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Schrodinger equation for two-electron atoms expressed in terms of symmetric sparse matrices
involving only O(4,2) representations
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The Schrodinger equation for two-electron atoms is replaced by another equation depending on a free
dimensionless parameter P. Solution of the latter equation amounts to the diagonalization of a (P-

dependent) in6nite symmetric sparse matrix. The nonzero elements of this matrix are very simple and

directly related to a representation of the o(4,2) algebra. Numerical results are in agreement with energy
levels of the helium atom when P goes to infinity.

PACS number(s): 31.20.Tz, 31.50.+w, 34.80.—i, 03.65.Fd

I. INTRODUCTION

The use of the O(4,2) group or of one of its noncom-
pact subgroups has proved recently to be very successful
for a quantum-mechanical study of the hydrogenic di-
amagnetic problem (see, e.g., Refs. [1—4]). For a general
and detailed revie~ paper on the representation theory of
the o(4,2) algebra and it use in physics, see, e.g., Ref. [5].
This subject is also introduced in the monograph by Con-
don and Odabasi [6]. This method cannot be used direct-
ly for the two-electron atomic problem. The basic reason
is not the greater number of degrees of freedom that are
involved in the dynamics of this latter problem. The
basic reason originates from the repulsive interelectronic
term 1/~r —r'~. This operator or its inverse cannot
indeed be expressed as a finite polynomial function of the
o(4,2) generators associated (see below} with each elec-
tron.

This paper presents a way to bypass this basic
difficulty. It is based on o(4,2) operator replacements
[7,8]. As a result, the three-body Coulomb problem is
essentially formulated in terms of diagonalization of
infinite sparse symmetric matrices. The nonzero matrix
elements are extremely simple and their calculation im-
mediate. Numerical applications are carried out for some
energy levels of the helium atom and illustrate the con-
vergence of the method. The present method of o(4,2)
operator replacements is quite general and can be imple-
mented in other problems of quantum mechanics.

II. NOTATIONS AND DEFINITIONS

The Schrodinger equation for two-electron atoms in
the limit of infinite nucleus mass and for nuclear Z is

[ ,'p Z/r+ ,'p—' —Z/r'+ I/~r ——r'~ ——E]~4)=0 .

terms of position and momentum operators has been ob-
tained [9]:

a(p) = exp( —p)[ —,'rpz —p(r p)] —
—,
' exp(p)r,

i=rXp, g=—rp, t2=rp„, b(p)—=a(p)+ exp(p)r,

t t(p) =
—,'[ exp( p)rp ex—p(p)r]—,

t3(p) —= —,'[ exp( p)rp—+ exp(p)r] .

The above operators indeed satisfy the commutation rela-
tions characterizing an o(4,2) algebra. The usual realiza-
tion of the o(4,2) algebra [9,5,6] corresponds to the above
equations with p=0. The present dependence of the gen-
erators on the real dimensionless parameter p corre-
sponds to a similarity transformation generated by t2, for
example,

a(p) —= exp( ipt2 )a(0) exp( ipt2 ) . —

This transformation corresponds to a change of length
scale by a factor exp(p). Clearly, this similarity transfor-
mation applied to all generators does not change the
commutation relations. The o(4,2) generators are Hermi-
tian. It is emphasized that the words Hermitian, unitary,
and normalized are used throughout the present paper
with respect to the 1/r scalar product [5] (or 1/rr' scalar
product when both electrons are considered). The direct
reformulation of the Schrodinger equation for two-
electron atoms, Eq. (1), in terms of the o(4,2} generators
has been up to now of little practical use, because, as indi-
cated in Sec. I, the repulsive interelectronic term
I/~r —r'~ or its inverse cannot be expressed as a finite po-
lynomial function of the o(4,2) generators. Therefore no
significant simplifications of the problem occur within the
o(4,2) framework. It will be seen, however, that the prob-
lem can be formulated using only the representation
theory of o(4,2) if one introduces the following operator
replacements [8]:

Atomic units are used. The symbols r, p denote the posi-
tion and momentum operators associated with an elec-
tron. The superscript prime refers to the other electron.
The above equation can be considered within the o(4,2)
algebra framework because a realization of this algebra in

r ~2 exp( —P)t3(P),

r~ —2 exp( —P)a(P),

p~ exp(p)t3 '(p)g/2,

P ~ exp(2p) [t 3
' (p) t, (p) + 1]/2 .

