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Molecular treatment of electron capture in collisions of N + ions with H atoms
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Partial and total cross sections of electron-capture processes in collision of N + ions with H atoms are
calculated in the collision energy range from 1 eV/amu to 10 keV/amu. Semiclassical and quantum-

mechanical molecular-orbital methods with electron translation factors are employed. Two-electron

processes are also considered, but they are found to make small contributions at all collision energies.
The dominant electron-capture channels are found to be the N'+(3p) state at energies above 300
eV/amu and the N +(3d) state at energies lower than 300 eV/amu. Three experiments that observed

only total cross sections have been reported for this system. The agreement of the present calculation
with these measurements is excellent at all energies. In particular, an oscillation observed in the experi-

ment of Huq, Havener, and Phaneuf [Phys. Rev. A 40, 1811 (1989)] is reproduced by our calculation in

the energy range 10—300 eV, and the origin of the oscillation is discussed.

PACS number(s): 34.10.+x, 34.20.—b, 34.70.+e

I. INTRODUCTION

Electron-capture processes in collisions of multiply
charged ions with atoms have been a central focus of
research on atomic collisions for the past decades. This
trend is due, in part, to applications in other areas of
technology and in other subfields of physics [1]. Howev-
er, most theoretical and experimental studies have been
devoted to electron-capture processes within a relatively
narrow energy region. In addition, relatively few calcula-
tions for the systems have involved two active electrons
simultaneously.

In this paper, we present the results of a detailed calcu-
lation of the cross sections for electron capture from H
by N + in the energy range from eV/amu to 10
keV/amu. This work is an extension of our previous cal-
culation for the (N ++H} system [2]. While the
(N ++H) system could be treated as a pseudo-one-
electron system, the (N ++H) system possesses two ac-
tive electrons. A study of the role of the additional elec-
tron or the electron correlation in the collision process is
very interesting. Three measurements have been report-
ed for this system, two of them performed at intermediate
collision energies of 1 —7 keV/amu by Crandall et al. [3]
and 1.1—3.6 keV/amu by Seim et al. [4]. Below 1

keV/amu, Huq et al. [5] recently determined the total
capture cross sections.

Only one theoretical study, by Feickert et al. [6] exists
for the system at very low collision energies below 2.5
eV/amu. In their calculations, the authors adopted
several assumptions whose validities are certainly ques-
tionable for a quantitative discussion of the results. The

method of Feickert et al. [6] is as follows: (i) Determine
the electronic structure by using the ab initio
configuration-interaction (CI) method with a Gaussian
basis set. Only configurations of one active electron were
considered. (ii) Roughly estimate the coupling matrix
elements from the obtained potential energies. (iii) Per-
form a quantum-mechanical close-coupling calculation
with inclusion of four X states: initial, N +(2s3s}+H+,
N +(2s3p)+H+, and N +(2s3d)+H+ channels. As we
will show, their treatments (i) and (ii) are less accurate
than those in the present treatment.

II. FORMULATION

Since the details of the method employed in this paper
have been described previously [2,7] only the brief sum-

mary of the basic technique and the specific information
used for the calculation are given here.

A. Molecular states

The molecular electronic states are obtained by using a
modified valence-bond CI method with Gaussian-type
pseudopotentials representing the N + core [8], which
reduces the four-electron system to a two-electron sys-
tern. Our form of the pseudopotential is

V(r)=+V&(r)l Y& &( Yt
I, m

and
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CXd

V&(r) = A&exp( —
g&r )—

2(r +d )

TABLE II. Orbital exponents of the Slater-type orbital basis
function.

CXq 5+—,2(r+d ) r
(2)

N + and N +

Orbital Exponent Orbital
H

Exponent

where
~ Y& } are the spherical harmonics. In Eq. (2), A&

and g& are 1-dependent parameters chosen to fit asymptot-
ic eigenvalues to spectroscopic data [9]. Values of the di-
pole and quadrupole polarizabilities ad and a~ were tak-
en from the review by Dalgarno [10]. The cutoff' radius d
was determined by a Hartree-Fock calculation. The
pseudopotential parameters are given in Table I.

