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Results are given of a calculation of the self-energy radiative correction for electrons bound in a
strong Coulomb field. The calculation has been done for the states with principal quantum number
n = 3, 4, and 5, with angular momentum j = % and %, and for nuclear charge Z in the range 10-110.
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I. INTRODUCTION

In many cases quantum electrodynamic (QED) cor-
rections are an important component in the prediction
of atomic energy levels. The dominant QED effects are
the self-energy, corresponding to the virtual emission and
reabsorption of photons by bound electrons, and the vac-
uum polarization, corresponding to interaction of virtual
electron-positron pairs with the nucleus and bound elec-
trons. This paper examines the one-photon self-energy,
which is the largest radiative correction in most atoms.

The idealization that the electron is in the Coulomb
field of a stationary point nucleus of charge Z is made
in this work. This approximation provides the dominant
effect for the theoretical predictions of hydrogenic energy
levels [1,2]. The Coulomb self-energy is also useful as a
first approximation to radiative level shifts in highly ion-
ized atoms and inner shells of heavy neutral atoms. In
many cases the Coulomb-field result is the dominant con-
tribution to the radiative level shift, and it is possible to
estimate the effect of electron screening by perturbation
theory [3].

Calculations of the self-energy in a strong Coulomb
field for states with principal quantum number n = 1
and 2 with methods that form the basis for this work
have been described previously [4-6]. Here, the calcula-
tions are extended to higher excited states with n = 3,
4, and 5, and with angular momentum j = { and 3, for
nuclear charge Z in the range 10-110. Evaluation of the
self-energy for higher-n states to high accuracy over this
J
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and where b = —i [(E, — 2)? + i4] 1/2, Re(d) > 0, and

Z21 = |x2 — x1|. In these expressions, ¢, and E,, are the
eigenfunction and eigenvalue of the Dirac equation for the
bound state n with quantum numbers {n, k,, s}, and G
is the Green’s function for the Dirac equation correspond-
ing to the operator G = (H —z)~!, where H is the Dirac-
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range of Z requires considerable improvement over the
numerical methods employed for the n = 1 and 2 states,
because the wave functions extend over a larger range in
coordinate space and there is greater numerical cancel-
lation in extracting the physical result from the formal
expressions.

Preliminary results of the present work have been ap-
plied in a systematic study of regularities of resonance
transitions along the lithium, sodium, and copper isoelec-
tronic sequences with a phenomenological method of es-
timating the electron-screening effects on the self-energy
[7].

Work has been done recently on the excited-state
(n > 3) self-energy problem by Blundell and Snyderman
[8] who employed a basis-set approach to calculate the
Coulomb self-energy for a number of cases at high Z, in-
cluding states with n = 3 and 4 at Z = 80. These results
are compared to the present work in Sec. VI. Cheng,
Johnson, and Sapirstein [9] have applied the method of
Brown, Langer, and Schaefer [10] to calculate the self-
energy in a local potential that approximates a Hartree-
Fock potential for the 3s1/2 and 3ps/s states at Z = 78
and the 4s,/, and 4pg/, states at Z = 79.

II. FORMULATION

The self-energy level shift AEgg can be written as the
sum AEsg = AFEL + AEy of a low-energy part AEL
and a high-energy part AEy [4], where (in units in which
h=c=m,=1)

sin[(E, — 2)za]

(En - 2)22:21 (21)
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[
Coulomb Hamiltonian. In (2.1) the P denotes principal
value integration, and in (2.2) the contour Cy extends
from —i00 to 0 — Z¢ and from 0 + ie to +ioco, with the
appropriate branch of b chosen in each case. The explicit
form of the coefficient ém in the mass-renormalization
term in (2.2) depends on the regularization scheme that
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is employed.

The division of the self-energy into (2.1) and (2.2) is
done to facilitate the numerical evaluation. The low-
energy part is amenable to high-precision evaluation with
no subtraction terms, and the high-energy part is in the
Feynman gauge in which subtractions done to isolate the
infinite-mass renormalization have a simple form [4].

The self-energy level shift is roughly proportional to
Z*/n3, so we express the results of the calculation in
terms of a function F(Za) defined by writing (in units
of the electron rest energy m.c?)