(2)

(4)

(5)
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These replacements are approximations which become
exact if the limit p going to + oo is taken at the end of the
calculations. The particular case p=0 was considered in
Ref. [8]. In that particular case, the operator replace-
ments were shown to be valid in the limit of highly excit-

ed hydrogenic states. The present operator replacements
[Eqs. (2)—(5)] allow one to consider not only highly excit-
ed states but all states. The Schrodinger equation, Eq.
(1), is transformed into Eq. (6) according to the replace-
ments given by Eqs. (2), (3), and (5):

[T(p)+2(1+ exp( —p)I —[Z/t3(p)] —[Z/t3(p)]+1/A (p)] )—4exp( —2p)E(p)][t3(p)t3(p)]'~ IV(p) ) =0,
T(P)—= [t,(P)] '"t, (P)[t,(P)] '"+[t',(P)] '"t', (P)[t', (P)] '",
A(P) =—

I (P)—'(P)
I

(6)

E(p) and I'Il(p)) denote the eigenvalues and eigenvec-
tors, respectively. T(p) is Hermitian. The vector

[t,(p)t', (p)]'"I p(p) )

is expanded in an orthonormal basis and one finally ob-
tains a Hermitian matrix for Eq. (6). The expansion con-
cerns the above vector rather than the vector

I %(p) ) be-
cause the scalar product of quantum mechanics is ob-
tained from the presently used scalar product if the
vectors are premultiplied by (rr')'~ which corre-
sponds, apart from normalization, to the prefactor
[t3(p)t3(p)]' within the replacement given by Eq. (2).

The remaining part of this section is devoted to a com-
plete description of the construction of the orthonormal
two-electron basis. This material has already been
presented elsewhere [10,11,8, 12] for the essential part,
but is presented once more here for self-consistency. The
only new part is the construction of basis vectors that are
eigenvectors of the two-electron permutation operator.
This part is essential for numerical applications of the
method that is described in Sec. III.

The prerequisite starting point is the knowledge of the
hydrogenic states

I n, 1,m ) . One then constructs scaled
hydrogenic states, also called Sturmian states:

I(n, l, m)p) =nexp[i[p+ in(n)]t—z] In, l, m ) . (9)

The ket notation
I ) does not include the spin space. The

action of the 15 o(4,2) p-dependent generators introduced
at the beginning of this paper on the these scaled hydro-
genic states is given explicitly in Ref. [5]. The phase con-
ventions of Ref. [5] are maintained in the present paper.
From the group-theoretical point of view, the action of
these 15 generators corresponds to a unitary irreducible
representation of the group O(4,2). The action of these
generators is very similar to the action of three genera-
tors of the angular momentum algebra: the quantum
numbers n, l, m only change by plus or minus unity. It is
this fact that leads finally to a sparse matrix in the two-
electron problem which is now considered. One first
defines eigenstates of the total angular momentum using
the SU(2) Clebsch Gordan coefficients:

I (n, 1,n', 1',L,M)p)
—:g (l, m;1', m'ILM) I(n, l, m)p) I(n', 1', m')p) .

m, m'

(10)

L is the quantum number associated with the total orbital
angular momentum, M the one associated with its projec-
tion on an arbitrary fixed axis. An essential contribution
of Refs. [10,11] was to show that a more appropriate
basis for the two-electron atomic problem was

I(n, n', J&,J2,L,M)P) = g I(n, l, n', 1',L,M)P) [(21+1)(21'+1)(2J,+1)(2Jz+1)]'