We expand the molecular wave function in terms of
Slater determinants. Slater-type orbitals (STO's) used as
our basis sets consisted of 38 STO's for N + and N +

ions and 10 STO's for the H atom. For the triplet sys-
tem, the orbital exponents for the N + and N + ions
were obtained by optimizing the energies. For the singlet
system, those energies were also optimized separately.
However, the singlet orbital exponents gave nearly identi-
cal results for energies as values for the triplet manifold
do. Hence, the same orbital exponents for both the sing-
let and triplet systems were used in this calculation. The
orbital exponents of the H atom were taken from previ-
ous work by Sato et al. [11]. The Slater exponents used
are given in Table II. The accuracy of the present molec-
ular calculation with respect to the spectroscopic energies
[9] is better than 0.5% for all states. As a measure of the
accuracy, the calculated values for the asymptotic energy
defect, hE, of the electron-capture process
[hE=E(N +(2s)+H} E(N +—(nln'1')+H+}] are
compared with the spectroscopic values [9] and values of
Feickert et al. [6] in Table III, which clearly shows that
our values are in better agreement with the experimental
values than with those of Feickert et a/. Note that, be-
cause Feickert et al. considered only one electron to be
active [6], no state corresponds to two-electron processes
such as N +(2p3s)+H+ and N +(2p2p)+H+ in their
calculation.

B. Collision dynamics

2$

2p

3$

3p
3d
4s

4p
4d
4f

11.876 342
4.954 557 6
2.791 479 7
1.759 458 5

4.938
2.688
1.589
1.483 11
1.637 96
1.463 82
1.324 59
1 ~ 150 19
1.214 42
1.253 77

1$

2$

2p

2.0
1.0
0.5
0.5
1.0
0.5

tained in the procedure above have been used below and
above 20 eV/amu, respectively. Atomic-type (plane-
wave) electron translation factors (EFT's) up to first or-
der in velocity were included in both methods [2,12].
These coupled equations were solved numerically with
appropriate boundary conditions.

1. The quantum-mechanical representation

Due to a sharp radial coupling at an avoided crossing
region involved, it is numerically more convenient to
treat the coupled equation in diabatic representation
rather than in original adiabatic representation. The
transformation to the diabatic representation can be
achieved through a transformation matrix C(R) [13]. In
this representation, the coupling matrix is represented by
the potential coupling matrix as V"=C ' V'C, where V'
is the adiabatic potential matrix.

In the diabatic representation, the nuclear wave func-
tion X satisfies

A fully quantum-mechanical and a semiclassical close-
coupling method [7] with a molecular-orbital base ob-

1
VgI V(R)+EI X—"(R)=0,

p
(3)

Parameter
Ao

Ai
A2

Value (a.u. )

54.555 325 339
—2.703 778 324 36
—0.472 270 196 513

9.682 625 759 99
10.998 562 837 5

7.014003 19062

0.227 279 7
0.004 63
0.000 38

TABLE I. N'+ core pseudopotential parameters.

where I is the identity matrix and p is the reduced mass.
Equation (3) is solved numerically for each partial wave
by using the log derivative method [14] to extract the
scattering 5;- matrix for the i~j transition. From the
S matrix for each partial wave, the total cross section
can be easily obtained [7,15].

2. The semiclassical representation

Expanding the total wave function in terms of the
molecular wave function and the ETF and substituting
the total wave function into the time-dependent
Schrodinger equation yields ordinary first-order coupled
equations [7,12] with the ETF eff'ect in the first order of U.

A straight line and Coulomb trajectories are assumed for
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of the states which are referenced by N +(2s)+H(1s),i.e.,TABLE III. Asymptotic energies of t e s a
hE =E(N +(2s)+H) —E(N'+{nan'P)+H+).

N +state
nan'P

2$ 2p
2$3p
2$ 3p
2$3d
2p 3$

2p 3p

Ref. [9]

2.040 584
0.628 063
0.497 284
0.433 212
0.226 713
0.139 122

hE
Ref. [6)

Triplet system
2.029 3 (0.011)
0.6213 (0.0060)
0.488 3 (0.0090)
0.423 3 (0.009 9)

Present

2.054 721 (0.014)
0.627 289 (0.000 8)
0.498 649 (0.001 4)
0.427 397 (0.0058)
0.230 702 (0.004 0)
0.135 987 (0.003 1)

2$

2s 2p
2p
2p 2p
2$3$
2s 3p
2$ 3d
2p 3$

2.347 568
1.752 088
1.486 93
1.275 09
0.575 682
0.504 286
0.392 018
0.179419

Singlet system

1.6803 (0.071 8)

0.569 3 (0.0064)
0.462 3 (0.0420)
0.384 3 (0.007 7)

2.357 939
1.689 699
1.461 422
1.231 912
0.577 492
0.501 452
0.375 572
0.185 672

(0.0104)
(0.062 4)
(0.025 5)
(0.043 2)
(0.001 8)

(0.002 8)
(0.0160)
(0.006 2)

heavy-partic e mo iot' 1 otion in the present calculation. The
square o e scaf the scattering amplitude gives a transition pro-
ability to a state at a given collision energy an imp

er (b). Ente ration of impact-parameter-weighted
he total crossprobabilities over impact parameter yields the o

sections.

