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Accurate variational calculations of energies of the 2 S, 2 P, and 3 D states and
the dipole, quadrupole, and dipole-quadrupole polarizabilities

and hyperpolarizability of the lithium atom
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The combined configuration-interaction —Hylleraas method has been used to calculate the energies for
the ground 2 S and the excited 2 P and 3 D states of the lithium atom. The energies obtained,—7.478 060 1 a.u. for the 2 S state, —7.410 155 4 a.u. and —7.335 523 1 a.u. for the 2 P and 3 D states,
respectively, are the lowest nonrelativistic variational upper bounds found so far. Ionization potentials,
lifetimes, dipole oscillator strengths and their sums, dynamic dipole, quadrupole and dipole-quadrupole
polarizabilities, and the static second hyperpolarizability are also reported and compared with experi-
mental and other theoretical results.

PACS number(s): 31.20.Di, 31.90.+s, 35.10.Di

I. INTRODUCTION

During the past few years a number of articles have
been published by King et al. [1—5] on the energy and
properties of the ground 2 S state of the lithium atom.
The work was carried out within the framework of the
Hylleraas method. A good deal of effort has been devot-
ed to extensive many-body-perturbation-theory (MBPT)
[6—8] and multiconfiguration Hartree-Fock (MCHF) [9]
calculations of the energies, including relativistic and
quantum-electrodynamic effects for the S and P states
of the lithium atom and for its isoelectronic ions.

In this paper we present the results of accurate calcula-
tions of the energy levels of the lowest 2 S, 2 P, and 3 D
states together with the ionization potentials, lifetimes,
dipole oscillator strengths and their sums, dynamic dipole
(a), quadrupole (Q, and dipole-quadrupole (B) polariza-
bilities, and the static second hyperpolarizability (y).
We employ the combined configuration-interaction
(CI)—Hylleraas method [10], which was successfully used
for evaluating energies of the ground and excited states
for the helium atom [11]and for the lithium isoelectronic
sequence [12-15].

The aim of this paper is twofold. The first is to probe
the possibility of further improvement of nonrelativistic
upper bounds to the energies of the ground 2 S state and
excited 2 P, and 3 D states, using large, explicitly
electron-correlated expansions of the variational wave
functions with carefully optimized nonlinear parameters.

A comparison of our variational energies,
—7.478 060 1, —7.410 155 4, and —7.335 523 1 a.u.
for the 2 S, 2 P, and 3 D states, respectively,
with the literature estimates of their nonrelativistic
limits [13,16,17], —7.478 062 4, —7.410 157 8, and
—7.335 523 5 a.u. , shows that our values lie approximate-
ly 0.5, 0.53, and 0.088 cm above the nonrelativistic lim-
its. Although the differences between our variational en-
ergies and the nonrelativistic limits do not approach
those attainable for the helium atom [18], they indicate a

significant improvement, especially for the 2 P and 3 D
states, over previous results [5,14,15].

The second goal of this paper is to generate wave func-
tions capable of giving accurate dipole and quadrupole
moments that can be used for precise calculations of the
dynamic and static properties.

Accurate calculation of polarizabilities and hyperpo-
larizabilities for atoms and molecules is difficult and re-
quires elaborate wave functions capable of giving con-
verged values of these properties. The most challenging
task, however, is the calculation of the hyperpolarizabili-
ty. In our previous articles we have reported dynamic
values of y for the helium atom [19]and for the hydrogen
molecule [20], for which we were able to achieve excellent
agreement with experiment [21]. For the lithium atom,
the simplest of open-shell atoms, there is a large
discrepancy between the various theoretical estimates of
y. Earlier theoretical values of the static hyperpolariza-
bility range from —778 X 10 to 746X 10 e a+
(Maroulis and Bishop [22] and references therein). Until
the recent work of Maroulis and Thakkar [23] there were
no calculations of y for the lithium atom which took into
account electron correlation, and even the sign of y was
uncertain. Their static value of y, 4350e a+i, , ob-
tained using fourth-order Mgller-Plesset perturbation
theory, although not converged, has the same sign and
order of magnitude as our own result. Experimental
determination of y for the lithium atom is feasible, at
least for the Kerr effect [24], but to our knowledge has
not been done.