Z
AEsg = "( ") Y F(Za). (2.3)
Because the low-energy and high-energy parts are sep-
arately of order lower than (Za)*, it is useful to isolate
the lower-order parts and define functions fr and fg that

have the same scaling as F' by writing [4, 6]

: <3E + v, +(Z°‘) fr(Za ))

AE
L=7\2 6

(2.4)

and
J
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where the summation over k runs over all nonzero inte-
gers, and where 1 = 3—i and j = 3—j. Here AEy is taken
to be the real part of the corresponding symbol in Ref. [4].
In (3.2), the radial wave functions f; (see Appendix A)
and the radial Green’s functions G%/ are as defined in
Ref. [4]. The functions A% are given as an integral over
the relative angle £ = %5 -%; in Ref. [4] for any state, and
the result of the integration is given for S)/, states in
Ref. [4], for P,/ and Ps/ states in Ref. [6], and for D3/,
states in Appendix B of this paper. The function u(z)
in (3.2) is evaluated numerically with methods similar to
those described in Refs. [5] and [6]. In this calculation,
minor modifications in the algorithms for evaluating the
radial Green’s functions have been made in order to ex-
tend the range to the higher values of z needed here.
In most cases, the integration over radial coordinates is
carried out by a method described earlier, except that
here higher-order Gaussian integration formulas are em-
ployed. In some cases, to obtain convergence, an alterna-
tive integration scheme was employed. The modification
is that the ranges (0,1), (1,5), and (5,00) corresponding
to the three terms in Eq. (2.20) of Ref. [5] are replaced
by (0,n), (n,5n), and (5n,00), where n is the principal
quantum number of the state, with a nominal number of
integration points given by 34, 18, and 6, respectively.
In evaluating the integral over u(z), it is necessary to

Rm,n=/0
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(2.5)

_af 3 (Za)“
AEy =~ (_215:,, - 6Vn+ — fu(Za ))

where V, is the expectation value of the Coulomb poten-
tial. In these expressions, the coefficients of E,, and V,
are obtained by evaluating the leading terms of (2.1) and
(2.2) in powers of Za analytically. The result for F is
then simply

F(Za) = fu(Za) + fu(Za). (2.6)

The value employed for the fine-structure constant in this
work is ¢~! = 137.036.

III. LOW-ENERGY PART AE.

Integration over the spherical angles of the vectors x»
and x; in (2.1) yields [4]

a o [En
AEL=—E, + —P/ dz u(z) 3.1)
™ ™ 0

with

(3.2)

[
take into account the fact that the integrand u(z) in
(3.2) contains as many as 11 bound-state poles within
the range of integration for the states considered here.
We subtract the pole terms from the integrand when in-
tegrating over z, and add the result of analytically inte-
grating these terms to restore the correct value for the
integral. Locations and residues of the poles of u(z) are
readily identified with the aid of the spectral resolution
of the radial Green’s function

GU (z2,21,2) = Z (:cg (x1

E, -5 (3.3)

In (3.3), the summation over m denotes summation over
principal quantum numbers m of all bound states and in-
tegration over the continuous-energy spectrum for a fixed
spin-orbital quantum number k. To be explicit, both the
bound-state energy eigenvalues and radial wave functions
depend on m and k as well as the displayed variables, i.e.,
fi(z) = fmxi(z) and E, = Ep, . Pole terms are iso-
lated by writing

wz)= Y _Bms + v(2), (3.4)
mr z—= Em,n
Em,x<En.x,
where v(z) is analytic on the interval (0, E,) and
(3.5)

To numerically evaluate the principal-value integration over z, we calculate the residues R,, . by numerically
evaluating (3.5), and integrate the modified integrand #(z) defined by
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Enx,

a(z) = u(z) + mZ Fom [E,,l,hln(

Em,x<En,x,,

by standard Gaussian quadrature, i.e.,

P /OE" dz u(z) = /OEn dz u(z).

Each radial integral in (3.5) is evaluated by Gaussian
quadrature. The method consists of dividing the range
of integration into two parts and making changes of vari-
ables defined by

0o 1 2 3
/ dz g(z) :/ dz 182 g (61)
0 0 a a
o0
+/ da:lg(z-*-e),
0 a a

where @ = (1 — E2, )Y/? + (1 — EZ, )}/, with the
first integral on the right-hand side evaluated with 22-
point Gauss-Legendre quadrature, and the second in-
tegral on the right-hand side evaluated with 12-point
Gauss-Laguerre quadrature. The parameter a is defined
so that the integrand of the second integral falls off as
zie~%, for large z. The division and changes of variables
in (3.8) are the result of a trial and error effort to obtain
high precision in the numerical integration with a mini-
mum number of integration points. Error introduced into
the final result from error in the residue calculation was
checked by increasing the number of integration points
by 10 in each integral in the residue calculation for rep-
resentative values of n and Z. The change in the result,

fL(Za), was less than 3 x 10~2 in all cases.
For |k, | = 1, the integral on the right-hand side of (3.7)

is evaluated by Gauss-Legendre quadrature with respect
to a new variable t defined by

