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We have calculated unified photorecombination cross sections and independent-processes pho-
torecombination cross sections for U in the vicinity of the KLL resonances. For this case, where the
radiative width of a level dominates the Auger width, we find relatively strong interference effects be-
tween the direct (radiative) and indirect (dielectronic) recombination processes. In particular, we find
that the unified photorecombination cross section for the 1s?+e~—1s*2s+hv line is suppressed by a
factor of 2 in the presence of the 1s2s(1)2p(%) resonance. Overall, however, the KLL recombination

cross section is reduced by only 2-3 %, at most.

PACS number(s): 34.80.Kw

I. INTRODUCTION

In recent years, there have been great advances in tech-
niques for the measurement of dielectronic recombination
(DR) cross sections, both with regard to the energy reso-
lution [1-3] and to the charge-state accessibility [4,5].
So far, the results of such measurements have been well
described by calculations [5—10] that make use of the
independent-processes and isolated-resonance approxima-
tions, but for how long? A good deal of effort [11-23]
has gone into developing a formal description of DR, in-
cluding overlapping resonances, and into electron-ion
recombination in general, following the recognition that
the separation into dielectronic and radiative recombina-
tion is purely artificial. Most of these theoretical calcula-
tions to date have been for model problems. One notable
exception is the study of interference effects on DR satel-
lite intensities by Jacobs et al. [18]; however, they only
included part of the interference effect (see Sec. II).
Jacobs et al. [18] studied the case for which the autoioni-
zation rate from a given level dominates the radiative rate
out of that level. It turns out that a different term dom-
inates the interference effect when the radiative rate dom-
inates over the autoionization rate (see Sec. II), as is the
case for the KLL resonances formed in the photorecom-
bination of U*®". We have already studied [9] the DR of
U®™ in the independent-processes and isolated-resonance
approximations using a multiconfiguration Dirac-Fock-
Breit description for the required energies and rates, and
the results [9] were found to be in good agreement with
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low-energy-resolution experimental results [4] for U%™"
on H,. But, high-resolution [24] results can be expected
in the not-too-distant future from heavy-ion storage rings
[25] and the super-EBIT (electron-beam ion trap) [26].
So, in this paper, we investigate interference effects on the
photorecombination of U™, but still within the
isolated-resonance approximation. The allowance for
both interference and overlapping resonances in a practi-
cal calculation requires a further nontrivial effort. We
utilize the formulation of Haan and Jacobs [20] for the
unified dielectronic and radiative-recombination cross
section, denoted as the unified photorecombination cross
section. The working formulas and analyses of them are
given in Sec. II. Our results for the unified photorecom-
bination cross sections are then presented and discussed
in Sec. III. We conclude with a short summary in Sec.
IV.

II. THEORY

We utilize the projection-operator formalism of Haan
and Jacobs [20] for the unified electron-ion photorecom-
bination process. We assume that the sum over degen-
erate magnetic sublevels can be absorbed into each indivi-
dual rate or cross section, following the work of Jacobs
[17]. We assume that there exists a single electron con-
tinuum with a single partial-wave expansion but that
there may be multiple photon continua. Then, the
unified photorecombination cross section o(i— f) from
an initial level 7 to a final level f in the presence of a sin-
gle resonance level j is given by [20]
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where the width of the modified Lorentzian 'y is given
by
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and the energy shift by "'A7/2, where
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Furthermore,
g=T%(e,.+E,.—Ej), @)

where g; is the continuum electron energy, E; is the tar-
get ion energy, and E; is the unperturbed resonance ener-
gy. The continuum-continuum coupling parameter ¥ is
given by

Ys
=1+ —L (5)
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and the Fano line-profile parameter g, by
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The remaining quantities are the unperturbed j — f radi-
ative rate denoted by v s, the unperturbed j—i+e™ au-
toionization rate I', the unperturbed i+e™ —f+hv
radiative-recombination cross section ogy, the statistical
weight of the target w;, the statistical weight of the reso-
nance level w;, the ionization potential of the hydrogen
atom I, Planck’s constant #, and the Bohr radius a.

We can energy average Eq. (1) over a bin width 8¢; to
obtain the energy-averaged unified photorecombination
cross section (o (i —f)) given by
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which reduces to the usual independent-processes result
in the limit of g;— . We may apply the isolated-
resonance approximation in the many-level case by sim-
ply summing (1) or (8) over all resonance levels j.