III. RESULTS
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A. Adiabatic potential curves

The calculated potential energies for the triplet and
f the NH + system are presented in Figs.singlet systems o e

1(a) and l(b), respectively. These figures imp y t a e
N +(2s3l) states dominate electron capture at low to in-
termediate energies. Although crossings appear between
h SX and 6X states at R =13.S a.u. for the triplet sys-te an

m and between the 7X and 8X states at R =tern an ew
f th

'
glet system the corresponding energy sp

' '
ger s littin s

and 2X10are extremely small, with values of 8 X 10 an
a.u. , respective y; enc,1 ' h ce these crossings are considered o
be near diabatic in the actual collision events.

F th tri let system, an important avoided crossing
can be seen at about 7.15 a.u. ( =R

5 ) between the
SX states with an energy splitting of about 2.0X10 a.u.

th resent results. The corresponding avoided cross-
ing obtained by Feickert et al. [6] appears to be at aabout
7.20 a.u. with energy splitting of about 1.4X10 a.u.
At smaller internuclear distances, three avoided crossings

( =R3 ), with energy splittings of about 7. 5 X 10
2.0X 10, an d 1.7 X 10 a.u. respectively. These
crossings, ue o our, d t our inclusion of the two-electron pro-
cesses, are completely missing in the calculation of Feic-
ert et al. [6]. A broad avoided crossing can be seen at
about 6.0 a.u. (=Rz) with energy splitting of about
1 1 X 10 ' a.u. We find that the N +(2121') states do no

-5.5
2

-2.5

6
R (a,u. )

10

-3.5

I 4
LLJ

-4.5

-5 5
2

I

3 4 5 6 7 8 9 10
R (a.u )

FIG. l. (a) Adiabatic potentials for the triple +
ylet NH + system.

states res ectively.Solid and dashed curves represent X and states, p
+{2s2 )+H+; 2II, N +(2p2p')+H+; 2X,

-'+(2s3s)+H; 3X and 3II, N +(2s3p)+H; an
N +(2s3d)+H+; 5X, N (2s)+H; 6X

)+H 7X, N (2p3p)+H+. (b) Adiabatic potentialsN (2p3s)+
l NH + system. Solid and dashed curves rep

X and II states, respectively. 1X and 1II, N s p
N +(2 2 )+H; 3X, N +(2p2p')+H; 4X,

N +(2s3s)+H; 5X and 3II, N +(2s3p)+H; an
4+N +(2s3d)+H; 7X, N (2s)+H; 8X and 5II,

N +(2p3s)+H
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significantly contribute to the electron-capture processes
except at high collision energies.

For the singlet system, the lowest X state
[N +(2s )+H+ ] is not displayed in Fig. 1(b) because it is
located far below the initial channel and it plays no role
in the electron-capture process. General features of the
potential energies for the singlet system are similar to
those observed in the triplet system except for the 2X and
3X states. The avoided crossings appear at about 3.54
(=R, ), 4.20 (=R2), 4.65 (=R3), 6.20 (=R~), and 8.15
a.u. (=R5) with energy splittings of about 1.4X10
1.6X10 ', 5.8X10, 1.6X10 ', and 1.9X10 a.u. ,
respectively.

The avoided crossings in the potential energies for the
triplet and singlet systems appear at the nearly same in-
ternuclear distances except at R5. The energy splittings
at R, and R4 also have nearly the same values, but the
splitting at R2 in the triplet system is much smaller than
that in the singlet system. At R3 the situation is re-
versed, but the difference is not as large. As Table III
shows, the asymptotic energy defect of the N +(2s3d)
state for the triplet system is larger than that for the sing-
let system. This phenomenon pushes the location of the
avoided crossing between the 4X and 5X states in the
triplet system into smaller R than that between the 6X
and 7X states in the singlet system. Furthermore, it ex-
plains why, at internuclear distances of 4. 5 —6.5 a.u. , the
difference of the potential energies between the 4X and
5X states in the triplet system is smaller than that be-
tween the 6X and 7X states in the singlet system. The
second point is important in connection with an oscilla-
tion appearing in the total cross section for the triplet
system (see Sec. III C 1).

