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Microwave scattering in an irregularly shaped cavity: Random-matrix analysis
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Microwave-scattering studies help to establish a link between classical chaos and the corresponding
quantum dynamics. We present an analysis of recent experimental data using a theory based on random
matrices that takes full account of quantal aspects and compare the results with the semiclassical ap-
proach. In our analysis purely wave-mechanical effects are seen, namely a non-Lorentzian correlation of
the frequency spectrum, leading to a nonexponential decay in time.

PACS number(s): 05.45.+b, 03.80.+r, 24.60.Ky

In a recent paper [1], Doron, Smilansky, and Frenkel
studied experimentally, semiclassically, and through a de-
tailed wave-mechanical calculation the scattering of mi-
crowaves in an irregularly shaped cavity, which was
chosen so that a classical billiard with the same shape
would show chaotic motion. In this way they presented
the first experimental study of wave-mechanical manifes-
tations of classical chaos in a scattering system. The
relevant object to be understood, which contains the
whole information on the scattering process, is the
scattering matrix S as a function of the frequency w. An
important point to stress is that the Helmholtz and the
Schrodinger equations are identical in their stationary
forms, and that is the reason why such a setup is also
suitable to provide a better understanding of “quantum-
chaotic scattering.”

The present Brief Report is a complement to the
analysis of Ref. [1]. As to the model, we follow the ran-
dom Hamiltonian approach to stochastic scattering [2],
which takes full account of quantum aspects. The key
features of this ‘““quantum stochastic” theory, in compar-
ison with the above-mentioned semiclassical one, were re-
cently discussed in detail [3], and are, among others the
following: The average correlation of S-matrix elements
C;;(8w)=(S;/(0)S}(0+8w)), (where i,j label the chan-
nels and { ) stands for the average over ) is, in general,
a non-Lorentzian function [4] parametrized by the aver-
age level spacing d and transmission coefficients T;.
Semiclassically, one has a Lorentzian C;j(dw)xy/
(y —idw) parametrized by the correlation length v,
which does not depend on the channel index. Note that
the non-Lorentzian correlation in the frequency domain
entails a nonexponential evolution in the time domain [4].

As to the physics, the main difference from Ref. [1] is
the treatment of the absorption inside the cavity: In the
experiment the cavity is coupled to a waveguide transmit-
ting a single mode, or channel m. For this channel
S,m (@) is measured. However, |S,,,(o)|*%1, which in-
dicates absorption. Doron, Smilansky, and Frenkel [1]
treated the S matrix as one dimensional, taking account
of the absorption by shifting the frequency from the real
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axis. Then S becomes S =S(w+ia), and they found that
a/y =0.13 fits the data well. This approach is in keeping
with standard microwave theory, which allows the calcu-
lation of the damping parameter from the geometrical
and material properties of the cavity.

Alternatively, we consider the absorption as due to a
number N, of “parasitic” channels, leading to an S ma-
trix, which has a dimension greater than 1. The different
parasitic channels may be seen as different excitations of
the absorptive cavity wall. This approach is motivated
by the case of neutron scattering through the compound
nucleus, where absorption can also be modeled by inelas-
tic channels [mainly of the (n,y) type]. It should be
stressed at this point that the experiment gives direct in-
formation only for the “main” channel coming in from
the waveguide, for which S,,,,(w) is measured. For the
parasitic channels only indirect information is provided.

