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Evidence for the divergence of the line tension at the wetting transition
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We calculate, for a spin- —Ising model within the mean-field approximation, the line tension along

partial-wetting surface states up to a first-order wetting transition where the line disappears. We like-

wise calculate the line tension of the boundary between the two coexisting surface states at the prewet-

ting transition and follow its behavior into the neighborhood of bulk wetting. In both cases we find evi-

dence for the divergence of the line tension.

PACS number(s}: 68.10.—m, 68.45.Gd, 82.65.Dp

The macroscopic one-dimensional locus where two or
more interfaces meet, known as the contact line [1] is a
complex type of equilibrium inhomogeneity that is
currently attracting attention [2—5], and some of the
properties of its excess free energy per unit length, or line
tension ~, have begun to be revealed. An interesting, and
potentially important, question posed by Widom and co-
workers [2] is the fate of the line tension at a first-order
wetting transition. A system exhibiting such a transition
can be taken from three-phase partial-wetting states to
two-phase prewetting-transition states, with the virtue
that along this path of states the contact line is well
defined except at the first-order wetting transition. Ex-
perimentally, the line tension ~ is not easily accessible,
since the contact line is a delicate object and its proper-
ties appear overwhelmed by surface and bulk effects. The
magnitude of ~ is presumably very small in general, and
therefore its role in many interfacial phenomena, e.g.,
spreading, contact-angle hysteresis, etc., although largely
unknown, might only be a secondary one. The possibility
of the divergence of r at the wetting transition would
bring into the forefront the consideration of the line inho-
mogeneity in descriptions of aspects of the wetting
phenomenon itself, and may also provide the conditions
at which the properties of the contact line may become
conspicuous and observable in macroscopic systems.

Phenomenological studies [2] have probed the behavior
of ~ along the above mentioned path of states, and the
preliminary evidence gathered has provided arguments
for its vanishing there. A similar result has been found

[3] for the line tension associated with surface critical
phenomena (specifically, at the ordinary, special, and
pure surface transitions [6,7]). Other situations that may
lead to experimentally observable properties of the con-
tact line involve phase-coexistence configurations where
several lines are present, for example, when, say, two im-

miscible liquids both partially wet a solid substrate. Such
a multiple-line problem has been analyzed [4] and the
one-dimensional analog for line tensions of the partial- to
perfect-wetting transition leading to Antonov's rule [1]
has been found to occur and to determine equilibrium
line structures. Finally, general microscopic expressions
for r have been derived in terms of the density [5], the
pressure tensor [5] and the direct-correlation function [3]

appropriate for this type of inhomogeneity.
Here we present evidence for the divergence of the line

tension at a first-order wetting transition. (Recent work

[8] on a more general line-tension model of the type stud-
ied in Ref. [2] indicates, in agreement with our findings,
the divergence of ~ when complete wetting is approximat-
ed from partial-wetting three-phase states. ) Our evidence
is obtained from the consideration of a simple spin- —, Is-

ing model in the mean-field approximation, and we find
at wetting, both from the three-phase side and

from the prewetting line. We determine first the equilib-
rium magnetization inhomogeneities that correspond to a
slab geometry with two parallel, but distant, surfaces that
introduce an asymmetry via surface fields equal in magni-
tude but with opposite sign. With this geometry, partial
wetting, complete wetting, and prewetting states are con-
veniently generated via minimization of the lattice free-
energy functional (and access to the spatial variation of
the magnetization allows also for the direct measurement
of contact angles when applicable). We then analyze
bulk, surface, and line free-energy contributions.

The macroscopic condition for the existence of a con-
tact line at which three phases, say, a, P, and y, and
three interfaces aP, ay, and Py, meet is easily visualized
in terms of the Neumann triangle construction [1]. In
this construction the three tensions a,.~ (i,j =a,P, y) are
related to the sides of the triangle and the dihedral angles
occupied by the three phases are related to the angles of
the triangle. In our case, where one of the phases is taken
to be inert and its interface with the other two is taken to
be a planar surface, the Neumann triangle reduces to
Young's law cr &=o&r+cr post where 8 is the contact
angle. The Neumann triangle collapses into a line when
the largest of the tensions, say, 0 ~, is equal to the suan of
the other two; then, the equilibrium configuration of the
three phases is that in which the P phase completely wets
the interface between the a and the y phases. The wet-
ting condition among the three interfacial tensions is
known as Antonov's rule [1] and when it is satisfied, the
three-phase line disappears.