—,'(n —1) —,'(n' —1) J,
X( —1)' —,'(n —1) —,'(n' —1) J2

This corresponds to another coupling of the four angular
momenta that are present in the two-electron atomic
problem. Two of these four angular momenta are linear
combinations of the angular momentum of the electron
and of the restricted Runge Lenz vector of the same elec-
tron. They correspond to an angular momentum quan-
tum number j =(n —1)/2. The two others correspond to
the same linear combinations, but for the second electron

[j'=(n' —1)/2]. From a strict viewpoint, each of these
four angular momenta is not really an angular momen-
tum. They satisfy the usual commutation relations per-
taining to angular momentum algebra but, for example,
do not behave like an angular momentum by time rever-
sal. The 9-j symbols in Eq. (11) explicitly show the two
different couplings of these four angular momenta: the
first column corresponds to the coupling of the pair asso-
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ciated with one electron. This coupling yields the
monoelectronic angular momentum E. The second
column corresponds to the coupling of the pair associated
with the second electron. This coupling yields the
monoelectronic angular momentum I'. The first two
lines correspond to coupling of the angular momentum

referring to different electrons, which results in the intro-
duction of the collective quantum numbers J&,J2. The
further step is the construction of the eigenstate of the
parity operator [11]. An elementary calculation shows
that the vectors defined by

l(n, n', J„Jz,L,M)P) =a(J&,Jz)[l(n, n', J&,Jz,L,M)P)+n( —1) ' ' l(n, n', Jz, J&,L,M)P)],
where

a(a, b):——,
' if a =b, ( —,

')'~ otherwise,

(12}

(13)

are normalized eigenvectors of the total parity operator with eigenvalue m. The final step is the construction of eigen-
vectors of the two-electron permutation operator P. From the easily derived property

Pl(n, n', J&,Jz,L,M)P) =( —1) l(n', n, Jz, J&,L,M}P),

one finally obtains

Pl(n, n', J, J +'L~,M)P) =(—1) l(n, n', J J +'L",M)P)

where

l(n, n', J&,Jz, +'L,M)P) —=a(n, n')[l(n, n', J&,Jz,L,M)P)+( —1) + l(n', n, Jz, J&,L",M)P)] .

(14)

(15)

(16)

It is recalled that the spin is not included in the present ket notation and therefore the vectors are eigenvectors of the
two-electron permutation operator with eigenvalue +1 if the total spin characterized by the quantum number S is equal
to zero and with eigenvalue —1 if S = 1. Other useful and easily derived properties of these basis vectors are the follow-
ing:

l(n, n', J J +'L, M)P) =m( —1) ' ' l(n', n, J J +'L",M)P), (17)

l(n, n', J J +'L,M)P) =n( —1) ' ' l(n, n', J J +'L,M)P) . (18)

n ~n', J, ~ Jz, J,AJz if mA( —1)

nAn' if nA( —1) '
(19)

It follows in particular that if J& =Jz, then m =(—1),be-
cause otherwise the vector is equal to its opposite and
therefore equal to the null vector. To summarize, all the
vectors defined by Eq. (16) and subject to the restrictions

the monoelectronic states given by Eq. (9) are explicitly
known [5]. The two-electron basis vectors given by Eq.
(16) have been constructed from the monoelectronic
states given by Eq. (9) in Sec. II. The action of the opera-
tors involved in the replaced Schrodinger equation, Eq.
(6), on the two-electron basis vectors given by Eq. (16)
can therefore be deduced. These basis vectors have ei-
genvalues 1/n+1/n' with respect to the action of the
operator 1/t3(P)+1/t3(P}, and eigenvalues

provide a complete set of linearly independent orthonor-
mal vectors in the subspace characterized by fixed values
of L,M, m.,S. Otherwise states, they provide an orthonor-
mal basis.