The value of the static hyperpolarizability y obtained
in this work is 3 X 10 e4a +t, . Its reliability and an at-
tempt to calculate dynamic values of y pertaining to vari-
ous nonlinear optical processes are discussed later. The
static values of a (1.641X10 e aoEI, '), C
(1.423X10 e aoEt, '), and B (—5.43X10 e a+t, ) are
converged to the number of significant figures quoted.

Atomic units are used throughout this paper and their
SI equivalents are the fo11owing:
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E~ =—4.35975X10 ' 3,
a=e aQ '—= 1.64878X10 ' C m J

C =e a OE1,
' =4.617 05 X 10 C m J

B =e3a4+g 2= 1.—69673X10 6 C m J

y=e a+1, =6.235 38X10 C m J
FK —

( K (r1)QK (r2) ( K (rN), (3)

sumed. ez is a primitive spin function being a product
of one-electron a and P functions, and r,"denotes a non-

negative power of the interelectronic distance r;

(ij = 12, 13,23)—one correlation factor per term. A
primitive spatial function is constructed from a set of
one-electron orbitals [pK;] corresponding to a given

configuration E as a Hartree-type product

II. THEORY

A. Wave functions

where some of the orbitals may appear twice. We have
used Slater-type orbitals (STO's} for the one-electron
functions P:

In the CI Hylleraas method the variational wave func-
tion is

P(r) =r" ' exp( ar) Y&
—(8,$), (4)

=O„OL I Os(FKr;"8 ) . (2)

~ ~ ~ ~

Oz is the N-particle antisymmetrizer, OL ~ and Oz are

idempotent projection operators [25] for a state of total
quantum numbers L,ML, S,Mz=S; LS coupling is as-

+=X CK&~
R

where the abbreviated symbol [gs ] =yK';J g denotes the
set of spin and angular momentum projected correlated
configurations

Fl being normalized spherical harmonics in the Dirac
phase convention. For three-electron doublet states there
exist two independent primitive spin functions eg:
81=aaP and 82=aPa.

B. Properties

The underlying theory employed for calculation of dy-
namic dipole, quadrupole, and dipole-quadrupole polari-
zabilities as well as static hyperpolarizability is the same
as that used in our previous papers [19,20] and is based
on the perturbation expressions [26]

m, n(Wg)

&glp Im)&mlpplg&
a p(

—co;co1)=1(1
P m(Ag) mg a

&g IB.I1lm & & m le„lg &

C p rs ( co; co—, ) = 111

I m&~g) comg

&glp I m&&mlpqln&&nle, , lg&

P m, n(Wg) mg 0' ng 2

&glp lm &&mlpsln &&nlprlp &&p IpI1lg &

y t1rs(
—co;co(,co2, co3) =A'

p m n P(~g1 (~mg CO+)(~ng CO1 2)(~pg CO1)

&glp. lm &&mlpslg &&glp, ln &&nlpplg &

(co —co )(co„—co, )(co„+co2)

(5)

(6)

(7)

(8)

where, in all equations, co is the sum of the frequencies
following the semicolon. In Eqs. (5) and (6) gp is the
sum of permutations of the pairs (

—co /p ), (co, /p&),
and ( —co /8 I1), (co1/8 s), respectively, where p is the
a component of the electric dipole moment operator, e &
is the aP component of the electric quadrupole moment
operator, Im ) is an excited-state wave function, Ig ) is
the ground-state wave function, and co is the transition

frequency between the two. Qp in Eq. (7) implies the
summation over the permutations of the pairs ( —co /p ),
(co(/p&), and (co2/Brs). Further on we will consider only
the case when co, =co, co2=0, and the single (zz) and
(zz, zz) components of a and C,B.

The sum over P in Eq. (8) runs over the 24 terms gen-
erated by permuting the frequencies with their associated
spatial subscripts. Although Eq. (8) is general and, de-

pending on the choice of frequencies co„m2, co3, can be
used to calculate the y related to various nonlinear opti-
cal processes such as the Kerr effect or electric-field-
induced second-harmonic generation, we calculated only
the static (co, =co2=co3=0) zzzz component (y =y }.

