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Relativistic calculation of the 2 'So —2 ' Pt transitions in berylliumlike
molybdenum and berylliumlike iron
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The 2' P& —2 'So transitions in berylliumlike molybdenum and berylliumlike iron have been calculated
including all-order relativistic correlations due to the Coulomb as well as the Breit interaction. Impor-
tant correlation corrections to the radiative contributions to the ground state were found due to the large
admixture of p character in the 2 'So wave function. Comparison with experiment is done after the ad-

dition of the Lamb shift for the corresponding hydrogenlike systems and an estimate of the screening
caused by the 1s electrons. The results of Mo' + are 725751+300 and 2004464+300 cm ' for the
2'So—2 P& and 2'So-2'P& transitions, respectively, which agree well with the experimental results
725758+158 and 2003847+1200 cm '. The corresponding results for Fe + are 379118+90 and
752459+90 cm ', which can be compared to the experimental values 379 140+20 and 752 372+57 cm
The uncertainty in the theoretical value is completely dominated by the uncertainty in the evaluation of
the radiative effects in the electronic Seld.

PACS number(s}: 31.30.Jv, 31.20.Di, 31.20.Tz, 31.50.+w

I. INTRODUCTION

Recent years have seen a development of methods to
treat many-body systems completely relativistically.
Among the driving forces behind this development are
experiments made on highly charged ions. Calculations
of an accuracy comparable to experiments are needed in
order to obtain information about, e.g. , QED effects in in-
tense Coulomb fields.

Relativistic calculations have been performed for heli-
um and heliumlike systems by several groups [1—5] and
for some of the alkali-metal sequences [6—8] among them
the lithiumlike sequence inspired especially by the experi-
ments of lithiumlike uranium [9]. Berylliumlike systems
constitute the simplest real many-body system, and the
excited states involve two open shells, which makes the
theoretical treatment rather different compared to alkali-
metal-like systems. awhile Li-like systems are well
represented using third-order Coulomb correlation and
second-order Breit correlation [6] this is not expected to
be enough for the Be sequence. Several experiments have
been made on berylliumlike systems, Denne et al. [10]
list results for the 2Sp —2 ' P] transitions in nine ele-
ments from titanium to molybdenum. Comparison was
in Ref. [10] made with semiempirical calculations by
Edlen [11].

The position as the simplest, more general, many-body
system has led to a number of extensive calculations of
the ground state of neutral beryllium. A classical work,
using the configuration-interaction (CI) method, was
done by Bunge [12] and later a number of approximation
schemes have been tested on this system as reviewed in a
recent publication by Mkrtensson-Pendrill et al. [13].
Very recently relativistic calculations have also been
made [14,15]. The present calculation on Fe + and
Mo + is to our knowledge the only attempt on highly
charged berylliumlike ions. It will be followed by calcu-
lations on other elements.

The calculation uses the relativistic coupled-cluster ap-
proach implemented by Salomonson and Oster [5,16] and
includes correlation due to the Coulomb interaction
iterated to all orders. By an extension of the program,
the correlation due to the Breit interaction, mixed with
the Coulomb interaction in all orders, is also included.
Together with results presented in Refs. [15,17] the
present work constitutes to our knowledge the only rela-
tivistic all-order calculation of the Breit interaction.

The two 2P& states include a linear combination of the

2s2p&i2 and 2s2p3/2 configurations. Rather than approx-
imating a certain P

&
state with only one of these, and in-

cluding the admixture of the other in the perturbation ex-
pansion, the lowest-order approximation is initially de-
scribed by a sum of these configurations. The perturba-
tion expansion is then made from an "extended model
space" [18]. The formalism for this treatment has been
described and applied in a nonrelativistic calculation on
the ground state of neutral beryllium by Lindgren et al.
[19]. This treatment has the advantage that
configurations with very close energies are removed from
the perturbation expansion, thus small-energy denomina-
tors are avoided, and the expansion converges rapidly.
Another advantage is that certain effects, involving the
other 2s2p configuration, which normally would be
classified as three-particle effects, in this approach is ob-
tained already at the level of singles and doubles. The
many-body calculation is described in more detail in Sec.
II.

