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An additional potential objection is noted to the recent argument that the Nernst-Simon and
unattainability statements of the third law of thermodynamics are not equivalent, but rather make
independent assertions about the kinds of Hamiltonians found in nature. Although valid in a lim-
ited sense, the objection does not invalidate the conclusions reached there and illustrates several
significant points about the importance of the thermodynamic limit in considerations of the third

law.
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I. INTRODUCTION

Recently it has been argued [1] that the Nernst-Simon
and unattainability statements of the third law of ther-
modynamics are not equivalent, as is often assumed, but
rather that they make independent statements about the
kinds of Hamiltonians found in nature. The ideal Bose
gas in one, two, and three dimensions was used as a
concrete example of a familiar substance illustrating the
nonequivalence of the statements. Several possible ob-
jections to this example were raised, and it was argued
that they do not detract from the correctness of the po-
sition taken. Additional counterexamples were produced
in the form of thermodynamic equations of state which
satisfy the first and second laws of thermodynamics and
the Nernst-Simon statement but violate the unattainabil-
ity statement. The essence of the argument was that
thermodynamically consistent equations of state can be
constructed, satisfying the first and second laws and the
Nernst-Simon statement of the third, for which it is possi-
ble, by decreasing the molar volume at fixed temperature,
to reduce the molar entropy to zero while the pressure re-
mains bounded. The Hamiltonian and equation of state
of the ideal Bose-Einstein gas was given as an example.

There is an additional possible objection that might be
raised to the ideal Bose-Einstein gas as a counterexam-
ple to the equivalence of the Nernst-Simon and unattain-
ability statements. The objection, although technically
valid in one sense, does not invalidate the conclusions
of [1], but, rather, actually illustrates the point made
there. Moreover, it also illustrates several significant
points about the importance of taking the thermody-
namic limit in considerations of the third law, a point
made earlier by Griffiths [2]. In [1], results were used
for the ideal Bose-Einstein gas obtained in the thermody-
namic limit (N — oo with v = V/N and T or u = U/N
or s = S/N held constant, or, equivalently, V — oo with
4+ and T held constant), where N is the number of par-
ticles, V' is the volume, U is the internal energy, S is the
entropy, T is the thermodynamic temperature, and p is
the chemical potential. As a result, the internal energy
is extensive [e.g., U(S,V, N) is homogeneous of degree 1
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in S, V, N]. Under these conditions, the arguments and
conclusions reached in [1] are correct.

II. OBJECTION

The objection might be raised [3] that, for fized, finite
N, in order for the volume per particle v to approach
zero, the linear dimensions of the container must even-
tually become small compared to the thermal de Broglie
wavelength of a particle,

A2 1/2
A= (27rkaT) ’ (1)

where d is the spatial dimensionality, h is Planck’s con-
stant, m is the mass of the particles, and kg is Boltz-
mann’s constant. When this occurs, so few states are
available that the discrete nature of the spectrum of one-
particle states becomes important, and sums over states
cannot be approximated by integrals. In this limit the
internal energy is no longer extensive. For particles in a
(hyper)cubic box of edge length L in d dimensions, when
L < A the system is essentially restricted to its ground
state, and the internal energy becomes just N times the
one-particle ground-state energy,

N dh®>N
L @
One might then object that the “pressure,”
ou 2h2N
P=- (0_V) Ns  8mV(@+2/d’ (3)

diverges as V — 0, the limit required for the entropy to
vanish, so that it is not possible to reduce the entropy
to zero by decreasing the volume at fixed temperature
while keeping the pressure bounded. This would seem to
indicate that the ideal Bose-Einstein gas does not con-
stitute a counterexample after all. Note, however, that
the energy given by (2) is not extensive, and the pres-
sure given by (3) is not intensive, as is usually required
of thermodynamic functions. We return to this point in
Sec. III.

2637 ©1992 The American Physical Society



2638

The relationship between this objection and the con-
clusions reached in [1] can best be illuminated by asking
and answering three questions.

