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Retarded radiation field and spontaneous emission for the hydrogen atom
as an emitting antenna
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We have evaluated explicitly from the current of the electron in a nonstationary superposition state
the near and far potentials and fields, then the radiated flux, and with it, the rate of spontaneous emission
with retardation. The Schrodinger current gives a power which is four times smaller than the observed
rate of spontaneous emission.
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I. INTRODUCTION

The radiative-transition process of an electron between
two atomic electronic levels can be described using vari-
ous theories. The two main families of approaches are
the following.

(i) The perturbative QED model [1—3] where the field
is quantized. The state of the atom is represented by a
product wave function

~ a, a ) of the electron and photons.
The total Hamiltonian

H=H„, + gaa fico+ gg(ao++a o )

includes the field Hamiltonian and an interaction term.
(ii) The "semiclassical model" [4—6] where the elec-

tromagnetic field is not quantized.
Here we will use the self-energy quantum electro-

dynamics, which we view as a complete self-consistent
formalism, to compute the potentials and fields emitted
by the electron in transition. A simple calculation of
these fields has been made previously [4]. In this paper,
a diff'erent method will be used which is more systematic,
and the potentials will be evaluated without approxima-
tions. Notably, the dipole approximation will not be

—i (El Ih)t —i (.E2/h)tfu(r)+e '
A, (r))

2
(2)

In self-energy quantum electrodynamics, the wave func-
tion is determined self-consistently together with all other
observable energy shifts and spontaneous emission. It
seems appropriate, however, for the calculation of a par-
tial transition rate between two levels in the lowest order
of iteration to assume the above state whose current con-
tains a single frequency E2 —E& =co&2A. This wave func-
tion is a solution of the Schrodinger equation without
self-energy term. In addition, the starting 2P orbital and
the final 1Sorbital are weighted by equal coeScients.

Although this study is restricted to the wave function
(2), one might consider next to extend it to a more ap-
propriate wave function [5,7,8] of the form

used, which means that the retardation exponentials will
be treated fully.

In this paper, as a prototype, only the 2P ~1Spartial
transition in the hydrogen atom will be considered. The
electron is assumed to have the wave function

—[g„(r,t)+g, (r, t)]
1

2

—i (El Ih)t —l(E2 /h)t
/=a(t)e '

gi, (r)++I —a (t)e ' fz~(r), with a(0)=1 and a(ts„,&)=0, (3)

which could satisfy the Schrodinger equation with a self-
energy term. In (3), a(t) varies slowly with respect to the
exponentials; therefore, the wave function (2) can be in-
terpreted as an approximation of (3) [a(t)= I /&2].

In the state g, we will compute successively (i) the
charge and charge current densities p and J, and their
Fourier transforms, (ii) the scalar and vector potentials P
and A, using a Fourier transform V in space and time
(n =4), followed by the reciprocal transform 7:

( ~2)nl2A—:(P,c A)= V(VG X VJ),
6p

s.e.,

)n/2
A (x)= 4m fd k e'""VGVJ,

6p

where

(4)
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(Vf)(k)= f d x e '""f(x)1

with J=(p, J/c); G is the Green's function

G =(4mr} 5 t ———1 r
C

(4')

(iii) the electromagnetic fields E and B given by the
Maxwell equations, and (iv) the Poynting vector S and
with it the power radiated by the electron, and the
spontaneou~-emission lifetime.

II. THE DENSITY OF CHARGE
AND ITS FOURIER TRANSFORM

[8'=—Z(e3, r)]. We have

cos8' =cosP cos8+ sin8 sing sinP,

with P=Z(k, e3) and 8=—Z(k, r).
In (12), we find

4m. 2 sin(kr)d8dq= cos
k r

+(1—3 cos P) —cos(kr)1

kr

sin(kr)
kr

(13)

(i) The charge density in the state g is defined by

p=ef'g (e (0) .