The QED effects for the corresponding hydrogenlike
system is taken from the literature [20). The evaluation
of radiative effects in the electronic field is still, at least in
practice, an unsolved problem. For Be-like systems there
are two major many-body corrections to the Lamb shift.
The first eorreetion is the screening of the nuclear field by
the presence of the 1s core electrons. The other effec is
the large admixture of p configurations in the ground-
state wave function which has a considerably smaller
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Lamb shift than the dominating 2s configuration. While
the second effect is obtainable from a combination of the
present calculation and Ref. [20], the first effect can only
be approximated [8,21]. We add the screening obtained
for the corresponding lithiumlike system in [8] before
comparing with experiments and emphasize that the ma-
jor uncertainty in the calculation arise from this effect.
Retardation effects, beyond what is already included n
the Breit interaction, are evaluated in first order using the
GRASP code [22].

II. CALCULATION OF MANY-BODY EFFECTS

As described by Salomonson and Oster [5], the atom is
placed in a spherical box, large enough not to influence
the property studied. Inside the box a discrete radial grid
is used. Diagonalization of a discretized one-particle
Hamiltonian yields a discrete basis set, complete on the
grid chosen, which is used to describe the physical states.

The calculation of the 2P& states uses an extended
model space and can be explained in the following way:
The two P, states are dominated by antisymmetric com-
binations of the two 2s2p configurations and, in lowest
order, we write the wave functions as

@'i= [12s2pi/2) J—i }

+z —
[ ~2s2p3rz &.=i}

where the curly brackets denote antisymmetrization.
The radial parts of the wave functions are antisymmetric
and symmetric, respectively. The usual approach is now
to let, e.g. , the P& state be represented by 4& in lowest
order, i.e., the model space consists of only one
configuration. An effective Hamiltonian is then con-
structed which works only on 4& and the eigenvalue of
the effective Hamiltonian is, in principle, the exact energy
of the P, state, as described by Lindgren and Morrison
[23]. The admixture of the 2s2p3&2 configuration is, in
this approach, included in the effective Hamiltonian, i.e,
in the perturbation expansion. Correspondingly, the 'P,
state is in lowest order represented by 4&. In this work
we use instead a model space consisting of both 4& and

4z and the effective Hamiltonian works in the space
spanned by these states. The two eigenvalues of h,z are
the exact energies of the two P, states. The effective
Hamiltonian is formally written as [19,23]

H ~=PHQP:—PHOP +PVQP (2)

where P is the projection operator onto the model space,
in this case spanned by 4, and Nz, and Q is the wave
operator which transforms the model functions into the
exact ones. The full Hamiltonian, H, is partitioned into a
zeroth-order Hamiltonian Ho, of which 4& and 4z are
eigenstates, and a perturbation V. For the present prob-
lem the effective operator can be written as

'&e', iH, + vnic', ) &e',
i
vnic', &

&e',
i
vnie', ) & e', iH, + vnic', &

Ha

The eigenvectors of H,z are projections onto the model
space of certain eigenvectors of the complete Hamiltoni-
an. Since the eigenvectors of H,z are projections of or-
thogonal vectors onto a smaller space, they are normally
not orthogonal and the effective Hamiltonian is not Her-
mitian, which can be seen explicitly in (4) and (5) below.

Ho in Eqs. (2) and (3) is chosen here to be the Dirac-
Fock-Breit Hamiltonian, a generalization of the Dirac-
Fock Hamiltonian which includes the Breit interaction
on the same footing as the Coulomb interaction [24]. The
Breit interaction includes magnetic interaction as well as
the retardation of the electromagnetic field in the low-
energy limit. Retardation effects beyond the low-energy
limit are treated in first-order only. In order to see the
effect of the Breit interaction, the difference between the
use of the Dirac-Fock and the Dirac-Fock-Breit Hamil-
tonian is given in Table I. Only the 1s electrons are in-
cluded in the Dirac-Fock (-Breit) potential. The interac-
tion with and among the outer 2s or 2s2p electrons is in-
cluded by means of the perturbation expansion.