(i) Can thermodynamically consistent equations of
state be constructed that satisfy the usual requirements
of the first and second laws of thermodynamics, includ-
ing eztensivity [homogeneity of degree 1 of U(S,V,N) in
S, V and N] and stability [convexity of U(S,V,N) in
S, V and N together, or of P/T in 1/T and u/T to-
gether], and which satisfy the Nernst-Simon statement
of the third law, but according to which it is possible
to reduce the molar entropy to zero at nonzero tempera-
ture and bounded pressure by sufficiently decreasing the
molar volume?

(ii) Are there Hamiltonians that lead to equations of
state of the type in (i) through the usual prccedures of
statistical mechanics in the thermodynamic limit? (There
are fairly compelling reasons, elaborated below, for tak-
ing this limit before posing thermodynamic questions of
an equation of state.)

(iii) Are there Hamiltonians that, for fized particle
number N, in the canonical ensemble (or any other spec-
ified ensemble), lead to vanishing of the total entropy at
nonzero temperature and bounded pressure?

The answer to question (i) is unambiguously “yes.” All
three of the counterexamples in [1] provide demonstra-
tions of this. This is sufficient to establish the nonequiva-
lence of the Nernst-Simon and unattainability statements
of the third law through the arguments given there. It
should be remarked that the existence of a thermody-
namically consistent internal energy per particle, u(s, v),
with the required properties implies the existence of a
thermodynamically consistent model internal energy for
N particles through the definition

U(S,V,N)= Nu (ﬁ—‘i) , (4)

so that equations of state for a finite number of particles
can be constructed that satisfy the requirements in (i).

The answer to question (ii) is also “yes,” with the ideal
Bose-Einstein gas serving as concrete proof by exhibition.

The answer to question (iii) is unknown (at least to
the author), but the objection above demonstrates that
the ideal Bose-Einstein gas does not provide a positive
example of such a Hamiltonian.

A consequence of the answer to (iii), above, is that for
any fized, finite number of particles, N, an ideal Bose-
Einstein gas of N particles, even if it existed, could not
be used to reduce the absolute temperature to zero if
the pressure and volume are both bounded. This does
not invalidate the principal conclusions of [1], however,
but merely changes the status of one of the counterexam-
ples given there. A more careful statement of the asser-
tion in the paragraph containing (1.1) of [1] would have
been as follows: The equations of state (in the thermo-
dynamic limit) of the ideal quantum gases in d dimen-
sions (d = 1,2,3,...) satisfying Bose-Einstein statistics
provide illuminating counterexamples of this supposed
equivalence.
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III. THERMODYNAMIC LIMIT

There are a number of compelling reasons for demand-
ing that the equation of state satisfy extensivity of the
energy, e.g., that U(S,V, N) be homogeneous of degree 1
in S, V, and N. This requirement is met in statistical
mechanics by taking the thermodynamic limit (N — oo
with v = V/N and T or u = U/N or s = S/N held
constant, or, equivalently, V — oo with g and T held
fixed). Griffiths [2] has argued eloquently for the appro-
priateness of the thermodynamic limit before the limit
T — 0 in considerations of the third law. Those argu-
ments are cogent with regard to the limit v — 0, here, as
well. Griffiths makes the point that when an investigator
measures a property like the heat capacity (or obtains
an energy or entropy therefrom), it is assumed that the
property is extensive, and the investigator divides by the
mass or number of particles or moles in order to report a
property of the substance rather than of a particular ex-
periment. The validity of this assumption can be tested
by making measurements on systems with different val-
ues of N but the same values of v and T'. If it is found
that quantities that should be extensive are not, then it
is concluded that finile-size effects are present, and the
experiment is repeated on a larger system (larger N at
the same v and T, for example) until the expected ex-
tensivity is observed. Alternatively, an extrapolation or
fitting may be performed to extract the part of the en-
ergy that varies proportionally to N. It is the results
for these larger systems, exhibiting extensivity, that are
taken to be characteristic of the substance in question.
This is precisely what is achieved by taking the thermo-
dynamic limit in statistical mechanics. In this sense, the
ideal Bose-Einstein gas in d dimensions does have the
property that P(T,v) remains bounded and s(7,v) — 0
as v — 0, so that it can reasonably be said that the
thermodynamic equation of state of the Bose-Einstein
ideal gas does provide an example of a violation of the
unattainability statement.