singlet system, a 13-channel close-coupling calculation
was performed, in which all eight X states and five II
states, as shown in Fig. 1(b), were included. In this calcu-
lation, we did not include the N +(2p3p)+H+ channel,
which was included for the triplet system. We wanted to
examine the trajectory effect on the transition probabili-
ties for a wide range of energies by using two kinds of tra-
jectories. For this purpose, we used both straight-line
and repulsive Coulomb trajectories for heavy-particle
motion.

In the low-energy region, two-state quantum-
mechanical close-coupling calculations were performed
with the initial and N +(2s3d)+H+ channel. Our semi-
classical calculation showed that, at low collision ener-
gies, only the N +(2s3d)+H+ channel is solely dom-
inant for the electron-capture process. However, at inter-
nuclear distances less than R3, the transfer-excitation
state complicates the treatment of the close-coupling cal-
culation. The two channels used in quantum-mechanical
calculations for the triplet system were constituted as fol-
lows. The first channel, the 5X state at internuclear dis-
tances larger than R3, is connected smoothly to the 6X
state at internuclear distances smaller than R3. The
second channel, the 4X state at internuclear distances
larger than R2, is connected smoothly to the 5X state at
smaller internuclear distance. For the singlet system, the
first channel, the 7X state at internuclear distances larger

15

3E~4Z

(5Z m 4Z) x 5

B. Coupling matrix elements

The representative results of radial couplings are
displayed in Figs. 2(a) and 2(b) for the triplet and the
singlet systems, respectively. For the triplet system, the
peaks seen at R =7.15, 4.45, and 3.37 a.u. are due to
avoided crossings between the 4X and 5X, the 5X and 6X,
and the 3X and 4X states, respectively. Note that there is
a secondary peak in the coupling between 5X and 4X at
R =4.5 a.u and this secondary peak plays a crucial role
in causing oscillatory structures in the cross section. The
coupling between the 4X and 5X states at R2 is very large
(=400 a.u. ) and is very sharp (half-width is 2.8X10
a.u) (not shown) and because of these characteristics of
the coupling we decided to treat this crossing as diabatic
in the close-coupling calculation. For the singlet system,
the peaks appearing at R =8.15, 4.65, 4.20, and 3.54 a.u.
between the 6X and 7X, the 7X and 8X, the 6X and 7X,
and the 5X and 6X states, respectively, are dominant for
the dynamics.

C. Cross sections
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For the triplet system, a 12-channel close-coupling cal-
culation was performed to obtain the electron-capture
probability in the energy range from 15 eV/amu to 10
keV/amu. In this calculation, all seven X states and five
II states, as shown in Fig. 1(a), were included. For the

-20
2

I

6

R (au.)

10

FIG. 2. Calculated represntative radial couplings for (a) the
triplet and (b) the singlet systems, respectively.
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FIG. 5. Collision energy dependence of the total and partial
electron-capture cross sections for the single yt s stem. Solid and
dashed curves represent the semiclassical results for straight-
line and Coulomb trajectories, respectively. The dash-dotte
curve represents the quantum-mechanical results.
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FIG. 6. Total transition probabilities (a) at E=E=30.6 42.0,
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42.0, and 62.5 eV/amu for the singlet system.
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[3l.
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Electron-ca turep e cross sections have been obtained by

applying semiclassical (12 and 13 chan 1 f hc anne s or the triplet
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and singlet systems, respectively} and quantum-
mechanical (two-channel) molecular orbital methods in
the energy range from 1 eV/amu to 10 keV/amu. The re-
sults obtained are in good agreement with the measure-
ments over the entire energy region studied. In the total
cross sections, the oscillation appearing in the experiment
is successfully reproduced in our calculation in the ener-

gy range 10-300 eV/amu and a theoretical rationale is
provided. At low collision energies, the dominant state is
N +(2s3d} state. As the energy decreases, the total cross
sections decrease. In the high-energy region, the dom-
inant state is the N +(2s3p) state, and the total cross sec-
tions gently decrease with collision energy. We have also
included transfer-excitation processes such as the
N +(2p3s), N +(2p ), and N +(2p3p) states. The most
important state among all is the N +(2p3s) state, but

even its contribution is not more than 10% of the total
cross section.
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