The perturbation, V, describes the correlation between
the electrons due to the Coulomb as well as to the Breit
interaction. Also, mass polarization and certain radiative
effects are included in V as described below. The wave
operator, Q, includes all double and single excitations as

TABLE I. Binding energies of the valence 2si/2, 2pi/2, 2p3/2 electrons in lithiumlike Fe and Mo. These enter in the diagonal ele-
ments in the matrix H, N in (3)—(5). The results are given in atomic units for ' Fe and 'Mo.

F 22+ Mo

Dirac-Fock orbital energy
Dirac Fock Breit
Retardation beyond Breit'
Lamb shift (hydrogenlike)
Mass polarization
Coulomb correlation
Breit correlation
Total

2$i/z

—75.211 66
0.02024
0.00004
0.01991
0.00000

—0.006 66
—0.000 59

—75.178 72

2p 1/2

—73.419 69
0.039 54

—0.00005
—0.000 55
—0.00046
—0.013 37
—0.000 55

—73.395 13

2p3/2

—72.812 98
0.017 64

—0.000 39
0.00108

—0.00045
—0.012 60
—0.00039

—72.808 07

2$ i/2

—210.135 96
0.092 77
0.000 51
0.10305
0.00000

—0.007 15
—0.001 47

—209.948 15

2p i/2

—206.957 88
1.185 80

—0.000 51
—0.00146
—0.000 81
—0.015 22

—0.001.64
—206.791 73

2p 3/2

—202.235 47
0.081 24

—0.00449
0.008 77

—0.000 73
—0.012 92
—0.001 03

—202.16463

'Expectation value obtained from the oRAsp code [22].
Results from Johnson and Soff [20] corrected for field shift since extended-nucleus effects are included in the Dirac-Pock- (Breit)

value.
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described in [16].
The energies of the berylliumlike systems are calculat-

ed relative the corresponding lithiumlike systems. The
result is obtained as the sum of one-particle contribu-
tions, i.e., the binding energies of the 2s, 2p, &z, or 2p3&z
electrons in the lithiumlike system, and two-particle con-
tributions which involve both the outer electrons. The
former contribute only in the diagonal elements in Eq. (3)
while the latter enter in all four elements.

III. RADIATIVE CORRECTIONS

The Lamb shift for hydrogenlike Mo and Fe is taken
from [20], corrected for the field shift since the present
calculation is done with an extended nucleus. The use of
the hydrogenlike value, obtained with Z =42, respective-
ly, Z =26, is, however, quite misleading for the outer
electrons. An important neglected effect is that the two
1s electrons will shield approximately two units of charge
of the nuclear field. To obtain a more realistic descrip-
tion, some estimation of this screening of the Lamb shift
has to be made. There is still no method presented with
which radiative corrections can be joined with a many-
body calculation starting from first principles. Cheng
et al. [21] have very recently published calculations of a
few heavy ions where a first-principles Lamb shift calcu-
lation is performed with the nuclear potential replaced by
a more realistic local potential. Although this procedure
is not completely satisfying, it will certainly give the
dominating part of the screening. In a number of calcu-
lations, Indelicato and Desclaux [1,8] have used the ob-
servation that, in the nonrelativistic limit, the Lamb shift
for an s electron is proportional to the density of charge
at the nucleus, to estimate the screened self-energy as the
ratio between the expectation value of the charge density
obtained with screened functions and with hydrogenlike
functions multiplied with the hydrogenlike result from
Ref. [20]. This approximation should at least give the
correct order of magnitude of the effect. The vacuum po-

(b)

FIG. 1. Examples of diagrams which describe many-body
corrections to the radiative effects. (a) illustrates an important
contribution to the screening of the Lamb shift. (b) is a back-
ward, or folded, diagram which involves the radiative correc-
tions. It is only important for the 2 'So state and accounts for
the main part of the difference in the Lamb shift contribution to
the true 2 'So state as compared to when it is described by a
pure 2s configuration. The large admixture of p
configurations into the 2 'So state of berylliumlike systems ex-
plains the importance of this effect. Valence states are indicated
with double arrows and excited states with single arrows. The
dotted lines represent the Coulomb interaction.

larization, which can be expressed as expectation values
of conventional potentials, is calculated from first princi-
ples. Screening corrections to the Lamb shift are illus-
trated in Fig. 1(a).