Griffiths also makes the point that taking the thermo-
dynamic limit before the limit 7' — 0 actually makes
more sense from a practical point of view as well as being
more fundamentally correct. Similar reasoning applies to
the limit v — 0. For example (for a system in a cubic
box), while the system falls out of the thermodynamic
limiting behavior when the total volume V' becomes of
order A%, with A given in Eq. (1) and d the dimension-
ality, the transition to a thermodynamically degenerate
Bose-Einstein gas occurs when the volume per particle,
v, reaches this limit. For one mole of gas, this amounts
to an enormous range (many orders of magnitude) of v
(or V) over which P is very nearly equal to Po(T') given
by Eq. (2.9) of [1], and s is decreasing essentially propor-
tionally to the molar volume. If such a gas were actually
available, the investigator would choose a sample large
enough that the transition to a degenerate Bose-Einstein
gas would be readily attainable and would observe the
behavior of u, s, and P with v to as small values of v as
experimentally obtainable, and then eztrapolatetov = 0
if this seemed justified. (It would, since P = Po(T)
would be essentially constant, and v = (d/2)Pov and
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s = [(d + 2)/2)(Po/T)v would be essentially linear in v.)
This would correctly give the thermodynamic limiting
behavior. In the event that the investigator were actu-
ally able to reach the volume at which the discreteness
of levels becomes important, all that would be needed in
order to extend closer to v = 0 the range of volume per
particle over which the thermodynamic limiting formulas
apply would be to increase the number of particles in the
sample.

For example, for one mole of particles with mass 4
amu in a three-dimensional cubic box at a tempera-
ture of 100 K, the system becomes degenerate when
V =~ 04 cm® and Bose-Einstein condensation com-
mences when V & 0.15 cm3, whereas the discreteness
of the quantum states does not become important until
V =~ 10~2* cm® (a cubic box 1 A on a side). The value
of Py for this temperature and particle mass is about
27.5 kbar. Taking this as the upper limit of pressure,
and 22.4 lmol~! as the upper limit on molar volume, a
reversible adiabatic expansion can carry the system from
100 to about 10~!7 K in a single step. If, instead, a
four-kilogram sample is used, the molar volume of the
sample can vary from about 10727 ¢cm® per mole to 22.4
1mol~?! and the final temperature can be as low as 10~1°
K. Of course, the value of the total volume V at which
the onset of effects caused by discreteness of the levels
occurs does not change with N, but the value of v at
which this occurs does change, and this allows one to in-
vestigate arbitrarily small values of v while still ensuring
that the equation of state satisfies the desired extensivity
properties.

There is another reason for strongly preferring to work
in the thermodynamic limit, or at least in a limit where
the discreteness of the levels is unimportant. It is only
in this limit that the various ensembles of statistical me-
chanics give equivalent results. As a particularly strik-
ing example of this, note that in the canonical ensemble,
for fixed N and V, the entropy vanishes exponentially
rapidly as T'— 0, whereas in the grand-canonical ensem-
ble, with V fixed and u adjusted to give a fixed value for
the average particle number, (N), the entropy does not
vanish as T — 0. Instead, it approaches the constant
value kg[In(N) + 1]. This is because, even at T = 0, in
the grand-canonical ensemble fluctuations are allowed in
N and the resulting multiplicity of allowed states gives
rise to an entropy. Of course, the entropy per particle
vanishes in the thermodynamic limit, but for a system of
fixed, finite size, even the question of whether the Bose-
Einstein gas satisfies the Planck statement of the third
law depends upon which ensemble is used.

