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Integration of the Heisenberg equation of motion for quantum tunneling
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A method of integration of the Heisenberg equation of motion is proposed in which the time evolution

of the basis set [ T „(t)} of the Weyl-ordered operators introduced by Bender and Dunne [Phys. Rev. D

40, 3504 (1989}] is obtained from the Taylor expansion and is expressible in terms of the initial

[T „(0}}'s.In the absence of damping forces, the constant values of the energy and the position-

momentum commutation relation are used to check the accuracy of the integration. This method is ap-

plied to obtain the mean position and velocity of the particle as a function of time as well as the dwell

time of the particle inside the barrier. In the example that is considered here, the potential is assumed to

be the sum of a harmonic and a cubic term, and the calculation is done with and without dissipative cou-

pling.

PACS number(s): 03.65.Ca, 03.65.Bz

I. INTRODUCTION

Bender and collaborators, in a series of papers, have
outlined a number of different schemes for the integration
of operator differential equations using a discrete time
version of the equation of motion [1—3]. Among other
applications, Bender et a/. have used one finite-element
calculation to study quantum tunneling in a double-well
potential [2]. However, this method for a general tunnel-

ing problem, like the one considered in this paper, is not
adequate. For an acceptable and accurate result, it is
shown that one can start with the basis set of Weyl-
ordered operators of Bender and Dunne [4,5], study their
time evolution, and use the result to determine the solu-
tion of the operator equation of motion. The most in-

teresting feature of the solution of the operator equation
is a demonstration of the nonlocal character of the solu-
tion, e.g., the wave packet feels the effect of the deep well
that lies on the other side of the barrier.

In Sec. II the time dependence of the basis set is stud-
ied, and it is shown that by combining the Taylor expan-
sion and analytical continuation one can find the basis set

[ T „(t)} at a later time in terms of its initial value, i.e.,
[T „(0)}. In Sec. III an expression for the position
operator is obtained that explicitly depends on j T „(0)].
This is used to study the motion of a wave packet for nor-
rnal quantum tunneling. Section IV deals with dissipative
quantum tunneling using Heisenberg's equation of
motion. In the present formulation there is no need to
construct a Lagrangian or a Hamiltonian for the dissipa-
tiv:-;.- system. Here it is shown that the equal time commu-
tation relation is not only time dependent but is also a q
number [6]. A specific example of tunneling through an
anharmonic potential is studied in Sec. V, and in Sec. VI
numerical results for this problem are given.

II. TAYLOR EXPANSION AND THE TIME EVOLUTION
OF THE BASIS SET

Consider the operator equations of motion for a parti-
cle of unit mass

dp dq (2.1)

where f (q} is a polynomial in q. The operators q(t) and

p (t) satisfy the commutation relation

[q(t),p(t)]=i . (2.2)

We want to integrate (2.1) subject to the initial conditions

q(t =0)=q(0) and p(t =0)=p(0), (2.3)

assuming that the force f (q) is such that the only singu-
larities in the solution of (2.1) are fixed poles. Following
the classical example of Taylor and Laurant series,
Bender and Dunne propose a Wyle-ordered operator
basis [ T „}in powers ofp (t) and q (t) defined as

n

T~ „=(—,
')" g [n!/[(n —k)!k!]}q"p~q" " . (2.4)

k=0

Using the commutation relation (2.2) we can write (2.4) in
an equivalent form

m

T „=(—,') g [m!/(m j)j!!]pq "tp J—. (2.5)
i=o

It is also possible to write T „as a totally symmetrized
form containing m factors ofp and n factors of q, divided

by the number of terms in the expression. We can also
extend this basis to include negative powers of p and q.
Bender and Dunne [4,5] show that T „'s form an algebra
closed under multiplication and that the properties of
this algebra can be deduced from the product formula [5]

oo J
T „T„,= g [(i/2)J/j!] g ( —1)J [j!/(j —k)!k!][I(n+1)I (m+1}I(r+1)

i=0 k=0
X I (s + 1)]T „,„+, , [I (m —I + 1)I (n + l —2j)I (r + I —2j)I (s —I + 1)]

(2.6)
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where m, n, r, and s can be positive or negative integers. One of the important results of this algebra, which will be used
in the present work, is the commutator of T „and T„,

7

[T n~T., ]=2 g [('/2) /(2j+1)']
j=0

X g ( —1)"[(2j+1)!/(2j+1—k)!k!]
k=0

X [I (n + 1)1 (m + 1)1 (r +1)I (s + 1)]T
X [I (m —k +1)l'(n +k —2j)I (r +k 2j—)I (s —k + 1)] (2.7)

From the definition of T „'s we have

q(t)=TO )(t)

and

p(t)=T, O(t) .