A. Berylliumlike molybdenum

The dominating effect caused by the presence of the 1s
electrons is given as a shift of the binding energy of the
corresponding lithiumlike system. The results for Z =42
from [8] can then be added to the present work before
comparing with experiment. When the hydrogenic re-
sults are subtracted from the QED effects given in [8], the
screening is found to increase the energy difference with
0.007 55 a.u. for the 2p&&z-2s transition, which dominates
the 2 P&-2 'Sp transition, and with 0.00673 a.u. for the

2p3/2 2s transition, which instead dominates the
2 P

&

—2 Sp transition.
The only lithiumlike system calculated in Ref. [21] is

U +. If the screening of the self-energy and the vacuum
polarization obtained for this system is compared with
the result for the same system in Ref. [8], it is seen that
the latter is about 17% larger. A difference of that order
of magnitude could probably be expected for the systems
considered here as well. Although none of the methods
can be supposed to give a final answer for the screening,
the difference can be viewed as a hint about the uncer-
tainty in the predictions in Ref. [8]. Thus, the uncertain-
ty is estimated to +0.00130 and +0.00115 a.u. for the
2p, &2-2s and the 2p3/2 2s transition, respectively, which
is around twice the experimental accuracy for the
2 P&-2 'Sp, but well below it for 2 P~-2 Sp.

There is, however, also many-body corrections to the
Lamb shift in Be-like systems which are not present in
Li-like systems. The most important of these applies to
the 2'Sp state and is due to the large admixture of p
configurations in the wave function. Around 3% of the
probability density comes from p configurations which
have a much smaller Lamb shift than the dominating 2s
configuration and the Lamb shift contribution will de-
crease with the same fraction. Thus, a contribution of—0.005 87 is added to the 2 'Sp state. We note that this
corresponds to the addition of certain backward dia-
grams, illustrated in Fig. 1(b), in the coupled-cluster ex-
pansion [23] and is not a departure from first principles.
The uncertainty given for the screening effects above
should also cover the uncertainty due to additional
many-body effects.

B. Berylliumlike iron

For berylliumlike iron, the screening deduced from [8]
is found to increase the energy difference with
0.00277+40 a.u. for the 2 Pi —2 Sp transition and with
0.00204+35 a.u. for the 2 'P, —2 'Sp transition. The er-
rors are estimated as for molybdenum. For both the
transitions this uncertainty is larger than the experimen-
tal error.

The admixtul e of p configurations ln the 2 Sp
ground-state configuration is larger than for beryllium-
like molybdenum, around 5% of the probability density.
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This is mainly because the 2p orbital energies are relative-
ly closer to the 2s energy in berylliumlike Fe. The Lamb
shift is, however, smaller. This results in a contribution
to the 2'So state of —0.00195 a.u. from correlation
corrections to the Lamb shift.

IV. RESULTS

The results are summarized in Tables I-III. In Table I
terms which involve only one of the valence electrons are
listed. These terms are referred to as one-particle contri-
butions and are the same as for the corresponding lithi-
umlike system. The two first lines give together the ei-
genvalue of Ho; the Breit interaction has been separated
out for comparison. The retardation beyond the Breit in-
teraction is the difference between the first-order expecta-
tion value of the energy-dependent form of the contribu-
tion from exchange of transverse photons [25,26] and the
Breit interaction, which is the low-energy limit of the full
expression. This difference is obtained with the GRASF
code [22]. The Lamb shift is the value listed in [20]. The

correlation contributions in Table I are dominated by
Brueckner effects which contribute in second order and
beyond. Again, the Coulomb and Breit contributions are
given separately.