(3.7)

(3.8)

E., 1
/ dz a(z)=/ dt 5E.t* a(E,(1—-1t%))  (3.9)
0 0

with the nominal number of integration points given by
18. In the cases where |k,| = 2, we divide the integral
over z into two regions with the division point given by

2729
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Em,n ) z = Em,n] (3 )
|
z0 = 2En 1 — By 2, (3.10)

where E, ; is the nearby eigenvalue with |x| = 1. With
this point of division, the upper interval is symmetric
about the pole at z = E, 1, and the convergence of the
integral over z as the number of integration points is
increased is better than if no division were made. In
fact, in most of the evaluations, this nearest pole was
not subtracted. By the choice of integration intervals,
the principal-value integral is evaluated correctly with or
without the subtraction, as discussed in Ref. [6]. The
method of integration is given by

E, 1
/ dzu(z):/ dt 5zot* u(zo(1 — t°))
0 0

1
+/ dt (En - Zo)ﬂ(En - (En - Zo)t),
0
(3.11)

where the integrals over { are evaluated by Gaussian
quadrature with a nominal number of points given by
18 and 4, respectively, for the two intervals.

Results of this evaluation for the function fr(Za) are
shown in Tables I-III. The stability of the results as the
number of integration points in all dimensions is varied is
taken as an indication of the precision in the values, and
the uncertainty in the last figure is shown in parentheses
in the cases where it is not negligible. The quoted results
are based on a number of integration points in the range 4
to 10 greater than the nominal number for each integral.

IV. HIGH-ENERGY ANALYTIC PART

The high-energy part AEy is divided into two parts
so that

Tu(Za) = fua(Za) + fup(Za). (4.1)

In Ref. [6], the analytic part fya(Za) is defined for
any state in terms of expectation values in momentum

TABLE I. The function fL(Za) for n = 3. TABLE II. The function fr(Zea) for n = 4.
Z 351/2 3P1/2 3P3/2 3D3/2 Z 431/2 4P1/2 4P3/2 4D3/2
10 6.364420 1.014106 0.753842 0.489050 10  6.40884(1) 1.04173(1) 0.781412(3) 0.513346(3)
20 4.906471 1.055303 0.770811 0.491722 20  4.947659 1.083388 0.799114 0.516252
30 4.180915 1.113925 0.792782 0.496067 30 4.217650 1.142055 0.822071 0.520971
40 3.750657 1.189990 0.818598 0.502184 40  3.781679 1.217436 0.849134 0.527658
50 3.484073 1.285831 0.847813 0.510245 50 3.507808 1.311451 0.879887 0.536537
60 3.327107 1.406028 0.880348 0.520484 60  3.341405 1.428082 0.914309 0.547910
70 3.256334 1.558249 0.916373 0.533206 70  3.258091 1.574052 0.952652 0.562172
80 3.265610 1.755248 0.956255 0.548806 80  3.250127 1.760529 0.995399 0.579837
90 3.364248 2.019312 1.000532 0.567792 90  3.323999 2.006924 1.043231 0.601571
100 3.584845 2.393137 1.049879 0.590822 100  3.506800 2.350188 1.096993 0.628249
110 4.013497 2.971636 1.105008 0.618746 110 3.872100 2.871950 1.157550 0.661005
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TABLE III. The function fz(Z«) for n = 5. TABLE V. The function fga(Za) for n = 4.
A 551 /2 5P, 5P; 5D3, A 4512 4Py 4Py, 4D,
10 6.4328(1) 1.05789(5) 0.79761(2) 0.52780(2) 10 —1.507887 —1.188710 —0.627128 —0.558512
20 4.968871 1.099472 0.815590 0.530791(1) 20 —1.510582 —1.206432 —0.630281 —0.560976
30 4.235040 1.157583 0.838843 0.535587 30 —1.530295 —1.237178 —0.635495 —0.565132
40 3.794169 1.231728 0.866243 0.542399 40 —1.566819 —1.282939 —0.642780 —0.571049
50 3.514102 1.323523 0.897378 0.551473 50 —1.621450 —1.346895 —0.652176 —0.578832
60 3.339795 1.436505 0.932239 0.563139 60 —1.697093 —1.433976 —0.663758 —0.588620
70 3.246190 1.576704 0.971102 0.577828 70 —1.798916 —1.551886 —0.677630 —0.600593 -
80 3.224427 1.754146 1.014480 0.596102 80 —1.935872 -1.713108 —0.693929 —0.614978
90 3.279036 1.986220 1.063097 0.618692 90 —2.124120 —1.939137 —0.712832 —0.632056
100 3.433348 2.305937 1.117841 0.646561 100 —2.395577 —2.270624 —0.734561 —0.652179
110 3.752487 2.786047 1.179589 0.680957 110 —2.823389 —2.796620 —0.759391 —0.675781

space. Momentum-space functions that are required for
this calculation are given in Appendix A. Reference [6]
describes the method of evaluation. Results for the func-
tion fya(Za) are listed in Tables IV-VI. None of the fig-
ures in those tables is affected by numerical uncertainty.

