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Quasilinear ridge structures in water surface waves
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Nodal patterns of stationary capillary waves formed on the surface of water enclosed in an agitated
ripple tank with circular and stadium-shaped cylindrical walls are examined in the low-frequency (v & 50
Hz) and high-frequency (v) 700 Hz) regimes. In the low-frequency regime, in agreement with predic-
tions of quantum-chaos theory, the shape of the tank s boundaries (integrable or nonintegrable) dictates
the type of nodal patterns obtained. In the high-frequency regime we obtain nodal patterns character-
ized by short-range order (called "scarlets" because they are believed to be the precursors of quantum
scars), as recently predicted in the quantum-chaos context by P. O' Connor, J. Gehlen, and E. J. Heller
[Phys. Rev. Lett. 58, 1296 (1987)].

PACS number(s): 03.40.Gc, 05.45.+b, 03.65.Ge, 03.40.Kf

Contrary to physical intuition, a superposition of
monochromatic plane waves with random amplitudes,
phases and propagation directions does not result in a
distribution of amplitudes that resembles a laser speckle
pattern (see Fig. 1 for a numerical simulation of a speckle
pattern) but exhibits a network of quasilinear ridge struc-
tures (see Fig. 2). This surprising result was recently ob-
tained by O' Connor, Gehlen, and Heller [1]. The ridge
structures predicted in Ref. [1] were subsequently called
"scarlets" [2] since they are believed to be the precursors
of quantum scars [2]. The scarlet conjecture was based
on convincing arguments and detailed numerical calcula-
tions. Although presented in the context of quantum
chaos, it is possible (and the authors of Ref. [1] allude to
it) that scarlets are a general wave phenomenon. This
point of view is supported by the experiments of Burke at
the University of California at Santa Cruz, who obtained

ridge structures very similar to scarlets in an optical ex-
periment using laser light [2]. We will demonstrate below
that scarlets can also be observed as a network of capil-
lary waves forming on a water surface. Thus, Burke' s
laser experiments and our experiments with water surface
waves provide strong evidence for the ubiquity of scarlets
in many fields of physics.

We use the following experimental setup. A Plexiglas
container with cylindrical walls and a Hat transparent
Plexiglas bottom is filled with water, approximately 5 mm
deep. The container is placed on an overhead projector
which maps any disturbances of the water surface into a
black-and-white pattern on a projection screen. This way
the patterns can easily be demonstrated to an audience or
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FIG. 1. Speckle pattern obtained by superposition of 1000
cosine waves with various wave-vector magnitudes (from Fig.
1(c), Ref. [1]).

FIG. 2. Contour plot of the resulting total amplitude of a su-

perposition of 400 cosine waves, each with a random propaga-
tion direction, phase, and amplitude, but the same wavelength
(from Fig. 1(a), Ref. [1]).
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This equation has to be solved together with the bound-
ary condition

a2
~+G(k) ~ =0,

at2 Bz
(3)

which holds at z =0. The function G in (3), which de-
pends on the wave number k =2'/I, , is given by

recorded with a camera. Water surface waves are gen-
erated by driving the container at a fixed frequency with
an electromechanical shaker. We used a Gearing
&, Watson shaker type GWV 4/2 driven sinusoidally by a
HP 8111A oscillator via a Radio Shack MPA90
amplifier. Due to the constant depth of the water layer
and the single-frequency drive, the wavelength k of the
resulting water surface waves is constant over the total
area of the tank. A constant wavelength is important be-
cause a superposition of waves with random wavelengths
in addition to random phase and direction is predicted [1]
to result not in scarlets (Fig. 2) but in a speckle pattern
(Fig. 1). We used two tank shapes for our experiments.
A round tank (radius R =53 mm; see Fig. 3) and a
stadium-shaped tank consisting of two semicircular end
pieces (radius R =53 mm) and two straight sections
(length L =41 mm; see Fig. 4).

The wave velocity u of the irrotational, propagating
part of the water surface waves generated in the tank can
be derived from a velocity potential P,

u=VP .