The mass polarization is treated with the Hughes-
Eckart formula [27]. Only the Dirac-Pock value is con-
sidered. There is no important contribution involving
both the outer electrons since the lowest-order term is
proportional to the square of the differences in orbital en-
ergy for the involved electrons. Due to the near degen-
eracy of the 2s and 2p states, the result is smaller than
1X10 . There is no first-order contribution for the
2 'So state of either one- or two-particle type.

In Table II, terms involving two valence electrons, re-
ferred to as two-particle effects, are given . The result for
the Coulomb part of the perturbation is evaluated with
eigenstates to the Dirac-Fock Hamiltonian as well as the
Dirac-Fock-Breit Hamiltonian in order to separate the
eifects. The interelectronic distance, I /r, 2, in the
Coulomb as well as in the Breit interaction is expanded in
partial waves and angular momenta from zero to five are
included for berylliumlike Mo. The contributions from

TABLE II. Two-particle contributions to (p~ Vn~p), see Sec. II and especially Eq. (3) for explanation, to the (2s')'So,
(2s2p~yg) P] and (2s2p3&2)'P& states of berylliumlike molybdenium and iron. Angular momenta up to six are included for the
Coulomb interaction in Fe +, otherwise angular momenta up to five are used. Estimations of the contributions from higher angular
momenta are indicated. Results are given in atomic units.

's,
Coulomb interaction
Difference obtained

with DF-Breit orbitals
Breit interaction
Correlation correction to the Lambshift'
Difference obtained with DF-Breit orbitals
Total
Contributions from

higher angular momenta

F 22+

3.469 64

—0.000 30
0.001 94

—0.00196
0.00001
3.469 33

—0.000 10+0.000 05

Mo"+

5.980 61

0.000 79
0.011 57

—0.006 05
0.000 18
5.987 09

—0.000 31+0.000 15

1,3p
1

Coulomb interaction
Difference obtained with DF-Breit
Breit interaction
Total
Contributions from

higher angular momenta

Coulomb interaction
Difference obtained with DF-Breit
Breit interaction
Total

&Pivniy '&

3.739 80
orbitals —0.001 67

—0.000 32
3.737 80

&y '~vn~y'&
—0.670 14

0.000 14
—0.000 34
—0.670 34

—0.000 12+0.00006 0.000 17+0.000 09

&y ') vn[P) (y ')vn)y ')
—0.67043 4.195 89

orbitals 0.000 15 —0.001 17
—0.000 35 0.003 65
—0.670 63 4.198 36

(y '(vn~y ')
6.366 52

—0.004 66
—0.001 35

6.360 51

&y '~vn~y'&
—1.13460

0.000 36
—0.001 94
—1.136 18

—0.000 19+0.000 10 0.000 28+0.000015

&y ')vn)y '& (y ')vniy '&

—1.13544 7.084 51
0.000 38 —0.003 25

—0.002 00 0.01807
—1.13706 7.099 32

Contributions from
higher angular momenta

'Illustrated in Fig. 1(b).

0.000 16+0.00008 —0.000 28+0.000 014 0.000 29+0.000 15 —0.000 46+0.000025
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TABLE III. Comparison of theory to experiment for the 2 ' P&-2 'So transition in berylliumlike iron and molybdenum.