Our numerical calculations correspond to a nearest-

neighbor spin- —, Ising model on a cubic lattice confined

by two parallel planar surfaces, separated by a distance
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large enough for finite-size effects to be negligible. Each
surface represents the interface with an inert phase, and
two other phases correspond to two oppositely magnet-
ized domains when the temperature T is below the Curie
temperature T, . The Hamiltonian for the model is (with
spins S, =+1)
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where J is the bulk (or interior) coupling; Ji and Jz the
surface couplings on the two parallel planar surfaces I,
and I 2, respectively; h is the bulk (or interior) magnetic
field; and h, and h z are the surface magnetic fields on I,
and I z, respectively. This spin lattice is shown in Fig.
1(a). The total free energy of the system,

F=fV+opAp+cr, A, +erg A +2' +(r2L2, (2)

contains bulk (fV), surface (opAp+cr, A(+ozAz) and
line (riL(+r2L2) contributions, where f is the bulk
free-energy density in a volume V, o.

o the interfacial ten-
sion of a domain wall with area Ao that develops when
h =0 between the two coexisting phases (+) and ( —), o (

and o z are the tensions at the ~alls with areas A
&

and
A z, and ~& and ~z are the line tensions of lengths L

&
and

Lz that may form on I
&

and I z. We choose the surfaces
I, and I 2 to be oriented along the (100) lattice-plane
directions and to be rectangles of NXM lattice sites
separated by L sites. The magnetization is always uni-
form along the k direction in Fig. 1(a). The surface cou-
plings are taken to be equal, J& =Jz, and the surface fields
of the same magnitude but opposite signs, h, = —hz.
Thus, when h, )0, the (+) phase is favored by I, with
tension o,+, the (

—
) phase is favored by I 2 with tension

cr2 =cr i+ The (
—. ) phase close to I'i or the (+) phase

close to I z have a larger tension o
&

=o.z+.

(c)

FIG. l. (a) The two-surface-lattice geometry, (b) a complete
wetting state, (c) a partial-wetting state, and (d) a prewetting
state.

When h =0 and T(T„ the complete wetting condi-
tion is o i —=o i++oo o o z+ =oz —+o.o, and the
configuration of the system is as shown in Fig. 1(b}.
When this condition is not fulfilled, the equilibrium
partial-wetting configuration is as shown in Fig. 1(c),
where the contact angle is 8=@ /2 —(p, and there are two
contact lines of length N on I

&
and I z with the same ten-

sion 7, 7z. When hAO and T and h, are chosen to lock
the system at a prewetting transition, the configuration of
the system is as shown in Fig. 1(d), where the lines
represent contours of equal magnetization; there is one
contact line of length N on I

&
with tension ~&. The

values of L, M, 1V of the system are large enough to en-
sure semi-infinite surface behavior. In our lattice model
the interfacial and line tensions are anisotropic, i.e., they
have a dependence on lattice directions, and our results
exhibit the particular anisotropy of the line tensions that
correspond to the fixed orientations of I, and I z.

As mentioned, the model is translationally invariant
with respect to the direction k [perpendicular to the
plane of Figs. 1(b) to 1(d)], and its mean-field free energy
per unit length (along that direction) can be written as

L M L M L M
F=kT g g (1+m; J )ln(1+m; )+ g g (1—m; )ln(1 m;~) —J —g g m; (m; +i+m;+i +m;~ )

i =0 j=o i =0 j=o i =0 j=o
M L M —1 M

(Ji J) g mp J.(mp J+(+m, p&)+ m&(1m' J ++(M JI) hg g m J hi g (mp J ml 1)
j =0 i =0 j=O j=O

(3)

where i and j are the column and row indexes, respective-
ly, for a site in the lattice; i =0 defines I

&
and i =L

defines I z. The magnetization profiles m; j are obtained
as solutions of the Euler-Lagrange equations associated
with Eq. (3) with appropriate boundary conditions.
These equations are solved numerically by simple itera-
tion methods in 200X50 and 200X52 lattices with addi-
tional boundary conditions m; + &

=I; at the free edges
of the lattice. The equilibrium solutions are those which

minimize F.
The line tension 'T T, =7 z is determined by evaluating,

first, bulk and surface contributions in the absence of
contact hnes, followed by a subtraction of these terms
from the total free energy of the system configurations
where these contact lines are present. As we see below, it
is not necessary to evaluate the interfacial tension o.o of
(+—) two-phase-coexistence states if two different calcu-
lations are performed for systems where the two walls are
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+(e,++oz )L tany+croL(cosy) '+2m, (4)

and the change in total free energy when the surfaces I
&

and I 2 are separated an additional distance hL is

bF F(L+hL }—F(L)
hL hL

=fM —(0,++cr, cr, + —02 —)tany+oo(cosy&)

(5)

separated by two diS'erent distances L and L +AL.
(Partial-wetting states necessarily introduce contact-line
inhomogeneities and the discrimination between interfa-
cial and line-tension terms introduces practical difficulties
that we avoid via the variation of the size of the system. )
The bulk density f(T,h ) is first determined by solving
the Euler-Lagrange equations for the uniform magnetiza-
tion m; =m and substituting in the free-energy expres-
sion Eq. (3). Then the surface tensions
Oi+(T, h, hi)=cr2 and oi =02+ are obtained by gen-
eration of single-phase structures, (+}or (

—), between
the two walls and by subtraction of the bulk free energy
from their total free energy.