For small surface disturbances, the case considered ex-
clusively in the following, a linear theory applies and ((}

satisfies the Laplacian equation

(2)

FIG. 4. Complicated stationary wave pattern in the
stadium-shaped ripple tank which corresponds to a nonsepar-
able boundary condition. The pattern resembles wave-function
nodal patterns obtained by solving numerically Schrodinger's
equation with a stadium-shaped cylindrical potential. A scar is
also visible in this figure.

cm, the first term in (4) predominates and G =g is a good
approximation. These waves are appropriately called
"gravity waves" [3]. In our experiments, however, A, will
be much smaller than 1.7 cm and the second term in (4) is
dominant. Waves of this type are called "capillary
waves" [3].

The z coordinate g of the disturbed water surface (the
undisturbed flat surface being characterized by (=0),
can be derived from the velocity potential via [3]

G (k) =g +p 'Tk (4) 1 ap
G(k} at

(5)

Here, g =9.81 m/s is the gravitational constant, p=10
kg/m is the density of water, and T =0.074 N/m is the
water surface tension. For surface waves with A, ) 1.7

The Laplacian equation (2) is easily solved with the sepa-
ration ansatz [3]

P=e"'e'"'f (x,y) .

The boundary condition (3) is fulfilled for

co=kG(k)k

and the Laplacian equation (2} is solved if

af+af+„,f ()
Bx Bp

(8)

FIG. 3. Bessel-function pattern in the round ripple tank.

Since g=( —I/G)a//at =( ice/G)p, —the nodal struc-
ture of f is identical with the nodal structure of the sur-
face elevation g, which we observe directly with our pro-
jection technique. We note that the simplest type of solu-
tions of (8) are plane waves, which is the basis of our ana-
log demonstration of the scarlets predicted in Ref. [1].

The Helmholtz equation (8) recalls the two-
dimensional stationary Schrodinger equation which
would apply (with Dirchlet boundary condition} to a
quantum particle enclosed within the boundaries of the
(empty) water tank and restricted to move in the xy-
plane. The difference in boundary conditions notwith-



45 BRIEF REPORTS 2643

standing, the two-dimensional stationary Schrodinger
equation and the Helmholtz equation (8) possess similar
types of solutions, especially with respect to the issue of
separability (round container) and nonseparability
(stadium-shaped container), which nowadays is a central
issue in the study of quantum systems with a chaotic clas-
sical limit. For the round enclosure, e.g., the Helmholtz
equation (8) trivially separates in cylindrical coordinates
(r, 8). Its solutions are Bessel functions
f „(r,8)=J (k „r)e'",rn =0, 1,2, . . . , n =1,2, 3, . . . ,
where k „=x„/Rwith J' (x „)=0 and R is the radius
of the tank. For m =0, e.g., these solutions can readily
be demonstrated in the round wave tank (see Fig. 3). Ad-
ditional patterns (m )0), characterized by great symrne-
try and esthetic beauty, can be obtained at other discrete
driving frequencies [4]. The stadium-shaped wave tank,
on the other hand, corresponds to a nonseparable situa-
tion and, judging from the corresponding quantum-
mechanical problem [2,5 —7], complicated wave patterns
are expected for the solutions of (8) with the boundary
condition (3). Indeed, only for very low driving frequen-
cy (v(10 Hz), do we find simple wave patterns, some of
which can be interpreted as "bouncing ball" patterns
[2,4]. At higher driving frequencies, but in the same fre-
quency range as was used to generate Fig. 3, we find corn-
plicated wave patterns like the pattern shown in Fig. 4.
This pattern resembles in its degree of complexity the no-
dal patterns obtained by solving the quantum
Schrodinger equation for a particle moving in a two-
dimensional stadium-shaped enclosure [2,5,7]. A scar [2]
is also visible in this figure. It is seen as a quasiorderly
arrangement of wave fronts along a triangular classical
bouncing orbit.

Summarizing the first part of our experiments, we can
say that the difFerences between an integrable and a
nonintegrable boundary condition, an issue currently
much discussed in the theory of nonintegrable quantum
systems, can convincingly be demonstrated with water
surface waves.

We now turn to the main point of our paper, the
demonstration of scarlets in water surface waves. For
this purpose, we have to work in the "semiclassical" re-
gime, i.e., at a very high driving frequency v=co/2m
which corresponds to a very small wavelength A, relative
to the dimensions of the enclosure. Driving the stadium-
shaped tank at v=777 Hz (A.= 1 mm), we obtained the
nodal pattern shown in Fig. 5. The similarity of this pat-
tern with the numerically generated scarlet pattern (Fig.
2) is striking. Figure 5 clearly shows the network of ridge
structures predicted in Ref. [1]. Stationary patterns very
similar to the patterns displayed in Fig. 5 appeared at
other driving frequencies, e.g., at 817,945, 1210,. . . Hz.