III. THE SYMMETRIC SPARSE MATRIX
AND ITS NUMERICAL DIAGONAL%&ATION

The replaced Schrodinger equation, Eq. (6), involves
only o(4,2) generators. The actions of these generators on

[2[J,(J, +1)+Jz(Jz+1)]—L(L+1)]

with respect to the action of the operator 1/A(P)
[10,11]. It remains to give the action of the operator
T(P). The action of T(P) can be deduced from Eq. (74)
of Ref. [8]. The result is

&x I7'(P)ly & =-,'[&x 17+(P)ly &+ &y I r+(P)lx &*],

where T+ is defined by
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T+ (P) ~(n, n ',J„J2, + 'L,M)P )

=
—,'a(n, n ') [(2J

&
+ 1 )(2Jz+ 1)]

X I (J&J2) ' c (L,J&+J2)[f„c(j —J&j ')c (j J—2j ')/a(n + l, n') ~n +1,J&
—

—,', J2 —
—,
' )

+f„.c(j' J—2j )c(j ' —J, ,j )/a(n'+ l, n)~n'+1, J& —
—,', Jz —

—,
' }]

+[(J,+1)(J2+1)] '~ c(L,J, +J2+1)
X [f„c(j',j +J, +1)c(j ',j + Jz+1)la(n + l, n')~n +1,J, + —,',J2+ —,

' }

+f„c(jj'+J2+1)c(jj '+J, +1)/a(n'+i, n)~n'+1, J, +—,',J2+ —,')]
+[(J,+1)Jz)] '~ c(J,—J2,L)[a(J„Jz)/a(J, + —,', Jz —

—,')]
X [ f„c(j—',j +J, + 1 )c (j J2,j '—

) /a( n + 1,n ')
j n + 1,J, + —,', J2 —

—,
' )

+f„,c (j j '+J, + 1 )c (j
' J2j )

—la( n '+ 1,n ) ~
n '+ 1,J, + —,',Jz

—
—,
' ) ]

+[J,(Jz+1)] ' c(Jz —J„L)[a(J&,J2)/a(J, —
—,',J2+ —,')]

X [ f„,c(j—j '+JR+1)c(j ' —J&,j)/a(n'+ l, n)~n'+1, J~ —
—,',Jq+ —,

' )

+f„c(j',j +J2+1)c(j—J&,j')la(n + l, n')~n +1,J& —
—,',J2+ —,

' ) ]], (21)

where c(a,b)= [(b+a—+l)(b —a)]', j =(n —1)/2, j'
=(n' —1)/2, f„—= [n (n+1)]'~, and a(a, b) is defined in

Eq. (13).
For notational convenience, only the modified quan-

tum numbers of the vectors of the right-hand side of Eq.
(21) have been written; for example:

Ec(Pj,k) =s(/3j )+s(P, k),
e(P,j)—:[exp(2P) /4]

X(1—[1+[2Zexp( —P}/j]']'"},

(22)

(23)

—:~(n, n'+1, J& ——' J —
—,', +s'L, M)P) .

In order to numerically diagonalize the matrix, one has
to consider a finite rather than an infinite matrix. A11 the
values of n, n' smaller than or equal to a maximum value,
to be denoted N, are taken into account in the numerical
calculations. The order of the matrix, to be denoted
0 (N, L,S, rr), is determined automatically by the comput-
er but can also be obtained explicitly. The quadruple
summation over J„Jz,n, n' subject to the triangular ine-
qualities which are implicit in the 9-j symbols of Eq. (11),
to the restrictions given by Eq. (19), and to the condition
n & N, is a purely counting problem which requires care
but does not present basic difficulties. The result is given
in the Appendix. The solutions E(P) of Eq. (6) are plot-
ted in Fig. 1 as a function of exp( —2P) for the first 'P'
energy level with Z =2. One obtains an equation for in-
dependent particles which is exactly solvable if the term
involving A (p), corresponding to the interelectronic
repulsion, is omitted in Eq. (6). The corresponding un-
perturbed discrete energies are obtained by the same
method that is given in Ref. [8] for the case p=0. These
energies, denoted by Eo(Pj, k) are

with j,k positive integers. The energy Eo(P, 1,2) and the
difference d (P, 1,2), defined by

d(Pj, k):E(P) E—&(Pj,k—), (24)

are also plotted in Fig. 1. The difference given by Eq. (24}
varies slowly with exp( —2P). Therefore the extrapola-
tion to the case exp( —2P) =0 will always be carried out
on the difference d (P,j,k).