V. HIGH-ENERGY REMAINDER

The high-energy remainder function fyp(Za) is

Jus(y) = /Oldt /000 dy/old,. Syt (5.1)

where

Ry 1s the remainder estimate, and Ep is the error. For
large «, the asymptotic form of the terms is

2K

r
Tﬂ(riyvt:7):—K_Pﬂ(rlyitY‘y)’ (55)
where
P&(r7y’t17):A(r’y7t’7)
1 1
B(r,y,t,y)——+0 | —=]. .
Bt 40 (5). 69

To construct the remainder estimate Ry, we calculate
the term A(r,y,t,7y) analytically with the aid of the
asymptotic expression for the radial Green’s function in
Ref. [5], and approximate B(r,y,t,7v) by

Bn(ry,t,7) = (N + 1) [Pn(r,y,t,7) — A(r,y,t,7)],

oo
S(”,y,t,'y) = ZTK(ryyvta‘Y)' (52)
k=1 (57)
The terms Tx(r,y,t,7) are defined in Ref. [6]. In this  gg that
calculation, the summation in (5.2) is done by directly ) 1
evaluating the sum for k < N and adding an asymptotic Bn(r,y,t,y) = B(r,y,t,v)+ O (N) . (5.8)
estimate for the remainder. In particular, the evaluation
procedure is based on the expression The remainder estimate is defined to be
S(r,y,t,7) = Sn + Ry + EN, (5.3) Ry = AN + Bn, (5.9)
where Sy 1s the partial sum where
N st ,,ZK.
Sn = D Telru,t,7), (54)  Av=ACwby) 3 - (5.10)
k=1 K=N+1
TABLE IV. The function fya(Za) for n = 3. TABLE VI. The function fya(Za) for n = 5.
Z 3S1/2 3Py, 3Py, 3Dz Z 5512 5Pz 5P /2 5Ds3/2
10 —1.474363 —1.155076 —0.593190 —0.524572 10 —1.527916 —1.208819 —0.647463 —0.578850
20 —1.478201 —1.173638 —0.596242 —0.526929 20 —1.529664 —1.225817 —0.650590 —0.581301
30 —1.499892 —1.205890 —0.601288 —0.530902 30 —1.547741 —1.255278 —0.655758 —0.585433
40 —1.539393 —1.254001 —0.608338 —0.536561 40 —1.581815 —1.299059 —0.662973 —0.591316
50 —1.598280 —1.321461 —0.617427 —0.544002 50 —1.632969 —1.360113 —0.672274 —0.599052
60 —1.679913 —1.413709 —0.628625 —0.553361 60 —1.703768 —1.442998 —0.683730 —0.608775
70 —1.790203 —1.539318 —0.642027 —0.564808 70 —1.798842 —1.554800 —0.697438 —0.620661
80 —1.939349 —1.712301 —0.657762 —0.578562 80 —1.926236 —1.706935 —0.713530 —0.634931
90 —2.145774 —1.957012 —0.675993 —0.594893 90 —2.100502 —1.918933 —0.732174 —0.651856
100 —2.445939 —2.319978 —0.696926 —0.614143 100 —2.350376 —2.227500 —0.753579 —0.671776
110 —2.923713 —2.904165 —0.720816 —0.636731 110 —2.741625 —2.712543 —0.778007 —0.695108
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e 2K
_ r
By = Bn(r,y,t,7) E _— (5.11)
K=N+1 K;(K + 1)

The sums in (5.10) and (5.11) are evaluated numerically
with the aid of the identities

had T.er 1 N 7.2;;
> Ten(iR) -2 (5.12)
r=N+1 k=1
and
> r2e 1—72 1
Z — :1—-——-—2 In 7 5
~:N+ln(n+ ) r —r
N 2K
r
- _— 5.13
Rz::ln(n+1) (5.13)

The error is expected to have a smaller magnitude than
the second remainder term

|En| < |Bn|, (5.14)

which was determined empirically to be a reliable esti-
mate. In fact, this estimate is found to be conservative,
as would be expected from the fact that the second re-
mainder term By is included in the calculated value for
the sum. The cutoff N is fixed by summing the series in
(5.2) until all of the conditions

|BN_Q|<€, IBN_1|<€, IBN|<E (515)

are satisfied. The error bound ¢ is taken to be
_f107* for k > kg4

€= { 105 otherwise, (5.16)
where

ke = max(5, L.bw, 1.5(1 — r)w?) — 1 (5.17)
and

2
(1+t%)y (5.18)

T oat(1- E2)Y?