Substitution of (2) in (5) gives

p=e —,'(~g,
~

+ ~gz~ )+cos t g, P2 . (6)

Integration over r then gives

(14)

( —6k cos P+h +k ),
2 (2m)'i a6(h +k )

In (6), the hydrogenic wave functions are

g, =f„(r)= e
1

&~a'
(7)

where h:—a
(iv) The Fourier transform of the crossed density of

charge.
The Fourier transform of the crossed term in (6),

1 r
e

—r/2acosg
4&2na' a

E2 —E]
p&2—=e cos(cot)tf~g~, c0—= (16)

(9'pt)(k)—:— fd'r e++'1(f(r) .
2 (2~)'" (9)

where r =—~r~, 8'=—i(e3, r); e3 is the axis of the 2p orbital,
and a is the Bohr radius. Now we compute the Fourier
transforms of the three terms in (6). The spacetime
metric is ( + ———).

(ii) The Fourier transform of the charge density

This part of p is time independent. Its space Fourier
transform is

1s

(9p,z)(E)= f dyoe cos yo Iz, (k),
4a C

(17)

with E =(ko, k) and

&„(k)=fd'ye'""P„(y)g (y) .

In (17) we have

In dimension 3, the Fourier transform of a radial func-
tion f (r) is the radial function [9)

(9f)(k)= f dr r sin(kr)f (r)(2~)'" and

fdyo=m+5 .ko+-
+—

7

(19}

Equation (10) applied to f =p& gives

e 1 Sh

2 (2m. )
~ a (h +k )

2A=-
a

. 6&2 k
Ipi =l cos

a (h+k )

(20)

(iii) The Fourier transform ofp2=(e/2) ~ f2~ .
Let us compute 9p2 in spherical coordinates (r, 8, q&) of

k, with the yz plane containing the axis e3 of the 2p orbit-
al-

III. THE CURRENT DENSITY
AND ITS FOURIER TRANSFORM

(i) The charge current density is defined by [Ref. [4]
Eq. (7.3};Ref. [10]]

e 1 1

2 32~a (2~)

dr r e rl~ dOsinge'""' '~ dycos 0'
0 0 0

(12)

J=e Re g* . VQ, fi

le

(1t *V/ —PVf' ) . (21}
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Since g is defined as (2), we have

(22)

IV. THE SCALAR
ELECTROMAGNETIC POTENTIAL P

The potential A is defined by

A =JoG,
Since the space orbitals p, and $2 are real, J reduces to its
crossed term i.e.,

eAJ= sin
2m

Ez-Ei
t ($2Vgi fiV—Q2) .

(ii) The Fourier transform of J is

(23)

A (x)= fd y J(y)G(x —y), (33)

where G is the retarded Green's function (4'). In order to
simplify the calculations, we shall use instead of (4') the
half-sum

r

(PJ)(K)= f dyoe
' ' 'sin —

yo2m 4g c
G =(4nr) —5 t —— +5 t+—)1 r r

2 C C
(34)

In (24) we have

X f d'y e'" "($'2VQ) —f)V/2)(y)

and

f N N
dy = im 5—k ———5 k +—0 0 0

(24)

(25)

of the retarded and advanced Green's functions. Howev-
er, it must be emphasized that (34) is only a mathematical
artifice, the function having physical interest being (4 ).
At the end of the calculations, only the retarded terms
will be selected (and multiplied by 2) in the expressions
for the fields E and S. The convolution theorem applied
to (33) gives (4). The Fourier transform of (34) is

fd'y=T»(k) —T»(k), (26) VG(E)= — P
1 1

4~2 k2 k2 (35)

with the definition

T„(k):—fd'y e'" "P„'(y')VQ„(y) .

By virtue of the identity

T„(k)=—T „(k)—ikI„(k)

(27)

(28)

[E=—(ko, k), k:—~k~, P means principal value].
(i) The scalar potential P, due to the charge density

p, =(e/2)~g&~ . Because p& is time independent, Eq. (4)
can be applied with space Fourier transforms only.
Therefore, we set n = 3 in (4), and (35) is replaced by

[where I„ is still defined by (18)],we have in (24)

f d y=2T2, (k)+ikI2, (k) . (29)

(&G)(k) =
2n) i k

Substituting (11) and (35') in (4), we have

(35')

The component of Tp] orthogonal to k has been calculat-
ed previously [15]

&2sinP
a 5(h 2+ k 2)2

(30}

[h = 3/Za; P=Z(k, e3)], where j is the unit vector orthog-
onal to k and contained in the half plane with side k and
containing e3.