Still another reason for preferring to work in the limit
in which the discreteness of the levels is unimportant is
that when this condition is violated the properties de-
pend upon the shape of the container as well as its vol-
ume. For example, the energy and pressure given in Eqgs.
(2) and (3) with d = 3 are appropriate for a cubic con-
tainer. If, instead, one considers a container of square
cross section of edge length L, and variable height Lo,
the behavior is quite different. (This geometry would be
at least as natural as the cubic container for investigat-
ing variable volume.) Provided that all dimensions are
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large compared to the thermal de Broglie wavelength A,
the behavior is identical to that for the cubic box under
the same conditions. However, when Ls becomes small
compared to A while L; remains fixed greater than A,
the behavior becomes quite different than that for the
cubic box with edge length small compared to A. In this
limit, the “pressure” is different on the square faces of the
container than on its rectangular walls, and the energy
consists of two quite distinct contributions, one from the
ground-state energy of a particle in a one-dimensional
box and the other characteristic of a two-dimensional
Bose-Einstein gas. Moreover, the entropy does not van-
ish even in the limit v — 0. It is, however, again the
case that the internal energy and entropy are subezten-
sive, scaling proportionally to a power less than 1 of the
number of particles.

The following trap is, perhaps, worth a cautionary
note. One might be tempted to suppose that the prob-
lem with the ideal Bose-Einstein gas Hamiltonian could
be dealt with by simply shifting the energy of every
state downward by the same constant amount, equal
to the ground-state energy of the system. This gives
a ground-state energy that is identically zero and there-
fore a ground-state pressure that is zero also, thereby
eliminating the divergent pressure. This shift has no ef-
fect whatever on the thermodynamic limiting behavior,
since the ground-state energy per particle determined by
Eq. (2) vanishes in that limit anyway. Unfortunately, for
fixed finite N, when the dimensions of the container are
comparable to or less than A, this leads to a pressure
that is not always decreasing with increasing V at fixed
N and T. [The pressure must fall from Py(7T), when
V > A? > v to zero when V « A?] Thus, the equation
of state no longer satisfies the convexity requirements of
stability in this regime. This is just one more exam-
ple of the perils of trying to extract thermodynamically
sensible behavior from statistical mechanics when one is
not (essentially) in the thermodynamic limit. Given the
nonequivalence of ensembles in this regime, the interpre-
tation of this behavior requires some care, but it does not
seem likely that the result would be useful in clarifying
the third law of thermodynamics.

IV. DISCUSSION

In Sec. IV of [1] it was suggested that the most fruit-
ful interpretation of the counterexamples presented there
was that the Nernst-Simon and unattainability state-
ments are not equivalent as thermodynamic statements,
and that they make independent statements about the
kinds of Hamiltonians found in nature. That conclusion,
it seems to me, remains correct and unaffected by the
objection raised above. The issue in question is whether
the ideal-gas Hamiltonian with Bose-Einstein statistics is
to be placed in the category of Hamiltonians excluded by
or allowed by the unattainability statement of the third
law of thermodynamics.

One may take either of two points of view regarding
the role of the ideal Bose-Einstein gas. From the point of
view of one raising the objection in Sec. II, the ideal Bose-
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Einstein gas Hamiltonian for fixed, finite N does not lead
to a violation of the unattainability statement, and there-
fore is not disallowed by that statement. Therefore, from
this point of view, the ideal Bose-Einstein gas is not itself
an example of the nonequivalence of the Nernst-Simon
and unattainability statements, although its equation of
state in the thermodynamic limit provides a thermody-
namic example of the nonequivalence.

Alternatively, one might argue that, in order to ensure
that the equation of state is independent of the amount
of material and the shape of the container in which it is
measured and independent of the ensemble in which it is
calculated, it seems reasonable to insist that the thermo-
dynamic properties of a substance be specified as those
obtained in the thermodynamic limit. If this is agreed
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to, then the ideal Bose-Einstein gas can itself be said to
provide a counterexample demonstrating the nonequiva-
lence of the Nernst-Simon and unattainability statements
of the third law of thermodynamics.

In any case, however, the thermodynamic limiting fea-
tures can be used to construct a model counterexample
that does this by the procedure outlined in Eq. (4).
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