The limit &, is roughly the minimum value of « for which
the asymptotic forms employed in the remainder and er-
ror estimate are valid. The second line in (5.16) corre-
sponds to termination of the sum before x reaches the
asymptotic region. In this case, the falloff of the terms is
generally dominated by the factor 72 rather than inverse
powers of k. The number of terms required to meet the
cutoff condition ranged to a maximum of about 50 000.

The validity of this evaluation procedure was checked
by comparing the calculated result fyp(Za), in a repre-
sentative sample of evaluations, to the more precise result
obtained either by reducing the error bound ¢ by one or
two orders of magnitude or by extending the summation
and remainder calculation ten terms beyond the value
of N determined by (5.15). In each case, the modified
result differed from the unmodified result by less than
1074, and in most comparisons the difference was in the
range 107° to 107S.

The multiple integral shown in (5.1) is evaluated as
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follows. In the y integration, the variable is changed to
w = py, where

_~1+1—r 1 1
P= 2 \t(1- E2)17? ’

so that the integrand S falls off exponentially as e™* for
large w. The range of integration is then divided into
two parts with the division point wy, given by

(5.19)

where n is the principal quantum number of the state.
The variable in the region w < wy is scaled to the range
(0,1), and the variable in the region w > wy is translated
to the range (0,00). Finally, the variable in the range
(0,1) is defined to be the third power of a new variable.
The changes are summarized by writing

sl(r,m)=/ dy S(r,y,4,7)
woﬁ,hv)
p

{o o)
+l/.d$5<nw0+xJﬁ). (5.21)
P Jo P
Integration over (0,1) is evaluated by Gauss-Legendre
quadrature initially with N integration points, and the
integration over (0,00) is evaluated by Gauss-Laguerre
quadrature, initially with N3 integration points. The val-
ues of N; and N3 depend on n, Z, r, and ¢, and are shown
in Table VII. Final results are obtained by increasing
the number of points in the quadrature formulas in all
dimensions until satisfactory convergence is obtained.
The integrals over » and t are evaluated by Gauss-
Legendre quadrature with various variable changes and
initial numbers of points. For Z > 60, the integral over
r

1
st = [ dr Sitr) (5:22)
0
is evaluated directly with ten integration points, and the
integral over t is evaluated with a new variable z

Ss3(y) = 2/0 dz z Sy(2%,7) (5.23)

with ten integration points. When Z < 60, the integral
over 7 is divided into three intervals (0,0.9), (0.9,0.99),
and (0.99,1), and the method of integration over t de-
pends on the interval. The quadrature formulas are ap-
plied to the expression

TABLE VII. Values for the numbers N; and N,. [z] de-
notes the largest integer less than or equal to z.

A r N N,
<60 (0,0.9) 5+ 2n 3
<60 (0.9,0.99) 6 + [121) 3+ [80(r — 0.9)1]
< 60 (0.99,1) 12 + [61) 34 [41)
> 60 (0,1) 5+ 2n 3
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TABLE VIII. The function fyp(Za) for n = 3. TABLE X. The function fup(Za) for n = 5.
A 3512 3Py, 3P;, 3D3;2 VA 551/2 5Py, 5P;;, 5D3;2
10 0.0624(2) 0.0389(2) —0.0186(2) —0.0072(2) 10  0.0809(6)  0.0576(6)  0.0001(6)  0.0115(6)
20 0.1350(1)  0.0423(1) —0.0174(1)  —0.0068(1) 20  0.1531(2)  0.0611(4)  0.0012(1)  0.0119(1)
30 02129(1)  0.0489(1)  —0.0154(1)  —0.0062(1) 30  0.2300(1)  0.0678(1)  0.0031(1)  0.0124(1)
40 0.2970(1)  0.0599(1)  —0.0125(1)  —0.0052(1) 40  0.3122(1)  0.0789(1)  0.0057(1)  0.0133(1)
50  0.3899(1)  0.0770(1)  —0.0089(1)  —0.0040(1) 50  0.4022(1)  0.0963(1)  0.0090(1)  0.0144(1)
60  0.4959(1)  0.1033(1) —0.0047(1) —0.0025(1) 60  0.5035(1)  0.1226(1)  0.0120(1)  0.0159(1)
70 0.6212(1)  0.1434(1) 0.0001(1)  —0.0005(1) 70  0.6213(1)  0.1624(1)  0.0173(1)  0.0177(1)
80  0.7755(1)  0.2054(1) 0.0053(1) 0.0018(1) 80  0.7637(1)  0.2231(1)  0.0220(1)  0.0198(1)
90  0.9751(1)  0.3037(1) 0.0104(1) 0.0046(1) 90  0.9439(1)  0.3176(1)  0.0265(1)  0.0224(1)
100 1.2508(1)  0.4676(1) 0.0150(1) 0.0079(1) 100  1.1867(1)  0.4713(1)  0.0303(1)  0.0253(1)
110 1.6711(1)  0.7647(1) 0.0178(1) 0.0118(1) 110  1.5458(1)  0.7415(1)  0.0322(1)  0.0286(1)