To solve the operator differential equation (2.1}using this basis set we start with the Taylor expansion of q (b, t },

q (ht) =q (0)+( ib t)[q (—0),H]+( —ib t) [[q (0),H],H ]+
=q(0)+[(bt)/1!)(dq/dt)0+[(ht) /2!](d q/dt )0+[(bt) /3!](d q/dt )0+. . .

where H is the Hamiltonian H =
—,'p + V(q}.

The right-hand side of (2.10}is expressible in terms of T „(0}s

q(ht)=TO )+[(ht)/1!]T) o+ [(bt} /2!]f (To ) )+—'[(ht) /3!][T) Of'(To ) )+f'(To ) }T)0]+

(2.g)

(2.9)

(2.10)

(2.1 I}

where f is the derivative off (q) with respect to q, and f (q) = —(8V/Bq). Note that when f is a polynomial in q, then

f (To t ) and f'(To
&

) are expressible as sums involving Tz ~. A similar relation can be obtained for p(b. t) In gen. eral if
t, denotes the time j b, t with j an integer, then q (t, +, ) and p (t, +, }are expressible in terms of T „(t }:

q(t, +,)=To, (t, )+htT, o(t, )+(1/2!)(ht)'f(To, (t )).
+—,'(1/3!)(ht) [Ti 0(t )f'(To i(t. ))+f'(To i(t ))Ti 0(t )]+ (2. 12)

and

p(t +))=T) o(t))+(bt}f(To )(t ))+—,'(1/2!)(ht) [T) 0(tj )f'(To, (t )) +f'(T )0(tj ))T, (t0)J]+ . (2.13)

Thus if [T „I's are known at tj, then q(t~+, ) and

p (t, +, ) can be calculated from Eqs. (2.12) and (2.13). Us-
ing q (t, +, ) and p (t, +, ), we can calculate T „at a later
time using Eqs. (2.4) or (2.5):

T „[q(t&+(),p(tj+, )]=T „(tj+,) . (2.14)

We note that T „(t,+, ) depends on the products of the
elements of the set [T „(t )), which can be simplified
using the product formula (2.6). But the elements
T „(t~ )in turn are giv. en in terms of j T „(t , ) j and so.
on. Therefore the result of integration will be given as a
series in [T „(0)]. For the position operator, we can
write

p (t) = g (dc „/dt) T „(0) .
m, n

(2.16)

Either from Eqs. (2.15) and (2.16) or from (2.12) and
(2.13) we can calculate the equal time commutator. For
instance, from the latter equation we find

[q(t +» p(t +»)=[TO i(t »Ti, o(t, ))

= [To, 1(o» Tl,o(0))

(2.17}

The energy of the particle, in the absence of dissipative
forces, remains constant, and its ground-state expectation
value is equal to the sum of expectation values of the ki-
netic and potential energies,

q(t)= g c „(t)T „(0),
m, n

(2.15)

where c „(t) is the time-dependent real coefficient of
T „(0).

Similarly for p (t) we have

&olElo & =-,' &olp'lo &+ &ol v(q) lo &,
where V(q) is defined by

f(q)=- av
Bq

(2.18)

(2.19)
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=0 otherwise .

For a displaced Gaussian wave packet

g(q —qo)=(v/~)" 'exp[ —(v/2)(q qo) ]—,

(3.2)

(3.3)

this expectation value becomes

&O~T „(0)~0), = f g'(q qo)T —„(0)p(q qo)d—q
n= X [n'I[(n —J)!J']]

j=0
xq& &OIT,.(0)lo) . (3.4}

From Eqs. (2.15) and (2.16) we calculate the expectation
values of q (t}and p(t) with the displaced Gaussian wave
packet g(q —

qo },

III. MOTION OF THE WAVE PACKET

Consider a normalized Gaussian wave packet

P(q) =(v/m. )"/ 'exp( —,'v—q ),
where v is a parameter with the dimension of frequency.
Using this wave function we find the ground-state expec-
tation value of T „(0)to be

{O~T „~0)=f q*(q)T „(0)y(q)dq

(1/2)(m —n)( 1)()(n 1}!!() )(m+n)/2

when m and n are even

p ( b t) =T,() + ( t)(t /1! )[ —A, T,() +f ( T(), ) ]+
From these we calculate [q ( b t),p (4t) ],

[q(«»p(«)]=[To) T)ol

+(b.t)[To) AT )o+f (To!)]