It is of interest to consider Eq. (8) in some limiting
cases. We first note that for all practical purposes the
continuum-continuum coupling parameter 3 can be tak-
en to be unity. To see this, just substitute for g, from Eq.
(6) into Eq. (5) and use, for example, a Bethe-Salpeter-
type [27] approximation for the radiative-recombination
cross section. Thus, we may write Eq. (8) as (with =1)
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where (&pg) is the modified DR term of Jacobs et al.
[18,19], but in its energy-averaged form. Likewise, (o, )
is the interference term of Jacobs, Cooper, and Haan

[19], but energy averaged. For the case of a single pho-

ton continuum we have [18,19]
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where (opg) is the usual unperturbed energy-averaged
DR cross section [see, e.g., Ref. [6], Eq. (1)].
First, we consider y r <<T, then from Eqg. (10) we have
(opr)=~{opg) 1+i2 (an
95

but from Eq. (8) we have

(opr? + (o) =(opr) |1=— | , (12)

ie.,
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Thus, if the modified DR cross section {&pg ) in Eq. (11)
is considered alone [18], then the magnitude of the effect
is correct but an enhancement of the unperturbed DR
cross section (or rate) is predicted rather than a suppres-
sion, as found for (& pg ) + {0y, ) in Eq. (12). In fact, for
1/g*> 1 a “window” resonance is carved out of the non-
resonant background. Furthermore, the largest effects
are on the weakest lines [see Eq. (6)], which turn out to be
orders of magnitude weaker than the nonresonant back-
ground (org) and would make their detection by experi-
ment extremely difficult; see, for example, the case of the
KLL resonances of Ar'®t as discussed by Jacobs et al.
[18]. The same results [Egs. (11)-(13)] hold for the case
of multiple-photon continua. The case of y ;~T is unin-
teresting since, from Eq. (6) and Bethe-Salpeter [27], we
have 1/¢%<<1 and so

(0)=ogp+{opr) - (14)

Next, we consider I' <<, initially for a single-photon
continuum; then, from Eq. (8) we have
vy
2.2
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and, again, the incorrect effect would be deduced on re-
taining only (& py ) since
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The largest interference effects are now seen for the
weakest I, but it turns out (see Sec. III) that the size of
the effect and the strength of the line can be of the same
order of magnitude as the nonresonant background
(ogr). This is a much more favorable arrangement for
measurement than y,<<T. The expression for
multiple-photon continua (and T’ <<3 /7 /) is less simple,
viz.,
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Thus, if all the g, are comparable we have a straightfor-
ward generalization of Eq. (16), but the final levels f’
with g, <g, tend to reduce the size of the effect through
the third term in the large braces of Eq. (17). The net re-
sult for each KLL resonance for U™ is presented in Sec.
III.

The above formalism assumes an isolated-resonance
approximation, but this is not a particular drawback to
the study of interference effects since they are strongest
for low-lying resonances, and these tend to be well
separated. An alternative approach is the close-coupling
approximation for photoionization [28] (and, through de-
tailed balance, photorecombination), which automatically
takes into account overlapping resonances and interfer-
ence between the direct and indirect processes. Further-
more, the R-matrix approach to photoionization [29] is
particularly efficient at generating the resonance struc-
ture, and it has been implemented in a number of general
computer codes using nonrelativistic [30], Breit-Pauli
[31] and Dirac-Coulomb [32] Hamiltonians. However, it
uses the first-order perturbation theory [29] expression
for the photoionization cross section, which is only valid
for the resonant contribution in the weak-field limit
(y <<T'), e.g., low-lying resonances in low-charge ions.
For an isolated resonance and a single-electron continu-
um, but multiple-photon continua, it can be shown (see,
e.g., Ref. [33]) that the form of the close-coupling pho-
torecombination cross section is the same as that used
here, in the weak-field limit [see, e.g., Egs. (9)-(13)]. It is
a nontrivial problem to apply the close-coupling approxi-
mation in the strong-field (y >>T") or intermediate-field
(y ~T') cases. Some progress [34,35] has been made by
fitting the resonances to a known functional form and
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then using the resulting information to evaluate the pho-
torecombination cross section for arbitrary values of
v /T, but this approach can only deal with weakly over-
lapping resonances when y SI'. A practical difficulty
also arises with the use of the close-coupling approxima-
tion, namely, that of missing resonances. In the weak-
field limit, where the close-coupling approximation is val-
id, the resonant contribution to the photorecombination
cross section is proportional to the radiative width, and it
is necessary to resolve all resonances down to the radia-
tive width since both “narrow” and ‘“broad” resonances
contribute equally (as long as they still satisfy y <<T"). In
practice [36], some of the narrow resonances are missed,
and this can lead to an underestimate of the resonant
contribution [36]. A more elegant solution is to solve the
close-coupling equations that treat the photon continua
on an equal level with the electron continua, but this ap-
proach [37] is less well developed computationally.