Our results (expressed in the scaled frequency units of
Ref. [1], i.e., »=9.84v, where v is the measured frequen-
cy in GHz) are obtained through the following pro-
cedure. (i) We infer the necessary input parameters from
the experiment. The average resonance spacing d is ob-
tained by the Weyl formula with boundary corrections [5]
calculated for the geometry of the experiment and is
dy=0.27. An experimental estimate of d.,, by count-
ing the resonances in the “excitation function” S,,,, gives
d expt =0.32, which is rather an upper bound for d (be-
cause there may be resonances overlooked by the experi-
ment, which leads to a larger d) and supports dy, as a
good estimate for d. The transmission coefficient T,, of
the main channel is calculated from the definition [2]
T,=1—|{S;(w))|* and its value is T,,=0.97, which is
compatible with the value T,, =1 expected for billiards
(no barriers). The transmission coefficients of the parasi-
tic channels are obtained by fitting the parameters of the
final formula of Ref. [2] to the experimental value
C,.m(0)=0.7. Assuming the parasitic channels to have
equal transmission qoefﬁcients T, and choosing N,, we
get T, or rather E:P T,=N,T,. By trying several cases,
even with transmission coefficients that are different by as
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FIG. 1. Normalized S-matrix correlation function as a func-
tion of scaled frequency. Closed circles, experiment; solid line,
prediction from random matrix theory for N, =20; dashed line,
Lorentzian with y=0.1 as predicted by semiclassical theory.
Inset: same as above, a comparison of random matrix predic-
tions for N,=1 (lower curve) and N, =20 (upper curve). For
details, see text.

much as an order of magnitude, we checked that both the
assumption of equal transmission coefficients and the
choice of N, have a weak influence on our final results,
provided that C,,,,(0) is fitted as explained above. For a
representative example, this will be shown below explicit-
ly. (ii) We use these input data to calculate within the
quantal stochastic model the following observables: the
squared correlation function |C,,,,(8»)|* (see Fig. 1) and
a quantity closely related to the Wigner-Smith time delay
[6] in the main channel At,,, =—iS,(3/0w)S,,,. We
restrict ourselves to the cases N, =1 and N, — o« (for the
quantities of interest here, this is practically realized al-
ready for N, =20, because, upon increasing N, further,
there is no significant change in their numerical values).
For N,=1 we found At,,dy=2.4 (with 3,T,=0.7,
and the overbar denoting ensemble average [3]), and for
N,—  we found At,,,dy=2.0 (with 3,7,=0.6). Ex-
perimentally, one has (At,,,, Ydy=2.8. For the quantity
d¢,m /do, with S, (0)=a,,,(o)explid,,,(»)], studied
in [1], there is no prediction presently available from sto-
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chastic theory.

The following points are noteworthy. (i) Once 3,7, is
fitted to (and d, T, extracted from) the data, other experi-
mental data such as (At,, ) can be satisfactorily repro-
duced. (ii) The fit of 3,7, involves C,,,,(0), i.e., the au-
tocorrelation function at a single point, from which
C,.m(8w) is uniquely determined at all points, again ac-
cording to Ref. [2]; the resulting functional shape of
|C,,,,,,(6w)|2, thus being a specific prediction of this for-
malism, fits the data very well. This can be seen from
Fig. 1. (iii) The dependence on N,, qualitatively in the
shape of |C,,,,(8w)|* and quantitatively in the value of
At,,, (a 25% difference between N, =1 and N, — =), is
weak, as claimed above. (iv) In the formalism of Ref. [2],
there is a natural way of describing absorptive (or inelas-
tic) processes with the aid of parasitic channels. This
may be a good approach also in the context of other
random-scattering or transport systems.

With the present experimental data it is not possible to
decide for the dashed or the solid curves in Fig. 1. The
statistical analysis is not trivial, since for the autocorrela-
tion function not all measured points are independent [7].
The statistical errors depend strongly on how many in-
dependent points one has in the sample, and this number
is model dependent [8]. For small w, although the sto-
chastic theory fits the data perfectly, the Lorentzian can-
not be totally discarded. For large values of w, the sta-
tistical errors increase, and both curves are compatible
with the experimental points.

By way of conclusion, we argue that the model put for-
ward in Ref. [2] is, for the time being, among the main
candidates for describing chaotic scattering of waves.
More precise empirical data, both in energy and time
domain, are necessary to establish a better connection be-
tween the alternative models, and microwave experiments
seem to be a good tool for obtaining them.
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