+(kt)[T)() f (T()) )]+

(4.4)

=i [1—(ht)[1 f'(q(0)—)]]+ (4.5)

which shows the q-number nature of the commutator at
the time b, t. Only when f is constant or is a linear func-
tion of q (i.e., harmonic potential), the commutator will
be a c-number.

V. A SPECIFIC CASE OF QUANTUM TUNNELING

The simplest model of quantum tunneling that has
been discussed frequently in the literature is the case of
the anharmonic potential

V(q) = ,'v'q' ,'p'—q', —— (5.1)

c-number, because of the finite number of terms [ T
To show this, consider the Taylor expansion of (4.1) simi-
lar to (2.11),

q(bt) = T()) +(bt/1!)T)()

+(1/2!)(i)),t) [ —A, T)o+f (T()!)]+, (4.3)

&O~q(t)~0) = g c „( )t&O~T „~0)
m, n

&Olp(t)lo) = g (dc „/dt)&OIT „10),
m, n

(3.5)

(3.6)

where v and p are constants. For this potential we can
simplify our calculation by introducing a set of dimen-
sionless operators

Q(0)=(p'Iv')q(t), P(0)=(p'Iv')p(t), 0=vt .
in addition we find the expectation value of the cornmuta-
tor, i.e., (5.2)

&0~[q(t),p(t)]~0) =i . (3.7) In terms of these variables the equations of motion (4.1)
become

IV. DISSIPATIVE TUNNELING l'P —Q+Q — =P
dO

' d8 (5.3)

The Heisenberg equation of motion for dissipative tun-
neling can be derived from a conservative many-body
Hamiltonian, and the resulting operator equation is a
nonlinear integrodifferential equation with a kernel that
is dependent on the form of coupling to the heat bath
[6,7]. For the present work we consider a phenomenolog-
ical damping term proportional to the momentum of the
particle, i.e., —Ap, and add it to the original equation of
motion:

where

(5.4)

„(P,Q, 0)=(ij, /v }"(p /v ) T „(t) . (5 5)

is a dimensionless damping constant. The basis set
IT „(p,q)I is also replaced by the dimensionless set

„(P,Q, 0), where

dp
dt

= —~p+f (q» dj (4.1)
The commutator [Q(0),P(0}], in the absence of

damping, can be found from [q(t),p(t)]=i, i.e.,

This operator equation is subject to the same initial con-
dition Eq. (2.3), where p(0) and q(0) satisfy the commuta-
tion relation

[Q(0),P (0}]=y[q (t),p (t)]=iy,
where y is a dimensionless constant

6y 5

(5.6)

(5.7)
[q (0),p (0)]=i . (4.2)

At any other time Eq. (2.2) is not satisfied, and in fact the
commutator [q(t),p(t)], in our approximation, is not a

remembering that we have set 8= 1.
After changing to these dimensionless variables, the

only parameter that is left in the calculation is y. In
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terms of Q the potential has a minimum at Q=O and a
maximum at Q= 1, and the height of the potential barrier
at this point is Vo= —,'. Using Eqs. (2.18) and (3.2), we

find the expectation value of the energy in the absence of
damping to be

&OIH(t)lo&( =-,'&OIP'(t)lo&~ +,'&ol v[Q(t)]lo&~

(5.8)

subscript Qo from the expectation values.
If the energy & OlHl 0& is less than the maximum height

of the barrier, i.e., for &OlH 0& ( Vo, then tunneling
occurs. Thus by changing the values of Qo or y, we can
adjust the energy of the packet and satisfy this inequality.