III. RESULTS

The unperturbed energy levels, radiative rates, and au-
toionization rates required by the theory outlined in the
previous section were taken from our earlier work [9] on
electron capture by U°*. In addition, we now require
radiative-recombination cross sections as well. These
were calculated using the same approach as before [9],
namely, a multiconfiguration Dirac-Fock-Breit approxi-
mation. In Table I we compare our unperturbed energy-
averaged dielectronic recombination cross sections with
our energy-averaged unified photorecombination cross
sections, minus the unperturbed radiative-recombination
cross section, calculated according to Sec. II [see Eq. (8)].
We see that the difference for some of the transition lines
(index nos. 2, 7, and 8) is of the same order of magnitude
as the background (~8eX 10~ cm?Ry), and they are
not necessarily particularly weak lines. Thus, this case
(T <<y[) is quite different from that studied by Jacobs
et al. [18] (v, <<TN).

The most promising candidate for an observation of
the breakdown of the independent-processes approxima-
tion in the photorecombination of U is the

TABLE 1. Photorecombination cross sections for U%" +e .

Index Level Energy (Ry) de{opr) (MbRY) 8e({(o)—ogr) (MbRy)
1 1s25%(1/2) 4635 2.64[ —3] 2.64[ —3]
2 1525 (1)2p(3/2) 4638 1.64[ —4) 7.88] —5]
3 1s2s(1)25(1/2) 4640 1.40[ —3] 1.39[ —3]
4 1525 (0)2p(1/2) 4659 4.51[—3] 4.49[ —3]
5 1525 (1/2) 4663 1.29[ —5] 9.02[ —6]
6 1525 (1)2p(5/2) 4952 0.0 0.0
7 1525 (1)2p(3/2) 4960 2.35[ —5] —7.80[ —5]
8 1525 (1)2p(1/2) 4966 1.75[ —5] —1.46[ —5]
9 152p(1)2p(5/2) 4971 1.78[ —3] 1.73[—3]
10 152p(0)2p(3/2) 4973 6.15[ —4] 5.99] —4]
11 1525(0)2p(3/2) 4976 2.18[ —3] 2.14[ —3]
12 1s2p(1)2p (1/2) 4976 9.42[ — 3] 9.42[ —5]
13 1s25(1)2p(3/2) 4982 8.23[ —4] 7.62[ —4)
14 1s2p%(2)(5/2) 5290 1.04[ —3] 1.02[ —3]
15 1s2p%(2)(3/2) 5297 1.02[ —4] 9.86[ —5]
16 1s2p%(0)(1/2) 5300 2.03[ —4] 1.97[ —4]
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FIG. 1. Photorecombination cross sections for U™ (1s2) to
U®* (1s%2s) in the vicinity of the 1s2s(1)2p(3/2) resonance.
Solid line, unified cross section; dashed line, independent-
processes cross section; both this work.

1s>+e~—1522s+hv line in the presence of the
15s2s(1)2p(3/2) resonance (index no. 7), which is well
isolated from any nearby resonances with the same J.
We present our results for the unperturbed and perturbed
Lorentzians [see Eq. (1)] in Fig. 1. We see that the
unified photorecombination cross section is suppressed by
a factor of 2, on resonance, compared to the
independent-processes cross section.

As noted previously [9] (see also Table I), the KLL res-
onances fall into three energy-ordered groups. Our re-
sults for the unperturbed and perturbed Lorentzian spec-
tra for the middle group of resonances (due to the 1s2s2p
and 1s2p2p subconfigurations) are shown in Fig. 2, the
asymmetry due to the finite ¢ value is quite noticeable.
There is less difference for the low- and high-energy
groups. We note that, in general, the strong resonances
are well isolated from each other. The worst case is for
the levels with index nos. 10 and 13, which have a separa-
tion of 9.5 Ry and widths of about 1.8 Ry, each. If we
convolute our KLL unified photorecombination cross
sections with the Compton profile for the hydrogen mole-
cule, we find that the middle peak is only 5.5% smaller
than our independent-processes results; while the lower-
and higher-energy peaks are only reduced by about 2%.
This size of effect is too small to have been seen in the Be-
valac experiment [4]. However, the results that we have
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FIG. 2. Photorecombination cross sections for U* to the
L-shell of U®* in the vicinity of the resonances of the 1s2s2p
and 152p2p subconfigurations; as in Fig. 1.

presented here (e.g., Fig. 1) should be a stimulus to exper-
imentalists involved with heavy-ion storage rings [25], the
super-EBIT [26], and high-resolution x-ray spectroscopy
[24].

IV. SUMMARY

We have calculated unified photorecombination cross
sections and independent-processes photorecombination
cross sections for U in the vicinity of the KLL reso-
nances. Our use of the isolated-resonance approximation
appears to be valid. The magnitude of the interference
effect between the direct and indirect processes, relative
to the direct one, is much stronger for this case where ra-
diation damping dominates over autoionization than
found previously [18] for the reverse case. We have
found that the photorecombination line
Is’+e” —1s2s+hv in the presence of the
152s(1)2p (3/2) resonance shows a particularly strong in-
terference effect and should be of interest to any recom-
bination experiment attempting to observe the break-
down of the independent-processes approximation.
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