The component of Tz& on e3 can be calculated using
spherical coordinates of k, and is

P,(r)= f "dk f d8sin&e
eoa no(.h +k )

1 i sin(kr)k
h ~o (h2+k2)2

+ 1 f dk
sin(kr)

dk
k sin(kr)
S'+k'

The integrals in (36) are known [11],hence,

(36)

4k
Tz', =e3 cos —1a(h+k } h+k (31)

P,(r)=P, (r)= — 1 —e "~' 1+—
4m.d'or 2 a

(37)

T2, is then easily deduced from (30) and (31}:

It is interesting to compare P, with the potential P', due
only to the part of the distribution p, which is inside the
sphere (O, r), namely,

v'2 4k
T21 w cos C35(h2+k2)2 h2+k2 (32) 1 —e "i' +2—+1

4~eor 2 a a
(38)

where w=k/~k~. The explicit value of O'J is obtained
when (25), (29), (32), and (20) are substituted into (24).

(ii) The scalar potential p2 due to the charge density
p2=(e/2)

~ $2~ . Let us insert (15) and (35') into (4) (with
n =3). This leads to
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$2(r)= f dk — f d8sin8e '"""'f dycos P+ f d8sin8e
2eo(2m) a o (h +k ) 0 o (h +k )

(39)

with 8=l(k, r), p—=Z.(k, e3). Integration of (39) gives
(Appendix A)

3e+ 2 e
—rh

$2(r) = cos y 3 — P
4w60r 48

r-1+"" +.—
Q6

where h =a ', y —=Z(e3, r), and P and Q are the polyno-
mials

De6ning

0=—r, H—=hr=, L —=0 +H—1 — 2 2

c 20

(t,2= —6&2 cos(cot)
4n.ep

X —0 sinQ —cosQ

and substituting (B4) and (B6) into (46), we obtain

r4L 3

cosy a'

(47)

P=r h +6r h +75r h +3X48rh+3X48,
r3h 3 r2h 2

Q—= + +rh+1 .
24 3

(41)

At large distances r, e ""is small, and therefore

e 1 1 6a2
$2 —— ——+ (3 cos y —1)

47TE'0 2 r r
(42)

p]2(xo,x)=, f d'ke '"'"I2)(k)
8m ep

ik~o

xfdk, ',
0

X —,'g5 ko+—
C

(iii) The scalar potential ((),2 due to the crossed charge
density p, 2. Let us insert (17), (19), (20), and (35) into (4).
We obtain

—2 —1—H

8H 2
(48)

H H2=e + +H+1
8 2

At large distances r (r &)a), we have H )& 1. Hence,

cosy cor . cor
P ~2

-D2 co—s(tot ) sin +cos
r C C

with

If co/c=3a/Sa (a is the fine-structure constant) is
neglected with respect to h =3/2a, then we have the fol-
lowing approximations in (48):

L =H
(49)

L —2 LH + +H+1
8H 2

cos(ci)t) fd3k
8m ep

3

I2) (k)
2/ 2 I 2

cosP =cos8 cosy+ siny sin8 sing&

In spherical coordinates (k, 8,gr) of x, we have

oo k
~12 0 (~2 k2)(h 2+k2)3

=Ci dk

x f d8sin8e
0

X dy cos
0

(h —=3/2a) with

(43)

(44)

2 &2 ea
35 4~p

(50)

D cosy co r r
sin co t +— —sin co t ——

2 cr C C

We notice that (50) is a solution of the free wave equa-
tion, as it must be. When p&2 —= —,'(p„,+p,z„) is written in

the form

and

63/2 eCo—= —
2 3

cos(cot) .2' 4' 6'0Q
(45)

1 r+—cos co t+—
2 C

r+cos co t ——
C

(51)

This leads to

$,2 Co4m cos(y—}r ( —C23 f3},
where C23 and S,3 are defined by (Bl}.

(46)
the retarded potential is easily selected (and multiplied by
2):
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co . r
it),2=D cosy ——sin co t ——

er C

1 r+—cos co t ——
r 2 C

(52)

with

2'v'2
p —=e3 ea cos(cot) =cos(cot)e(2p~x~ ls ) .