By writing Eq. (2.15) in terms of Q and r we can calcu-
late the expectation value of the position operator Q as a
function of the dimensionless time 0=vt,

or
&olH(f) lo&,,=-,'[r(I-Q. )+Qo]--, Q.',

where

Q =(p'iv')q

(5.9)

&olQ(8)lo&= y d „&Ol1- „lo&,
m, n

where

„=(v /p )'" ')(v/p) c

(5.11)

(5.12)

&OIEIO&~, =(v/)p)'&olHlo&g .
(5.10)

In what follows for the sake of simplicity we omit the

A similar expectation can also be found for
&OlP(8)lO&& . Now from Eqs. (3.2), (3.4), and (5.5) we

have

n

X ["'/[k'(" k)l]JQo(m 1)"(k—I)"(y/2)' + ' (m even)
&olr, .(e)lo&= k=0

0 (m odd) . (5.13)

The initial wave packet in terms of the dimensionless
quantities is given by

f(Q —
Q ) = ( I /m y )" 'exp[ —( Q

—
Qo )'/y ], (5.14)

2.0

the position of this wave packet at any later time is given
by (5.11). The results of the numerical integration of Eq.
(5.3) will be given in the next section.

VI. RESULTS

Before we discuss the results of the present formulation
of the problem, it is important to consider the criteria for
quantum tunneling when we use a localized wave packet
like (3.3). Since such a wave packet is a superposition of
different energy eigenstates, it may be argued that due to
the possibility of a large contribution from the eigenstates
of the Hamiltonian above the potential barrier, one may
be looking at the passage of the particle over the barrier,
rather than quantum tunneling. Here we impose two
physically reasonable conditions that differentiate be-
tween the passage over the barrier and quantum tunnel-
ing.
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rier (OiHzio) =0.167 (Q0=0.9) with y=0. l shows that
unlike the classical situation there is no qualitative
change in motion. In fact when (0~Hz io ) & Vo, the wave
packet first moves to the left, before turning back and
passing over the barrier. Figures 1 and 2 also show the
motion of the wave packet in the classically forbidden re-
gion and the dwell time, i.e., the time that the wave pack-
et spends under the barrier. For y =0.1 and
(OiHio) =0.153 (Q&=0.75), the dwell time be is 0.175,
whereas for the same y but for ( Oi Hi 0 ) =0.164
(Q0=0.85), 58 changes to 0.178. When the dissipative
force A'(dQ, /dt) is present, the barrier V(Q) =

—,'Q —
—,'Q

allows for tunneling no matter how strong the damping
constant A,

' is. Unlike the cases where the depth of the
potential is finite, here there is no critical damping and
therefore no localization of the wave packet in the shal-
lower well, i.e., around Q=o (Figs. 3—5) [8]. The wave
packet loses energy during the course of its motion,
therefore its total energy can be positive zero or negative

For a dissipative system it is more diScult to deter-
mine the classical turning points and hence the dwell
time, since the energy is not conserved. If one plots the
energy (OiHio) as a function of the mean position opera-
tor (OiQio), one finds that this curve intersects the bar-
rier at two points, Fig. 5, the difference 66& =82—8, cor-
responding to the coordinates of the two turning points is
the dwell time. This AOD can be very different from the
dwell time in the absence of damping, but approaches 68
for a conservative case as A, '~0. For instance for
I,'=0.1, y=0. l, and Q0=0.8, one finds b, eD to be 1.62,
and for the same A,

' and y but with Q&=0.75 the corre-
sponding dwell time is hen =1.04. The expectation value
of the commutator in the presence of damping is

(Oi[Q(e), P(e)]iO) =iy(Oic(e)iO), (6.1)

where C(8) is a dimensionless operator depending on 8
and approaches one as A,

' goes to zero, Fig. 6. For a most
general quadratic potential the commutator is a c-number
[6], i.e.,

[Q(8),P(8)]=iyC(8) . (6.2)

For this class of potentials one can calculate C(8) by
differentiating (6.2), and then substituting for dP/de
from (5.3), with the result that

C(8)=C(0)exp( —
A, '8) . (6.3)

But the expectation value obtained from (6.1) shows a
different result because of our approximation.

In the present formulation we have studied the exam-
ple of a barrier given by the anharmonic potential, a sim-
ple case that has been considered by a number of authors
[9—11]. However the present formulation can also be ap-
plied to other forms, e.g. , a combination of the form

V(r) =(a/r) (b lr )+—(c lr ), (6.4)

with b 2 & 4ac and c & 0. For such a case the basis set con-
sists of the elements [ T „],where n now is a negative
integer or zero.
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