1 1
53(7)21.8/ du u/ dz S1(0.9z,u% v)
0 0
1 1
+0.09/ dt / dz S1(0.9 + 0.09z,¢,7)
0 0

1 1
+0.01/ dt / dz $,(0.99 +0.01z,,7),
0 0
(5.24)

with 10 x 10, 6 x 8, and 4 x 4 integration points, respec-
tively. Results of the calculation for fyp(Za) appear
in Tables VIII-X. The quoted numbers are the result
of evaluating the integrals as described above with the
number of additional integration points in each dimen-
sion ranging from 4 to 8. In the tables, the numbers in
parentheses are estimated uncertainties in the last figure
shown based on the apparent convergence of the numer-
ical integration. The estimated uncertainty is expected
to be larger than the actual error in the number in most
cases.

VI. CONCLUSION

Results of this calculation are summarized as values of
the function F(Za) shown in Tables XI-XIII. The level
shift follows from this function as shown in (2.3).

Results of this calculation are compared to the work
of Blundell and Snyderman [8] in terms of the function
F(Za) in Table XIV. There is agreement between the
two calculations.

The excited-state self-energy for a given angular mo-
mentum is shown in the graphs for Sy/; states in Fig. 1,
for Py, states in Fig. 2, for Py, states in Fig. 3, and for
D3, states in Fig. 4. Curves for a given k and different
n exhibit a remarkable degree of similarity as functions
of Z, apparently approaching an asymptotic limit as n
increases. This corresponds to an asymptotic n=2 be-
havior of the level shifts for any Z. Another trend in
the results is that both the magnitude and relative Z
dependence of the functions F(Za) decrease as j and !
increase. These properties are associated with the fact
that the self-energy correction is sensitive to the elec-
tron wave function within a distance of the order of the
Compton wavelength of the electron from the nucleus.

APPENDIX A

For completeness, the known expressions for the
coordinate-space and momentum-space Dirac-Coulomb
wave functions are reproduced here in the general form
employed in this calculation. The coordinate-space radial
wave functions f;(z) and f,(z) are defined by [11]

TABLE IX. The function fgp(Za) for n = 4. TABLE XI. The function F(Za) for n = 3.
VA 4512 4P 4P, 4D3 ;s Z 3512 3Py, 3P;, 3D3)2
10 0.0740(4)  0.0507(4)  —0.0065(4)  0.0049(4) 10  4.9524(2) —0.1021(2) 0.1421(2) —0.0428(2)
20 0.1463(1)  0.0541(2)  —0.0058(1)  0.0048(1) 20  3.5633(1)  —0.0760(1)  0.1572(1)  —0.0420(1)
30 0.2236(1)  0.0608(1)  —0.0039(1)  0.0054(1) 30  2.8940(1)  —0.0430(1)  0.1761(1)  —0.0410(1)
40 0.3066(1)  0.0719(1)  —0.0012(1)  0.0063(1) 40  2.5083(1)  —0.0041(1)  0.1977(1)  —0.0396(1)
50  0.3979(1)  0.0892(1) 0.0022(1)  0.0075(1) 50  2.2757(1) 0.0414(1)  0.2214(1)  —0.0378(1)
60  0.5012(1)  0.1157(1) 0.0062(1)  0.0090(1) 60  2.1431(1) 0.0956(1)  0.2470(1)  —0.0353(1)
70 0.6222(1)  0.1559(1) 0.0108(1)  0.0108(1) 70  2.0874(1) 0.1623(1)  0.2745(1)  —0.0321(1)
80  0.7698(1)  0.2174(1) 0.0156(1)  0.0130(1) 80  2.1018(1) 0.2483(1)  0.3038(1)  —0.0279(1)
90 0.9583(1)  0.3141(1) 0.0203(1)  0.0156(1) 90  2.1935(1) 0.3660(1)  0.3350(1)  —0.0225(1)
100 1.2150(1)  0.4730(1) 0.0243(1)  0.0187(1) 100  2.3897(1) 0.5408(1)  0.3679(1)  —0.0154(1)
110 1.5997(1)  0.7557(1) 0.0265(1)  0.0221(1) 110  2.7609(1) 0.8322(1)  0.4020(1)  —0.0062(1)