For the lithium atom the ground state is 2 S, so that
the intermediate states in the expression for a must be of
P symmetry; for C they must be of D symmetry, for 8

both P and D symmetries must be included, and for y
the summations run over S, P, and D states. Finally,
to calculate the absorption oscillator strengths for dipole
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transitions between lower (i) and upper (k) states we used
the formula

f;k —
~ g .(Ek E; )Slk

TABLE I. An example of the wave function for the 2 S state
for co=5. An asterisk indicates the configuration for which
both spin functions a@a and auP are included. The total nutn-
ber of correlated configurations is 25.

where g, =(2L;+1)(2S;+1)and the line strength S,k for
bL = 1, b,ML =0 reads [27]

S,k (SL, ,SL, +1.)
(2S+1)(2L,+1)(L;+1)(2L,+3)

(L;+1) —MLz

X I &L, ,S,ML Msl.PIL;+1,S,Mg, Ms) lz .

In our case S =M& =
—,', Ml =0.

The mean lifetime ~k; of the upper level is

(10)

2.026X10' Ski ik
A gk

and A, is the wavelength in angstroms.

(12)

where the Einstein spontaneous transition probability (in
sec ') is given by

Hartree-type product
F~

1s ls ls'
1s ls ls'
1s 1s2s'
(1s2s1s')*
1s ls ls'
1s ls2s'
(1$2$1$')~

1s ls3s'
(1s2s2s')*
(1$3$1$')*
2s2s ls'
(1s ls ls')*
(1s1s1s')*
(1s ls2s')*
(1$2$1$')*
(1s2s ls')*

Correlation factor
r,j
0

r12
1

0"12
0

2
r12

1
112

1

0
112

0
112

0

0
112

1

2
13
1

1

13
1

23

III. COMPUTATIONAL PROCEDURE

The basic problems in atomic calculations involving
explicitly electron-correlated wave functions are the
proper choice of correlated configurations and the optim-
ization of the nonlinear parameters appearing in the
STO's. Instead of making an "intelligent" choice of the
correlated configurations, usually guided by trial and er-
ror, we have built up our wave functions, for each state
considered, from several groups of Hartree-type prod-
ucts. For the ground 2 S state we included (n, snzs )n3$',
(n,pnzp)nzs", (n, dnzd)nzs"', and (n, fn fz)n z"s" types
of Hartree products. For the 2 P state we considered
(n, snzs)nsp, (n&p'nzp')nsp", and (nts'nzp'")n3d
Hartree-type products and the 3 D wave function was
constructed from (ntsnzs)nzd, . (ntpnzp)nss' and
(ntp'nzp')nsd' Hartree-type products. The choice of the
correlated configurations within each type of Hartree
product was governed by the index co

configurations of (n, s'nzp"')nzd type —altogether 1454
correlated configurations.

The 3 D wave function included 1478 correlated
configurations consisting of 750 (co = 12) configurations of
( n

&
sn zs) n sd type, 462 (cu = 11) configurations of

(n&pnzp)nzs' type, and 266 (co=12) configurations of
(n tp'nzp')nsd' type.

The optimization of the orbital exponents for each
state considered in this work was carried out for smaller
expansions: 882 (462+ 140+ 140+ 140} configurations
for the 2 zS state, 524 (266+ 140+ 118) configurations for
the 2 P state, and 546(266+ 140+ 140) configurations for
the 3 D state. The values of the optimal nonlinear pa-
rameters are given in Table II.

To verify the completeness of the expansions for the
wave functions of S, P, and D symmetries, we checked
the following relations, which hold exactly only for com-
plete expansions:

(2 Slz l2 S)= y[ (2 Slz ln S)(n Slz l2 S)
co=n j +n2+n&+v, (13)

+(2 Slz ln D)(n Dlz l2 S)],
where v is the power of r,-, .

In Table I we give an example of the (ntsnzs)n3$ rj.
configurations for ~=5, in the same order as they were
generated by the program. Our final wave function for
the ground 2 S state included 750 (co=10) configurations
of (n, snzs}n~s' type, 462 (co=11} configurations of
(n, pnzp )nzs" type, 266 (co= 12) configurations of
(n, dnzd)n~s'" type, and 140 ( co=13) configurations of
(n, fnzf)nzs"" type, giving, finally, a 1618-configuration
expansion.

