 spin-orbit splitted states of H2S. See

caption to Fig. 1. (a) Electronic interference for I =60 meV; (b) electronic interference for I = 120 meV; (c) vibronic interference for

I =60 meV; (d) Vibronic interference for I =120 meV.

(3) Two state mod-el sys-tems with ftxed R and diferent
phases for the transition moments (Fig. 3). Phases are
varying as 0' (no phase change), 45', 90', 180', and 270'.
R =11 as in example 2. Equal absolute values for the
transition moments (RM) are considered. The interfer-
ence pattern changes smoothly; at 180' the interference is
reversed with respect to the case of equal phases (0').

(4) Two state mo-del sy-stems with vibrational excita
tions: The S2p3/2 ]/Q spin orbit spli-t states of HzS (Fig. 4).
The spectrum [18] consists of two bands originating from
the 2p3/p (Luj} and 2p, /z (Ln) levels to the outermost
double hole 1b

&
state of H2S +. It shows a simple vib-

ronic progression, repeated for the two spin-orbit com-
ponents, along the bending mode. The progression is
built up by nonresolved superpositions of subprogres-
sions, emerging from the B&, B2, and A I levels of the
(spin-orbit splitted) 2p ' core-hole states. The two last
levels are virtually degenerate while the B, differed by
about 0.08 eV according to calculations carried out in
Ref. [19].

The state and vibronic interference patterns are plotted
in Fig. 4. A spin-orbit splitting of 1.2 eV and statistical
population of initial states (2 to 1) is used. Auger transi-
tion moments with equal magnitudes and phases are like-
wise assumed [20]. The effect of the state interference or
"intensity borrowing" is largest for the weak component.
For 60 meV the effect is hardly discernible, while for 120
meV it implies a displacement of 17 meV.

Auger and x ray decay fro-m chemically shifted core
hole states. So far we have made no assumptions con-

cerning the spatial distribution of the core-hole states. It
is evident that even if the core-hole states are close in en-

ergy, they will not decay with state interference if they
belong to species where not all are connected to each oth-
er. In order to apply the present theory for such systems,
the transition matrix appearing in Eq. (30) must be made
explicit in terms of a phase factor depending on the inter-
nuclear distance. Thus if the product Rk (k being the
wave vector and R the internuclear distance) is small
enough, then the conditions for interference prevail even
between spatially separated core holes. If it is large, how-
ever, the frequent oscillations of the particle wave will
effectively smear out any interference. Thus either the
nuclei, to which the core-hole states are localized, are
spatially close or the core-hole states have low energy,
e.g., are situated closely above the threshold energy for
autoionization or Auger emission. In such a case the de-
cay particles will have small energies and small wave vec-
tors. Thus for chemically shifted species, the possibility
of an interference effect depends on the particular condi-
tions, on spatial proximity, and on excitation energy.

IV. CONCLUSION

In the present work we have derived and explored the
consequences of a scattering formulation of x-ray and

Auger decay for many core-hole-state problems. The for-
malism applies to resonance or fluorescence spectra and

to the decay of core-electron shake-up or shake-off satel-
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lite states. Applications in the present work are carried
out for spectra of some few-state model systems, includ-
ing or not vibrational excitations. In the former case we
identify a state interference effect, in the latter case a uib

ronic interference effect .It is found that a conventional
analysis in terms of discrete noninteracting states is only
valid when the ratio (R) between energy shift and lifetime
is suSciently large. For states with small R, say R (5, a
more complete theoretical account must be undertaken.
It is found that the vibrational degree of freedom in a
molecule, leading to vibroaic interference effects,
enhances the effect of state interference in the corre-
sponding atomic spectra. As pointed out, the present
theory also has a (yet unexplored) bearing on decay spec-
tra of chemically shifted states and that interference
effects then depend on the particular conditions with
respect to spatial proximity of states and excitation ener-
gies.

The findings presented in this work indicate that the
resonance Auger and x-ray spectra (x-ray fluorescence
spectra), as obtained, for example, by new synchrotron
techniques, must be addressed at a higher theoretical lev-
el than the "normal" Auger or x-ray transitions emanat-
ing from the well-separated main core-hole states. The
results also indicate that, even for high-energy primary
excitation, i.e., in the absence of noticeable post-collision
interactions, there will be distortions, although generally
small, in the level diagrams obtained from these spectros-
copies with respect to the corresponding level diagrams
obtained from UV and x-ray photoexcitation [electron-
energy-loss (EELS)] and photoelectron spectroscopy.
This goes also for quantities like spin-orbit splittings,
inner-shell lifetimes, satellite energetics, and core-state vi-
brational constants and conformations, the values of
which may be different from the corresponding values ob-
tained by XPS and EELS.
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