45 SELF-ENERGY OF EXCITED STATES IN A STRONG . ..

TABLE XII. The function F(Za) for n = 4.
Z 4S1/2 4P1 /2 4P3/2 4D3/2
10 4.9749(4)  —0.0963(4)  0.1477(4)  —0.0403(4)
20  3.5834(1)  —0.0690(2)  0.1630(1)  —0.0399(1)
30 2.9110(1) —0.0344(1)  0.1827(1)  —0.0387(1)
40 2.5215(1) 0.0064(1)  0.2052(1)  —0.0371(1)
50  2.2842(1) 0.0538(1)  0.2299(1)  —0.0348(1)
60  2.1455(1) 0.1098(1)  0.2568(1)  —0.0317(1)
70 2.0814(1) 0.1780(1)  0.2858(1)  —0.0276(1)
80  2.0840(1) 0.2649(1)  0.3170(1)  —0.0222(1)
90  2.1582(1) 0.3819(1)  0.3507(1)  —0.0149(1)
100 2.3262(1) 0.5525(1)  0.3868(1)  —0.0053(1)
110 2.6484(1) 0.8311(1)  0.4247(1) 0.0074(1)
fi(z)xk (%) )
x)=| . JS I Al
#(x) (zfz(z)xm(x) (A1)
We employ the notation
v=Za, A= (k?-7v%)?
n,.=n—|k|, a= 1 (A2)

T [(ne 4 A2 492

with the bound-state energy given by E = (1 — a?)!/2.
The normalization factor is

2a° T2\ +1+n,)

= A
v(y — ka) T'(2A + 1)2T(n, + 1)’ (A3)
and a set of coefficients is defined recursively by
(m+1) _ m+1—n, (m)
G T (m+22+1)(m+ I)C1 (A4)
and
(m+1) _ m = ny (m)
G = (m+2) +1)(m+1) G (A5)
with initial values
c®=—n, cO= % - & (A6)

In terms of these coefficients, the radial wave functions
are

TABLE XIII. The function F(Za) for n = 5.

A 55172 5P, 5P; ), 5D32
10 4.9858(6)  —0.0933(6)  0.1502(6)  —0.0396(6)
20 3.5923(2) —0.0652(4) 0.1662(1)  —0.0387(1)
30 2.9173(1) —0.0299(1)  0.1861(1)  —0.0374(1)
40 2.5246(1) 0.0116(1)  0.2089(1)  —0.0356(1)
50  2.2833(1) 0.0597(1)  0.2341(1)  —0.0331(1)
60  2.1395(1) 0.1161(1)  0.2614(1)  —0.0297(1)
70 2.0686(1) 0.1843(1)  0.2910(1)  —0.0252(1)
80  2.0619(1) 0.2703(1)  0.3229(1)  —0.0190(1)
90  2.1225(1) 0.3848(1)  0.3574(1)  —0.0108(1)

100 2.2696(1) 0.5497(1)  0.3946(1) 0.0001(1)
110 2.5566(1) 0.8150(1)  0.4338(1) 0.0145(1)
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FIG. 1. The function F(Za) for S/, states with n =

3,4,5.

fi(z) = NY2 (14 E)/?

x 3 (G +Cf™) (2azy™H -temes (A7)
m=0
and

fa) = NY? (1 - E)'/*

x i: (cf™ = cf™) @azy™+>-1eme=. (A8)

m=0

The momentum-space radial wave functions g; (p) and
g2(p) defined by

#(p) = (-27,1)—3/-2 [ax gt = ( 91(D)X4(P) )

92(p)x2 ()
(A9)
are given by
) 9 1/2 00
n@=c(2)" [ ds ioone (10
()
and
1-00 L T v T T T T T v T e
t ]
] ]
0.75 ]
e  3Pis2
= 4Pyp2 .
’8 0.50 * 5P1/2 ]
N ]
e
0.25 L 1
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0.00 f . * ! ]
« *
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FIG. 2. The function F(Za) for Py, states with n =
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FIG. 3. The function F(Za) for P, states with n = FIG. 4. The function F(Za) for D3/, states with n =
3,4,5. 3,4,5.