The 2 P wave function was constructed from 750
( co = 11 ) configurations of ( n, sn z s )n zp type, 462 (co= 12)
configurations of (n&p'nzp')n&p" type, and 242 (co=10)

(14}

&2 Slz 12 S&=gyp[&2 Slzln P&&n Plzlm S&
n m p

X(m Slzlp P)(p Plzl2 S)
+(2 Slzln P)(n Plzlm D)

X(m Dlzlp P)(p Plzl2 S)], (15)

where z =z&+z2+z&. It was found that the above rela-
tions were satisfied to three significant figures.

Finally, before deciding which types of correlated
configurations should be included in the basis set expan-
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State a, a,

TABLE II. Optimal nonlinear parameters for the 2 S, 2 P, and 3 D wave functions.

a af

2 S
2 P
3 D

3.2200 0.7224
2.8285 3.5069
3.3009 2.6509

1.8516 0.8395 0.7165 2.5716
0.7938
2.0075

2.2881
2.6984

1.1449 2.6297
3.6471
2.0363
0.4023 0.4244

4.2384

sions for 2 S, 2 P, and 3 D states, we also considered
(n, gn 2g)n 3s'""( S), (n&d'n 2d')n p3'"'( P), and

(n, d"nod")n3s"( D) types of configuration, but their
contributions to the energies were at least an order of
magnitude smaller than those coming from the
configurations already chosen.

IV. RESULTS AND DISCUSSION

A. Energies

The results of our calculations for the energies of the
2 S, 2 P, and 3 D states are presented in Table III. In
the same table, we give the nonrelativistic estimates of
the exact energies, the Hartree-Fock values, and the
values of the scale factor —( V) /2( T ), where ( V) and
(T) stand for potential and kinetic energy. We also
show the percentage (6) of the correlation energy and
the lower bound (S ) to the overlap of the exact wave
function with its variational approximation. S was cal-
culated using Weinberger's formula [28]. It should be
noted that although the closeness of S to 1.0 represents
a sensitive criterion of the overall accuracy of the varia-
tional wave function, the true accuracy of the wave func-
tion for each of the states considered is higher than that
suggested by the value of S . This is related to the fact
that S calculated from Weinberger's formula depends
on the ability of the wave function to precisely described
the excited states of a given symmetry, and even if we
were able to include an infinite number of them, S

would not be equal to unity because the formula does not
take into account the contribution from the continuum.
In view of the above it is not totally unexpected that S
for the 3 D state is much better than for the 2 Sor 2 P
states. This can be explained by the fact that, coinciden-
tally, the wave functions of D symmetry describe very
well some of the excited states. For example, the energy
of the 4 D state is —7.311 187 a.u. in comparison with
its nonrelativistic estimate of —7.311 189 a.u.

At this point we would like to focus our attention on
the recent estimate of the nonrelativistic energy of the
ground 2 S state by Jitrik and Bunge [17]. Their result

E„,= —7.4780624 a.u. based on CI calculations with an

empirical estimation of various sources of truncation er-
ror is much closer to our nonrelativistic variational ener-

gy for the ground state E = —7.478 060 1 a.u. than any of
the older [13,29,30] estimates of E„,. We feel, however,
that it would be desirable to have relativistic, quantum
electrodynamics, and mass polarization corrections recal-
culated using more accurate wave functions than in pre-
vious calculations. Until then any conclusions concern-
ing closeness of E„,to the true energy should be delayed.

In Table IV we compare our variational nonrelativistic
energies for 22S, 2 P, and 3 D states with some other
previously published results. For the ground 2 S state
our energy is slightly better than the extensive
Hylleraas-type values of King and Bergsbaken [3,5]. The
very good result of King and Bergsbaken [5], obtained
with only the 296-term expansion, was possible due to a
great number of nonlinear parameters and an elaborate

TABLE III. Calculated energies for the 2 S, 2 P, and 3 D states (in a.u. ) compared with estimates of the exact nonrelativistic en-

ergies, together with criteria of their accuracy.

State

2 S

2 P

3 D

7.478 060 1

7.410 155 4

7.335 523 1

—Enr

7.478 062 4'
7 47807
7.478 069'
7.478 068 2
7.410 157 8
7.410 16"
7.335 523 4'

—EHF

7.432 74g

7.365 078

7.29200

Scale factor

1.000 000 1

1.000 000 4

1.000 000 2

S

0.999 950

0.999973

0.999 990

99.995

99.995

99.999

'S =the lower bound to the overlap with the exact wave function; see Ref. [28].
b = [(E E„„)/(E„,—E„„)]X 10—0 is the percentage contribution to the correlation energy.