3 35
(54)

When the retardation is neglected in either (51) or (52)
(that is, r/c « ~t~), we obtain the dipole-approximation
results

V. THE VECTOR ELECTROMAGNETIC
POTENTIAL A

1 1

4~Eo r
(53}

In (4), we now insert (35) and VJ as computed in Sec.
III. This gives the half sum of the retarded and advanced
potentials:

A&2(xo, x)—= A= f d ke '"'*[2T2&(k)+ikI2&(k)]f dkz 5 ko ———5 ko+-
4ae~mc Sm

In (55) we have

dko =
2

sin(cot) (xo =ct) .—27

c0 /c k

Hence,

(55)

(56)

A=C( AT+ At), (57}

with the definitions

—eh'C= sin(tot),
4meomc 2m

(58}

T2i(k}
A f d3k —itx

2/C2 k2
(59)

I2, (k)
A —=— dkke

2 co /c k

Integration of (59) and (60) (Appendix C) and substitution into (57) leads to

(60)

e — . r L+2a sin(tot ) e3 —Q sinQ+ (L ' —1)cosQ+ e —— — +H + 1
3 L L

47TE'pc a4 8 H 2

L 2 HL+n cosy 3Q sin Q+ ( 3 Q}cosQ— e — + +
8 2 2

+H +3H+3

where a =e /(4meohc ) is the fine-structure constant.
Since m (&h, we have L =H, and therefore

(61)

e 2@2 . 9 1 d'or a 3a a . cur
A = — a sin(cot) ——cos e2 — n cosy + —sin ( —e3+ 3n cosy )

4m ape 36 4r c 16 8 r2 C

a Nr2 4
+ cos ( —e3+3ncosy)+ — e '~ ' ——cosy+0—3r /2a r

3 25 a2 4 a
(62)

This is the half sum of the retarded and advanced potentials. Using

cor
sin(cot}cos

1 r
sin co t+—

2 C

r+sin co t ——
C
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we obtain the far field going like r ' of the retarded potential:

e 24 ~ 1. rA=- V 2a —sin co t ——
4&E'pc 3 r c

a
e3 — n cosy (63)

VI. THE ELECTRIC FIELD

Let us derive separately the electric fields E„Ez,and E,2 corresponding to the potentials Pi, $2, and (P,2 A, z). The
relation

A
(64)

reduces to E= —VP in the first two cases.
(i) Expression (37) gives

2—e "' 2 +2—+11 e n —2ri'a

2 4~op r a2 a

(n=rlr ).
(ii) Let us use expression (42) for Pz, valid for r »a:

r

E2(r) = — + [(5cos y —1)n—2 cosye3] +exponential terms
e 1 n 18a

47TE'p 2 r r

(65)

(66)

I:y—=~(e3 r)~ ~

(iii) Equation (64) is now applied to the crossed potentials Pi2 and Aiz given by (48) and (61), neglecting t0 with
respect to h (I. ' =H ). This gives

e 2 COE,2= —,&2a costot
47TEp 3 r

Nr
cos

c
a

e3 —n cosy 1+

co . d'or 1 d'or a+ sin +—cos (3n cosy —e3) 1+
r2 c r3 c 16

e
—H H H a+ e3 + +H+1+
r3 8 2 16

3 H——H — +H+1
8 2

H H 3—n cosy + +—H +3H +3
8 2 2

T

a H Ha H H +3
16 8 2 2

(67)

The r ' part of the retarded field can be isolated in (67):

e 27 rEi2-— —&2a cos co t ——
4~ep 3' c

T

2 2

X e3—n cosy 1+
r

e 2—~2a sin(cot )i siny
4mepc 3

co . d'or 1 cur e HX —sin +—cos — +H + 1
rc c r c r 2

(70)

In

VII. THE MAGNETIC FIELD
with i siny =e3Xn. The r ' part of the retarded magnet-
ic field is therefore

B=VX A, (69)

A is given by (61). Still making the approximation
co «h, we obtain

e 2 — . . co
4 r—4&2ai siny —cos co t ——

4m @pc 3 rc c
(71)
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VIII. THE RADIATED POWER

The four-dimensional energy-momentum tensor T of
the electromagnetic field in the radiation zone satisfies
the conservation law

and charge current densities as assumed by Schiff are
twice the standard ones we used [i.e., (5) and (21)] plus a
term which does not contribute to the potentials: Schiff
[Ref. [4], Eqs (45.2) and (45.20)] defines the current as

T~. =O. (72)
J(r,t):—2Re[J(r)e ' ']

=J(r)e ' '+c.c.
For any sphere (0, r) centered on the atom, Eq. (72) gives

ds, „, S= ",U, (73)
with

J(r)—:— g„*(r)VQ (r) .
ieA'

(81)

cf f ds,„, ( —T)= dp
(O, r) dt

(74)

in terms of the Poynting vector 8 and of the space part I
of the energy-momentum tensor; U and P are the energy
and momentum of the electromagnetic field within the
sphere.