1/2 oo
92(p) = —ew"l%l (%) /0 dz z%ji—x)(pz) f2(),
(A1)

where jj(x) is the spherical Bessel function with subscript

(k)= |+ 2] - — , and 6, is a phase that is replaced by
zero in the calculatlon A recursion relation in [ for the
integrals that appear in (A10) and (A11),

1/2
D,(m)z ( ) / dz z2j;(pz)(2az)™ 1~

(A12)
is readily obtained by substituting the right-hand side of

Jivi(e) = = Jz( )- G (A13)

into the expression for Dfrl) and integrating by parts to
eliminate the derivative in the second term. The resulting
relation is

pD{T) = (14 m+ A +1)2aD{™ Y -

with the initial value

aD{™  (A14)

D(m) _ (2a)"‘+’\r(m +A+1)
o - 1/2
(2m)Y/
sin [(m+ A + 1)tan™! (2)]
ap(a? + p?)(mHA+1)/2

(A15)
In terms of this expression, the wave functions are
a(p) = €N (14 B)'/?

x 3" (¢ +c§™) D)

m=0

(A16)

and

K
g2(p) = — ¢ "~7|N‘/2 (1-E)/?

(A17)

x 35 (e - c§m) D,
m=0

Similarly, the functions (V ¢)1(p) and (Vg)2(p), defined
by

(Vo)P) = Gy [ dx =V (x)6(x)

_ ( (Vah(p) x4 (D) ) ,

(V9)2(p) x£.(D) (A18)

where V(x) = —v/z, are given by
(Vohi(p) = ~ N2 (1+ E)"/?
x i (ci™ +C5™) 209D (A19)
m=0
and
(V)alp) = o N2 (1~ B)!/®

I(-x) (AQO)

X}:( ctm _

(m)) 2a7D(m—1).

APPENDIX B

The functions A% that appear in (3.2) are given here
for D3/, states (ks = 2). They are readily obtained from
the expressions for Ps/, states (k, = —2) with the aid of
the symmetry expressed in Eq. (3.16) of Ref. [4] with the
result

TABLE XIV. Comparison to Blundell and Snyderman [8]
for the function F(Za) at Z = 80.

State Ref. (8] This work
351/ 2.102(5) 2.1018(1)
3Py, 0.248(5) 0.2483(1)
3Py 0.304(5) 0.3038(1)
3Ds /> —0.032(5) ~0.0279(1)
45,/ 2.08(1) 2.0840(1)
4Py, 0.27(1) 0.2649(1)
4Py, 0.32(1) 0.3170(1)
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- 3—;—1)) jl(—n)(yZ)jl(—n)(yl)] )

2735

) jl(n)(yZ)jl(n)(yl)r (Bl)

—y—l—) Jiey(¥2)dicey(y1)

(B2)

Jiwy(Y2)dim)(v1)

(B3)

d d

22 — — 2)lK K K — T
Al (z2,21) = 3(En — 2)| 1[[(2 +1)( 1)+6]yzy1 dy; dy,

(5r+1)(x—1)

B ( v 2)

(. =1)°Qk*+x+1)
+ 3yt

where y; = (E, — 2)zi, 1 = 1,2.

y1 dyy

1 d Gr+1)(x—-1)

T

1d
Y2 dy2

- )

k(k —1) (ylg + 515) + g] Ji=xy(¥2)di=x) (1), (B4)

[1] P. J. Mohr, At. Data Nucl. Data Tables 29, 453 (1983).

[2] W. R. Johnson and G. Soff, At. Data Nucl. Data Tables
33, 405 (1985).

[3] P. Indelicato and P. J. Mohr, in Atomic Physics 12,
edited by J. C. Zorn and R. R. Lewis (AIP, New York,
1991), p. 501.

[4] P. J. Mohr, Ann. Phys. (N.Y.) 88, 26 (1974).

[5] P. J. Mohr, Ann. Phys. (N.Y.) 88, 52 (1974).

[6] P. J. Mohr, Phys. Rev. A 26, 2338 (1982).

[7] Y.-K. Kim, D. H. Baik, P. Indelicato, and J. P. Desclaux,

Phys. Rev. A 44, 148 (1991).
[8] S. A. Blundell and N. J. Snyderman, Phys. Rev. A 44,
1427 (1991).
[9] K. T. Cheng, W. R. Johnson, and J. Sapirstein, Phys.
Rev. Lett. 66, 2960 (1991).
[10] G. E. Brown, J. S. Langer, and G. W. Schaefer, Proc. R.
Soc. London Ser. A 251, 92 (1959).
[11] M. E. Rose, Relativistic Electron Theory (Wiley, New
York, 1961).