We note that the detailed appearance of the (station-
ary) scarlet patterns depends sensitively on the shape of
the tank, the shaking frequency and amplitude, and the
water depth. The scarlet phenomenon itself, however, is
completely robust against these factors and will always
appear as a network with short-range order very similar
to the network shown in Fig. 5.

Although demonstrating convincingly several nontrivi-
al points predicted by wave chaos theory, a more quanti-
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FIG. 5. Scarlets in the stadium-shaped ripple tank at v=777
Hz.
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FIG. 6. Intensity plot of the discrete Fourier transform zz&
of Fig. 5. The darker a pixel, the larger the magnitude of
ZEK

tative discussion of our experiments is now in order.
Similar to the experiments by Gollub and collaborators
[8,9] we digitized Fig. 5 by scanning it electronically with
a 200-mm-focal-length charge-coupled-device camera
(Photometrics, Int. Model No. CH 230) at a distance of
approximately 3 m. The image was then transferred to a
Macintosh IIX computer via a CE 200 electronics unit
coupled to a CC 200 controller interface. The dynamical
range of the digitized picture was approximately 10 with
400X400 pixels resolution. The corresponding set of nu-
merical data z „,m =1, . . . , 400, n =1, . . . , 400 was
then spooled to an IBM3090 mainframe computer where
its discrete Fourier transform zz z', K =1, . . . , 400,
K'=1, . . . , 400 was calculated. The absolute squares
~zx x.~, K =1, . . . , 70, K'=1, . . . , 70 of the resulting
400X400 Fourier amplitudes are presented in Fig. 6 as
an intensity plot of the Fourier plane. Clearly visible is a
ring at a=(K +K' )'~ =53, which corresponds to the
monochromatic excitation frequency at 777 Hz. The
width of the ring extracted from a plot of the radial in-
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tensity distribution corresponds to b,v=50 Hz. The ring
shows an approximately uniform angular distribution,
which is consistent with a uniformly random distribution
of plane-wave directions. The Fourier amplitudes in the
ring are exponentially distributed consistent with the hy-
pothesis of a Poissonian random process. The correlation
coefticient

&&q &
—&& &&q &P=

0 go~
(9)

of the Fourier amplitudes A and angles y, where the
averages are taken over the ring region 40(~(60, was

also calculated. We obtained p= —0.024. The standard
deviation of p is hp= 1/&N —3 for N data points. For
N =1643 data points this amounts to hp=0. 025. This
result is statistically consistent with p =0, i.e., no correla-
tion between amplitudes and angles. The region around

E,K'=0 was not explored in detail. However, a plot of
the radial intensity of the Fourier plane reveals that the
peak at ~=53 rises from a smooth background which the
region around E,E'=0 is part of. It is possible, and ex-

pected, that the background (and especially the intensity
in the small-K region) represents the effects of viscous

damping, image distortions due to the overhead projector
optics, film response, and discretization noise. The peak
at E =E'=0, e.g. , is trivial and corresponds to the aver-

age brightness of Fig. 5.

In summary, at low driving frequencies we see the
difference in the appearance of wave patterns of water
surface waves depending on the specific type (integrable
or nonintegrable) of boundary conditions as predicted by
quantum-chaos theory [2,4, —7]. At high driving fre-
quencies (the semiclassical limit) we observe the scarlet
patterns predicted in the quantum-chaos context in Ref.
[1]. We gave evidence that the wave pattern shown in

Fig. 5 is indeed the result of a random superposition of
plane waves which makes the appearance of short-range
order all the more surprising. Thus we have demonstrat-
ed that the appearance of scarlets is a phenomenon that
applies to the physics of water surface waves in the same
way as it does to random matter waves in quantum chaos.
Besides these two wave domains, we expect to see scarlets
in random superpositions of monochromatic elastic
waves, electromagnetic waves (laser, radar, microwaves),
and acoustic waves. Thus, scarlets are a universal
phenomenon of interdisciplinary importance.
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