The Poynting vector is given by

J= — Q„VQ sin(cot) .2eA
(82)

Let us compare (82) to (23): Eq. (28) shows that

f d ye '" "(Q„VQ PVQ—„)(y)

Since the space orbitals 1{„=pz~ and p =f„—ar ereal,
Eqs. (80) and (81) give

S=epc(Ei+Ez+E, z) X(B,+Bz+B,z)

epc ( E,+Ez+ E,z ) X B,z (75)
=2 fd ye '"'"Q„Vil{ (83)

When Eq. (73) is time averaged over one period, only the
crossed term S =E'pcEiz XB,z contributes to the outcom-
ing Aux because E& and Ez are time independent and E&z
and B&z are periodic.

For large values of r, the r ' terms (68) and (71) of Eiz
and 8 dominate. Hence,

S=n
6 amc slnr zcos N t
2 6 zc. z 1 z r

3'7r r c
(76)

The mean value of cos [co(t r/c)] over one —period is —,',
and therefore the energy radiated per unit time, hence
our final result, is

3
P= amc —.2 6 zc

3 Q
(77)

IX. CONCLUSIONS

The wave function P as defined by (2) represents a non-
stationary state between two stationary states with proba-
bility —,

' for each sate. If we assume, following Schiff [4],
that P as given by (77) is the average radiated power dur-
ing the transition, then, the mean emission lifetime is

where l represents the component of the vector orthogo-
nal to k. Therefore, the vector potential A resulting
from (82) is larger by a factor 2 than that coming from
(23). The charge density used by Schiff is deduced from
the current J through the equation of continuity (Ref. [4],
p. 406); it is therefore the double of the standard density
(5).

This factor 2 in p and J results in a factor 2 in E and B,
and hence in a factor 4 in S or P. The factor 2 in SchifFs
current is not explained. We think, however, that it
should not be there with the normalization used in Eq.
(2).

Instead, one of the authors (A.O.B.) suggests that the
discrepancy with the experimental result may be due to
the fact that there are two spin states 1S,iz + and 2P, iz +
each carrying a Schrodinger wave function (2), and the
partial decay rates add. Thus, from an analysis of decay
rates one would have perhaps guessed that the electronic
states are doubled. The fully relativistic calculation in
self-energy quantum electrodynamics with Dirac wave
functions gives not only the correct factor 4 but also ac-
counts for the two polarization states of the emitted pho-
tons [13,14). In order to establish the role of the spin, we

plan to study by the same method the M1 transition and
the transitions between other states.

~, =fico/P,

and the Einstein coefticient would be
8

2 4Ca—
3 Q

(78)

(79)
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However, this result disagrees both with experiment [12]
and with Schiff's calculation [4] by a factor of 4. The
difference between our result and Schiff's result is very
surprising because the two calculations seem to be found-
ed on similar hypotheses (only the method of calculation
is different).

In fact, a careful examination shows that the charge

APPENDIX A: THE SCALAR POTENTIAL $i
DUE TO THE CHARGE DENSITY

p (i/2 e} I (t' l'z
Let us split expression (39) into the form

' fdk+'f dk
2ep(2m. ) a

(A 1)
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The first integral over 8 in (39) is equal to

g 4 2 3
cosQ + slnQ

u

3 SlnQ

u

APPENDIX C: CALCULATION
OF THE VECTOR POTENTIAL TERMS
Ar AND A~ DEFINED BY (59) AND (60)

cosu sinu

u Q
(A2)

where u =k—r T.he corresponding integral over k in (39)
is [11)

(a) Az. . The integration over k in (59) will be per-
formed in spherical coordinates (r, 8, q&) of x, in the frame
(i, j,n) defined as follows: n=x/~x~; j is the unit vector
perpendicular to n and contained in the half plane of
edge n and containing e3, i =jXn. We have

'fdk= — cos y P 3+—1 —e "R12»r', e '"

r3h 8 48

(A3)

kAT= dk
0 ~2/c2 kz

X f d8sin(8)e'""'" f dy Tz&(k) .

where P and R are the polynomials defined by (41) and
(A4):

(C 1)

r4h4 7 r2+ r h + +rh+1.
48 48 2

The remaining term in (39) is

2f dk f dk
2»r

2
sin(kr}

0 (h2+k2)3 kr

(A4)
In the frame (i, j', e3} (j'=—e3 Xi is coplanar with n, e3,

and j), let us consider the normalized projection v of k on
the plane (i,j'}. In the plane (e3, k), v is orthogonal to e3
and on the same side as k.