'Reference [17].
~Reference [29].
'Reference [30].
Reference [13].
sReference [31].
"Reference [32].
'Reference [16].
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TABLE IV. Comparison of the upper bounds to the nonrelativistic energies of the 2 S, 2 P, and 3 D states of Li in atomic units.

Type of wave function

Larsson'
Ahlenius and Larsson"
Sims and Hagstrom'

Muszynskam Papierowska,
and Woinicki

Ho'
Pipin and Woinicki'

Pipin~

King and Shoup"
King'
King and Bergsbaken'
Present work

'Reference [30].
Reference [32].

'Reference [15].
Reference [12].

'Reference [33].

100-term Hylleraas
97-term Hylleraas
150-term (2 ~S)

120-term (2 P)
CI-Hylleraas
139-term (2'S)
120-term (2 2P)

CI-Hylleraas
92-term Hylleraas
170-term
CI-Hylleraas

352-term Hylleraas
602-term Hylleraas
296-term Hylleraas

2 S

7.478 025

7.478 023

7.478 044
7.478 031

7.478 044

7.478 058
7.478 059
7.478 059 5

7.478 060 1

'Reference [14].
sReference [16].
"Reference [1].
'Reference [3].
'Reference [5].

—E
2 2P

7.410078

7.410053

7.410097

7.410 106

7.410 155 4

3 D

7.335 468

7.335 523 1

process of optimization, whereas in the present work only
eight optimal nonlinear parameters were used to describe
the K- and L-shell electrons. For the 2 P and especially
the 3 D state there are no previously published results
which approach our accuracy.

In Table V a comparison of the theoretical and experi-
mental ionization energies is given. Our values were ob-
tained by subtracting the nonrelativistic energies of the
2 S, 2 P, and 3 D states from the nonrelativistic energy
(
—7.279 9134 a.u. ) of the ground state of the lithium ion

as reported by Freund, Huxtable, and Morgan [34]. The
MBPT result of Lindgren [6] for 2 S ionization energy
includes a relativistic correction of 0.000016 a.u. (3.5
cm '). The results of Johnson, Blundell, and Sapirstein
[7(a)] include relativistic and mass polarization and jor re-
duced mass corrections. If we add Lindgren's relativistic
correction and quantum-electrodynamic correction [35]

( —2. 1 cm ) to our nonrelativistic 2s-2p transition ener-

gy we obtain 14903.86 cm ' (Rsr =109728.63), which is
in perfect agreement with the empirical value [36—38] of
14903.88 cm '. For the 2p-3d transition the experimen-
tal value is 16379.20 cm ' and our nonrelativistic result
is 16 378.60 cm

B. Properties

In Table VI a comparison of the experimental and
theoretical values of the absorption oscillator strengths
and the lifetimes is given. For the sake of completeness
the values of dipole and quadrupole moments are also in-
cluded in this table. As can be seen there is good agree-
ment between our and other theoretical f values with the
exception of Lindgkrd and Nielsen's results [43] obtained
using the Coulomb approximation.

TABLE V. Ionization energies for 2 S, 2 P, and 3 D states, in atomic units. The data refer to the
centers of gravity of the states.

2 S 2 2P 3 D

Lindgren'
Johnson, Idress,

and Sapirstein
Johnson, Blundell

and Sapirstein'
Present work
Experimental

'Reference [6].
Reference [7(b)].

'Reference [7(a)].
References [36-38].