The numerical results for the first 'P', P', S',

0

CI

0. 0 0. 5 1.0

FIG. 1. First 'P' energy level (atomic units) as a function of
exp( —2P) for P= —0.25,0.0,0.25,0.5,0.75,1.0,1.25. Nuclear
charge Z =2. X, E(P), numerical solutions of Eq. (6). Z
solution of the Schrodinger equation from Ref. [14]. Solid line

curve, Eo(P, 1,2). See Eqs. (22) and (23). Y, d(P, 1,2), the
difference between E(P) and Eo(P, 1,2); see Eq. (24).

g —Eo(~, 1,2)= g, +2.5.



45 SCHRODINGER EQUATION FOR TWO-ELECTRON ATOMS. . . 2761

TABLE I. E (P) (in atomic units) as a function of P; T, extrapolated results; V, variational results; A,

relative accuracy. It is stressed that the extrapolated results are not obtained directly from the results

of this table but by extrapolating d(p, j,k) [Eq. (24)] with respect to exp( —2p). For the three first

columns, (j,k) =(1,2), for the last one, (j,k) =(2,2).

—0.25
0.0
0.25
0.5
0.75
1.0
1.25
1.5
T
V
A

'Reference [14].
bReference [15].

State 'P'

—0.697 835
—0.846 143
—1.01144
—1.188 40
—1.368 52
—1.540 97
—1.694 89

—2.122 83
—2.123 843'
—4.8 X 10

3p0

—0.698 082
—0.846 632
—1.012 35
—1.18998
—1.371 05
—1.544 72
—1.70007

—2.132 31
—2.133 164'
—4.0X 10

3@e

—0.730 840
—0.882 980
—1.051 91
—1.232 12
—1.414 94
—1.589 44
—1.744 76
—1.873 04
—2.175 13
—2.175 229'
—4.8X 10-'

3pe

—0.349 075
—0.408 799
—0.469 063
—0.526 153
—0.576440
—0.617428
—0.648 417
—0.670 364
—0.710513
—0.710499 5

1.9 X 10

energy-level solutions of Eq. (6) for Z =2 are reported in
Table I. As usual, o is for odd parity (m. = —1), and e for
even parity (n=1). It has been noted [7,8] that the
operator replacement for the interelectronic interaction is
not possible for L =0 since the eigenvalues of A is then
zero for the case n =n', J&=J2=0, and therefore A has
no inverse. However, this case is excluded for triplet
states with L =0. As a result, the present method applies
for triplet but not for singlet L =0 states. The size of the
truncated basis (equivalently, the order of the matrix} in-
creases rapidly with the N maximum value of n, n'. The
number N for which convergence can be achieved in-
creases with p. Thus, for the 'P', P' energy levels, six
digits for E (p) do not change when N moves between 17
and 30 for the case p=0. In both cases, the order of the
corresponding matrices is 1632 if N =17, 8990 if N =30.
For p=1.25, convergence is obtained for N =35 and the
order is 14280 for both energy levels 'P', P'. For the
S', P' energy levels, the size of the truncated bases for

Sxed N is smaller. The calculations have therefore been
performed up to p= 1.5, and convergence was obtained
for N =45. This corresponds to matrices of order 15 180
for both energy levels S', P'. The algorithm used for
numerical determination of the eigenvalues of sparse ma-
trices is iterative [13]. The extrapolation with respect to
exp( —2p} to the limiting case of infinite p was made us-
ing a Lagrange interpolating polynomial. The accuracy
of the present final results (last line of Table I) is essen-
tially limited by this extrapolation. These extrapolated
results are tested by comparison with variational results
from Refs. [14,15].