Expression (32) is equivalent to

2~2 e
—rh

1 — (r h +Srh +8)
h6r

(A5)

APPENDIX 8: INTEGRALS OF THE FORM

Equation (40) is obtained when (A3) and (A5) are substi-
tuted into (A 1).

~2 4k
T2, (k}=e3 cos —1a(h+k ) h+k

2 2k

a s(h 2+ k 2)3

[p=d(e3, k)]. Defining p'= ((i,v), we have

(C2)

Snm

Cnm

sinu00 Q
du X '

(Q2 u 2)(H2+u 2)m cosu (Bl)
v= i cosy'+ j'sing' . (C3)

(B2)

We thus obtain

When the fraction in (Bl) is split into simple elements,
S„orC„becomes a sum of the known integrals [11]

sin(ax)

0 (b2+x2)» cos(ax)dx X'

For symmetry reasons Ar belongs to the (x, e3) plane,
and therefore the first term in (C3) does not contribute to
(Cl); in the second term of (C2), j' does not depend on k.
When (C2) is substituted into (Cl), the following terms
occur:

S =—L —cosQ+e +12 -H
12 2H

(B3)

cos2P=cos 8cos y+sin 8sin csin y+
sin(2P)sing'=2(sin 8 sin p siny cosy

(C4)

L 2(1+H) L
13 8H3 2H

S33=Q S,3
—e (1+H},

16H

Cz3= —QL sin+e — (3+3H+H )
8H

L L2
+Q +Q (1+H)

2H'

(B4)

(B5)

—cos 8 siny cosy )+ (C5)

(C6)

[y—=Z(x, e3), 8—=6x,k)]; the terms omitted in (C4) and
(C5) do not contribute to (Cl).

We find

A = 2~
dk

k
a5 0 (~ /c —k )(h +k )3

j

where L '=Q +H as in (47).

(B6)
where

(C7)
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f:2eto(kr) (C

=—sin y cos y 630 kr 2siIl y cos y e,2 kr

(C9)

Replacing the integrals

e „=—f d 8 sin 0 cos"ee'"' ' (C10)

(C 1 1)

with

by their values [15]and using Appendix B, we obtain

AT=2 m r L (e,A, +j'Az)&2 z»
a'

A—:4cos y 2QsinQ —(Q —2)cosQ —e — + +H +2H+21
8 8H 2

and

+4sin (y) —QsinQ —cosQ+e + +H+12 L —2 L —1

8H 2

—1

+L ' cosQ —e +1
2H

(C12)

r

2A—:2 sin(2y) —3Q sinQ+(Q —3)cosQ+e (L '—+6)+ + L' ——Q +32 (C13)

(b) At. Definition (60) is equivalent to

Iz, (it)
AI= —

—,'V„d keI 2 x (C14}

This integral is the same as in (43):

4~ eo
3

Aq= V„
cos(cot )

By symmetry, the component of the gradient orthogonal to the plane (ez, x) does not contribute to (C14):

. i BV=n —j- + ~ ~ ~

Br r By

(n, j, and y defined as above). RePlacing (btz in (C15) by its exPression (50), and using (C16), we obtain

At= —6 tr r L ncosy 2QsinQ+(2 —Q )cosQ e — — + +H +2H+2z z L L L 'H
a' 8 8H 2

L 2 L+j siny —0 sinQ —cosQ+e + +H+1
SH 2

(C15)

(C16)

(C17)

(c}The total vector potential A is obtained by substituting (Cl 1)—(C13) and (C17) into (57), and expressing vectors j
and j' with respect to n and e3:

j'siny =e3cosy n

j siny =e3—n cosy

This leads to expression (61).

(C18)

(C19)
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