Consider the partial-wetting configuration shown in
Fig. 1(c). The total free energy of the system (per unit
length along the k direction) can be written as

F(L)=fLM+(0, ++a, )(M L ta—nq&)

Therefore, the line tension is obtained as

F(L) — L —(o +o )2 1+ 1— (6)

Our results for the contact line along partial-wetting
states (J, =1.5 J, L =50, bL =2, and M=200) are
shown in Fig. 2. The initial configuration was always
that of a (+—) interface perpendicular to I, and 1 2 and
iteration led to a well-defined contact angle (this angle
was found to be independent of L for L larger than 20).
Figure 2(a) shows magnetization contours for one such
state. From these contours the contact angle can be
clearly seen when the (+ —) interface is viewed as a
whole, i.e., considering a "macroscopic length scale." On
the other hand, close to the walls, at shorter or molecular
length scales, the magnetization inhomogeneity that gives
rise to the line tension shows an inwardly bent shape for
the boundary where the three phases meet. The possible
forms of this boundary have been discussed [9] in the
context of intermediate length scales for the case of long-
ranged van der Waals forces. Here, of course, the in-
teractions are short ranged, but nevertheless we are able
to show the actual shape of the boundary in our problem.
Figure 2(b) shows the divergence of r as the first-order
wetting transition is approached (the surface field at the
transition is approximately h, =0.1264) Measurement
of the contact angle as a function of h, leads to the plot
of luau versus ln(1 —cos8) shown in the inset in Fig. 2(b).
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FIG. 2. (a) Magnetization contours of a partial-wetting state
with kT/J =2.73 and h

&
/J =0.12. The inset is a three-

dimensional plot of the magnetization. (b) The line tension ~
along partial ~etting states as a function of the surface field h&

(the wetting transition occurs approximately at h
&
/J=0. 1264).

The inset shows ln~ vs ln(1 —cos8), where 8 is the contact an-
gle.
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FIG. 3. (a) Magnetization contours of a prewetting state with
kT/J=2. 73, h/J= —4.5X10, and h, /J=0. 1263. The inset
is a three-dimensional plot of the magnetization. (b) The depen-
dence of the line tension ~, along prewetting transition states, on
the bulk field h. The inset shows ln~ vs lnh.
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The exponent for the divergence of ~ with 8 appears to be
very small, and it might approach zero for smaller values

of 8 (notice that the smallest 8 obtained is of -(10 ).
Our results for the contact line along the prewetting

transition states ( J& = 1.5 J, L =50, b,L =2, and

M =200) are shown in Fig. 3. The starting trial magneti-
zation was that corresponding to one of the surface states
that coexist at prewetting, except that, at I,, half of the
plane was given the opposite sign of the magnetization,
and iteration led to the contours shown in Fig. 3(a). In
Fig. 3(b) we show the tension r as a function of the bulk
field h. There, the increment in v leading to its diver-
gence, as bulk wetting is approached, can be clearly seen.
The inset in Fig. 3(b) shows a plot of lnr versus lnh, from
which the exponent for the divergence of ~ with h ap-
pears also to be very small, or zero. Here it was possible
to obtain magnetization profiles and line tensions without
much computational effort down to bulk fields h that are
(10-').

We have obtained the equilibrium spatial inhomo-
geneities in mean-field approximation generated at the
planar surface of a spin- —,

' Ising model. The choice of sur-

face couplings and fields for a slab geometry facilitated
the evaluation of the line-tension terms. The line tension
~ for both partial-wetting and prewetting states was
found to increase in value without bound as the first-
order wetting transition is approached from either end
and therefore provides indications for its divergence
there. This behavior is contrary to the evidence obtained
from previous model predictions of this quantity that
suggested the vanishing of r at the wetting transition [2],
but it is in agreement with more recent work [8] on a
more general line-tension model of the type studied in
Ref. [2]. This divergence appears plausible when one re-

calls that the contact line in this limit becomes the
boundary that joins a microscopically thin interface with

another, the wetting layer, of macroscopic thickness.
The exponents with which ~ diverges as a function of the
distance to the wetting transition were determined, for
both partial-wetting and prewetting states. We found
that ~ grows slowly, perhaps logarithmically, as wetting
is approached. This behavior was most clearly observed
from the prewetting side. Our findings correspond to the
numerical solution of our model, and analytical evidence
for the divergence of ~, even in mean-field theory is a
challenging problem due to the complex type of inhomo-
geneity involved. Our results correspond to short-ranged
interactions and the fluctuations that we ignored are ex-
pected to be important for the line inhomogeneity. The
effects of long-ranged interactions and of fluctuations are
not expected to remove the divergence of ~, but are likely
to modify its exponents. It should be recalled that the in-

homogeneity that gives rise to the contact line is not a

purely one-dimensional object, but is embedded within
the boundaries of bulk and surface phases. The equilibri-
um fluctuations of this line are necessarily accompanied
by bulk and surface fluctuations [3], and these are likely
to determine the overall behavior. Thus, our mean-field

analysis may not suffer the radical modifications expected
for a truly one-dimensional system.

Note added in proof. The interaction decay conditions

for the divergence of ~ at wetting have been analyzed by
J. O. Indekeu (unpublished).
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