IV. CONCLUDING REMARKS

The disadvantages pertaining to the extrapolation with
respect to exp( —2p) have some counterparts. Firstly,
the mathematical properties of the solutions of Eq. (6) for
fixed p should be easier to study than those of the

Schrodinger equation for two-electron atoms. For exam-

ple, the operator 1/t3(p) is bounded whereas 1/r is not.
This is interesting from the viewpoint of functional
analysis. Secondly, the only nondiagonal elements of the
matrices associated with Eq. (6) are the ones of the opera-
tor T(p) which originates from the kinetic-energy terms.
In particular, the fact that the matrix of I/A (p), corre-
sponding to the interelectronic potential, is diagonal and
extremely simple is a major advantage when compared to
the complexity of the two-electron integrals in standard
methods.

Only a few bound states, i.e., discrete eigenvalues of
Eq. (6}, have been presently considered. They all corre-
spond to the situation where the degrees of excitation of
the two electrons are quite comparable. For other situa-
tions, a generalization of the method by introducing two
dimensionless parameters p, p' rather than only one
would be appropriate in order that the convergence of
the results with respect to the size of the truncated basis
be more rapid.

We hope that the present method can also be used in
the study of autoionizing states. One way to implement
the method of complex coordinates within the present ap-
proach would be the addition of a negative imaginary
part to P. It is, however, more difficult to study numeri-
cally a symmetric complex matrix than a Hermitian rna-
trix. The fact that only diagonal elements become corn-
plex will perhaps simplify this numerical problem.

ACKNOWLEDGMENT

The author thanks Mrs. Auby for her kind assistance
in numerical computations.

APPENDIX

Two cases have to be distinguished for the explicit ex-
pression of the order 0 (N, L,S,m. ) (see Sec. III) of the ma-
trix. IfL is even
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O(N L,S,m)= —
—,
' [[1 —rr( —1) ](1+m)(N —

—,'L)(N+1 —
—,'L)j L—[(L +2)(L+4)/12+(N —L —1)(N+1—

—,'L)]/4

+ —,'n [(N L——1)(N —L)[(N L—+1)/6+ —,'(L +1)]+(—,'L +1)[N(—'L +1) L—(5L +11)/12] j

+[N(N+1) (N+2) —(L+1)(L+2) (L+3)]/24
—(N L——1)(N —L)[(N L——1)(N L—)+4N 4L—+2]/24

—(N L——1)L (L +1)(L +2)/12+(L +2)(L +4)(L +6L +6)/96 .

IfL is odd

O(N, L,S,tr)= —
—,'([1 rr( ——1)s](1 n)[—N —

—,'(L +1)][N+1 ,'(L—+—1)]

+ [1 rr( ——1) ](L —1)[(L +1)(L +3)/12+(N L —1)—[N —
—,'(L —1)]j

+[1+tr( —1) ](L+1)I(L+3)(L+5)/12+(N L ——1)[N ——'(L —3)]j}

—ztr((N L —1—)(N —L) [(N L+ 1—)/6+ [1+—'(L —1)]j +(L + 1)(L +3)(6N 5L ——1)/24}

+ [N(N+1) (N+2) —(L +1)(L +2) (L +3)]/24

(N L——1)—(N —L)[(N L —1)—(N L)+4N— 4L +2—]/24

(N L——1)L—(L +1)(L +2)/12+(L +1)(L +3) (L +5)/96.

(Al)

(A2)

The terms involving N to the fourth power are equal and opposite sign and therefore the order of the matrix varies as N
to the third power. For the case L =0, S =1, m. =1 and for the case L =1, S =1, m. =1 the above general expressions
take a particular simple form:

O(N, L =0 or L =1,S=1,~=1)=(N —1)N(N+1)/6 . (A3)
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