0.198 154(3)
0.197 97

0.198076

0.198 147
0.198 158

0.130221(3)
0.13001

0.130 147

0.130242
0.130245

0.055 60
0.055 60

0.055 610
0.055 610
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TABLE VI. Comparison of theoretical and experimental oscillator strengths, lifetimes and transition moments for 2 S, 2 P, and

3 D states.

Transition moments

Dipole Quadrupole Oscillator strengths Lifetimes (nsec)

2 S-2 P 2 P-3 D 2 S-3 D 2 P-2 P 22S 22P 2~P 32D 2 P 3 D

2.3452

Experiment
Heldt and Leuchs'
Azencot and Goutte
Schulze-Hagenest et al. '
Gaupp, Kuske,

and Andrad

Theory
Lindgkrd and Nielsen'
Froese Fischer
Sims, Hagstrom

and Rumbleg

Pipin and Woznicki"
Johnson, Idrees,

and Sapirstein'
Heavens'
Present results 2.2652 8.6706 10.820

0.726+0.03

0.7416+0.0012

0.7412
0.7480
0.7476

0.7495

0.7470

0.643+0.03

0.6354

0.6382

27.9+1.0

27.29+0.04

27.32

27.1

27.2
27.12

14.5+0.7
14.8+1.9

14.60+0.13

14.66

14.5
14.60

'Resonance fluorescence technique, Ref. [39].
bAtomic ionoluminescence technique, Ref. [40].
'Fast beam technique, Ref. [41].
dFast beam technique, Ref. [42].
'Coulomb approximation, Ref. [43].

"MCHF method, Ref. [44].
NCI Hylleraas, Ref. [45].
"CI Hylleraas, Ref. [14].
'MBPT, Ref. [7(b)].
'Coulomb approximation, Ref. [46].

Table VII contains a comparison of the dipole oscilla-
tor strength sums

S =2 y (g Iplm &'/(trtr0, )"
m (Ag)

(16)

with the semiempirical values of Zeiss et al. [47] and
Kouba and Meath [48].

Table VIII presents some theoretical and experimental
values of the static dipole, quadrupole, dipole-quadrupole
polarizabilities and hyperpolarizability. To get values of
these properties we used Eqs. (5)—(8) in which the summa-
tion over the true states was replaced by the summation
over the lowest states and pseudostates of S, P, and D
symmetry. This is the same as in checking the closure re-
lations, Eqs. (14) and (15), and in calculating the dipole
oscillator strength sums, Eq. (16). Had we determined
the true states, it would be necessary to include the con-
tinuum contributions to each of the properties con-
sidered.

Our value of the dipole polarizability is in excellent

agreement with the experimental value of Molof et al.
[49] and other theoretical results. The value of the quad-
rupole polarizability agrees within 0.3%%uo with the results
of Reinsch and Meyer [53], and Maroulis and Thakkar
[23). The pseudopotential result of Meader and Kutzel-
nigg [52] is an underestimate. Our dipole-quadrupole po-
larizability agrees within —1% with the fourth-order
Mr(lier-Plesset perturbation value of Maroulis and Thak-
kar [23].

In Table VIII we have included only two other theoret-
ical values of y. The result of Maroulis and Bishop [22]
illustrates the difficulty of obtaining reliable values of the
hyperpolarizability using a method which does not take
into account electron correlation. As we already men-
tioned Maroulis and Thakker's [23] result is the only one
obtained to date by a method accounting for electron
correlation and although it is far from being converged, it
has the same sign and order of magnitude as our value of

Our analysis of the convergence of a, C, and 8, and y

TABLE VII. Dipole oscillator strength sums for the ground 2 S state of the lithium atom.

Reference

Zeiss et al. '
Kouba and Meath"
Present work

So

3.000

2.999

S

12.14
12.09+0.14
12.13

S

163.6
163.3+0.3
164.1

S

2385
2383+2
2394

S 4

35040
350 11
351 70

S

517600

'Reference [47].
bReference [48].
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TABLE VIII. Comparison of theoretical and experimental values of the static dipo1e, quadrupole, dipole-quadrupole polarizabi1i-
ties and hyperpolarizability for the ground 2 S state. Atomic units are used.

Method

EH gradient balance
technique, experimental'

PNO-CEPAb
CI'
Pseudopotential
PNO-CEPA'
CI Hylleraas'
CI Hylleraas
CI Hylleraas"
CRHF, CUHF'
SCF'
Fourth-order MP"
This work

164.0+3.4

164.5
164+2
164.3

163.8
163~ 8
163.9

164.8
1.641X 10'

1383
1428.0

1428.0
1.423 X10-'

—58 210
—58 880
—54 926

—5.43 X 10

—86400
4350

3X10'

'Molof et al. , Ref. [49]. Electric-magnetic field-gradient balance techniques.
Werner and Meyer, Ref. [50]. Pseduo-natural-orbital coupled-electron-pair approximation.