Theory
F 22+

Experiment' Theory
M 38+

Experiment

2'Pi-2 'So
This work (a.u.)'
Screening of the Lamb shift (a.u. )

Total (a.u.)
Total (cm ')
2 'P2-2 'So
This work (a.u.)'
Screening of the Lamb shift (a.u. )d

Total (a.u.)
Total (cm ')

1.725 13+0.000 07
0.002 27+0.00040
1.727 40+0.00041
379 118+90

3.426 45+0.000 20
0.002 04+0.000 35
3.428 49+0.00040
752 459%90

379 140+20

752 372+57

3.299 24+0.000 20
0.007 55+0.001 30
3.306 79%0.001 35
725 751+300

9.12633+0.000 30
0.006 73+0.001 15
9.13306+0.001 20

2 004 464+300

725 758+158

2 003 847+1200

'Hinnov [28].
bDenne et al. [10].
'1 a.u. ('Mo)=2. 194734X10' cm ' using the value R~=109736.7 cm ' (M=97.9055) for the Rydberg constant. 1 a.u.
(' Fe)=2. 194725X10 cm ' using the value R~=109736.2 cm ' (M =55.9349) for the Rydberg constant.
dlndelicato and Desclaux [8].

higher angular momenta are of the order a few digits in
the fourth decimal and can be approximated by extrapo-
lation. Since this is a minor error compared to the uncer-
tainty in the radiative effects and also smaller than the ex-
perimental error, only an estimate of the extrapolation
contribution has been made. For berylliumlike iron, the
experimental error bars are smaller [28] and, in addition,
the Lamb shift is less important leading to a smaller un-
certainty due to uncalculated many-body corrections to
the Lamb shift. A more careful investigation has then
been made of the effects on the Coulomb correlation from
higher angular momenta. Angular momenta up to six are
included and the results from calculations with angular

f

moment up to four, five, and six are used to extrapolate
the result leading to an uncertainty of around five units in
the fifth decimal, apart from the 2'P& state where it is
somewhat larger. The expected error in the given contri-
butions from the partial-wave expansion is then of the
same order of magnitude as the experimental error. It
should be noted that this theoretical uncertainty can be
further reduced if needed. The pure numerical uncertain-
ty is well below the experimental accuracy, about one
unit in the fifth decimal.

The effective Hamiltonian for the 2P& states of the
berylliumlike ions relative the 1s 2s state of the lithium-
like ions can now be written

M 38+
eff

—206.791 73+6.360 51—0.000 19 —1.136 18+0.000 28
—1.13706+0.000 29 —202. 16463+7.099 32—0.000 46 (4)

and

—73.395 13+3.737 80—0.000 12 —0.670 34+0.000 17
—0.670 63+0.000 16 —72.808 07+4. 198 36—0.000 28

where the results from Tables I and II have been inserted
in Eq. (3). The first term in each of the diagonal elements
is the sum of the one-particle contributions as given in
Table I. The second term in the diagonal elements as
well as the first term in the nondiagonal elements are the
two-particle contributions from Table EI. The 1ast num-
ber in every element is the approximation of the contribu-
tions from higher angular momenta in the partial-wave
expansion.

For berylliumlike molybdenium, diagonalization of (4)
gives a binding energy of —200.662 13+0.00009 a.u. for

P) and —194 83504/0 00025 a.u, for the 2 P]
relative to the first ionization limit, while the binding en-
ergy for the last electron is —203.96137+0.00015 for

the 2'So state. The errors refer to the partial-wave ex-
pansion.

Diagonalization of (5) gives the corresponding results
from berylliumlike iron: —69.984 38+0.00003 a.u. for
2 P, and —68.28306+0.00020 a.u. for 2 'P, . The bind-
ing energy for the last electron in the 2'So state is—71.709 51+0.000 06.

Before a comparison can be made with experiment, we
have to consider the uncalculated many-body corrections
to the Lamb shift. The most important of these is the
screening due to the presence of the 1s electrons, as dis-
cussed in Sec. III. An estimate of this effect can be found
in [8]. The comparison with experiment is shown in
Table III.
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V. CONCLUSlONS

The calculation agrees well with experiment. The un-
certainty in the theoretical value arises predominantly in
the approximation of radiative many-body effects and a
proper treatment of the screened self-energy would
reduce the theoretical error bars significantly. %hat is
needed is a Dirac-Pock value of the radiative sects and
eventually an investigation of many-body corrections
beyond that. The available estimations of the screening
of the Lamb shift are useful approximations of the former

but fail to be even a first step towards an accomplishment
of the latter.
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