'Pouchan and Bishop, Ref. [51].
dMeader and Kutzelnigg, Ref. [52].
'Reinsch and Meyer, Ref. [53].
'Sims, Hagstrom, and Rumble, Ref. [54].
tMuszynska et al. , Ref. [13].
Pipin and Woinicki, Ref. [14].
Bhattacharya and Mukherjee, Ref. [55]. Coupled-restricted-Hartree-Fock and coupled-unrestricted-Hartree-Fock approximation.

'Maroulis and Bishop, Ref. [22]. Self-consistent-field approximation.
"Maroulis and Thakkar, Ref. [23]. Ms(lier-Plesset approximation.

TABLE IX. Values of the dynamic dipole a, quadrupole C,
and dipole-quadrupole 8 polarizabilities for the ground 2 S
state of the lithium atom, in atomic units. Numbers in square
brackets are powers of ten.

Ace (a.u. )

0.000
0.005
0.010
0.015
0.020
0.025
0.030
0.035
0.040
0.045
0.050

a(m)'

1.641[2]
1.650[2]
1.677[2]
1.724[2]
1.795[2]
1.896[2]
2.034[2]
2.228[2]
2.503[2]
2.910[2]
3.561[2]

C(~)b

1.423[3]
1.425[3]
1.430[3]
1.438[3]
1.449[3]
1.464[3]
1.482[2]
1.505[3]
1.532[3]
1.564[3]
1.601[3]

—5.43[4]—5.48[4]
—5.64[4]
—5.94[4]
—6.39[4]—7.06[4]
—8.06[4]
—9.57[4]
—1.20[5]
—1.61[5]
—2.39[51

values, performed with somewhat different basis set ex-
pansions for S, P, and D states, indicated that the
values of a, C, and B are converged to the number of
significant figures given. The value of y, however, has
only one significant figure (3 X 10 a.u. ). In view of the
accuracy of our variational wave functions we consider
the static value of y to be converged within a few per-
cent.

We made an effort to calculate dynamic values of y
pertaining to different nonlinear processes: the Kerr
effect, electric-field-induced second-harmonic generation,

etc. A simple analysis of the Eq.(8) shows that the final
value of y comes from

&2'Slp. l'P & &'alp, sl'S & &'Sip, l'Z &&'Zip~12 S &

&2'sip l'P &&'Plp, l'D &&'alp, l'&&'alp, pl2's &

types of transitions (divided by appropriate energetic
denominators), which are added, and also from a second
group of terms

&2'&Ip. l'I'&&'~lpsl2'~ &&2'~lp, l'l'&&'Plpttl2'~ &

which are subtracted. The orders of magnitude of these
terms are 10 so one needs four significant figures in each
of the terms to get just one significant figure in y. To be
definitive about the frequency dependence of y we would
have to get converged values of these terms to at least five

significant figures. That, however, was not achieved in
spite of the fact that accurate energies and wave .'unc-
tions were obtained.

To complete the results we give in Table IX values of
dynamic dipole, quadrupole, and dipole-quadrupole po-
larizabilities for frequencies below the 2s-2p transition
frequency.

V. CONCLUSIONS

We have presented the lowest nonrelativistic upper
bounds to the energies of the 2 S, 2 P, and 3 D states pf
the lithium atom. This does not, however, preclude the
possibility of additional, though small, improvements to
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the nonrelativistic calculations. It seems to us that fur-

ther refinements of the nonrelativistic energies may be ac-
complished by employing more nonlinear parameters in

the wave functions [5] or by using exponentially correlat-
ed wave functions. Exponentially correlated wave func-
tions proved to be rapidly convergent for the helium
atom [56] and the recent work of From and Hill [57]
makes feasible their application to the lithium atom.

The values of the dipole, quadrupole, and dipole-
quadrupole polarizabilities may serve as a reference for
less accurate calculations. Having rather limited com-
puter resources, we were not able to calculate the dynam-

ic hyperpolarizability, though our static y is the most re-

liable estimate to date.
After completion of this work, we learned of a Hyl-

leraas calculation by D. K. McKenzie and G. W. F.
Drake. Their energy for the 2 S ground state of the lithi-
um atom is —7.478 060 312 a.u. [58].
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