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Exact study of adiabaticity
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A practical example, which admits a fully exact solution, is presented and then employed to study adi-

abaticity. The example consists of an oscillator whose oscillation frequency changes at a finite rate
within a finite time interval. An analytically exact formula is given for the adiabatic ratio, which is a
good measure of the adiabaticity. General and practical features of the adiabaticity, including the adia-
batic theorem, are presented.

PACS number{s): 03.20.+ i, 41.75.—i

co(t) = [co„—(co„—coo) exp( P t )], — (2)

where co is the asymptotic limit t —+ ~, coo is the value
at t =0;and

co(t) =coo[—,'(n +1)+—,'(n —1) tanh(ut)], (3)

where n is an integer. Calculational methods in the
literature require an infinite time interval for the change
of parameter co(t); the requirement cannot be met in most
real cases. In addition, difficulties associated with the ini-

tial phase are unavoidable, if not insurmountable.
In order to avoid the initial phase problem, a simple

technique to estimate an increment in the action integral
by observing the Courant-Snyder invariant [6,7] curve
has been proposed by Symon [8] and revived by Takaya-
ma [9]. This method can also be applied in a typical ap-
plication where co(t) changes at a finite varying rate and
in a finite time interval. Unfortunately, the example
treated in Ref. [9] did not admit exact analytic solutions
because an auxiliary function describing the behavior of
the Courant-Snyder invariant in the phase space cannot
be written in a fully analytic form. As a consequence, the
result was an approximate expression for the adiabatic
ratio which will be defined later, and the validity of the

We shall consider a time-dependent harmonic oscilla-
tor described by the Hamiltonian

H(x, p;t)= ,'[p +co —(t)x ],
where co(t) is a time-varying parameter. It is well known
that, for a sufficiently slow change in co(t), the action
variable of system (1) is approximately constant, which
we designate as an adiabatic constant. The proof for adi-
abatic invariance of the action integral has been given
many times in the literature [1]. Unfortunately, the adia-
batic theorem does not tell quantitatively how slow the
change in the parameter must be for adiabaticity to hold.
When the change in co(t) is rapid, rather than nearly adi-
abatic, it may be possible to estimate an increase in the
action integral but, so far, only approximate methods to
calculate this increase have been presented [2—5) by
several authors. In particular, serious work, by a number
of authors, has been restricted to the following two cases:

expression is limited to the nearly adiabatic case. Ac-
cordingly, the question of the adiabaticity in a practical
case, where the parameter co(t) continuously changes
from a constant value co, to another constant value co2 in
a finite time interval ~=t2 —t, , as shown in Fig. 1, has
been left unsolved.

Recently a class of solvable Hill equations and their
solutions have been found [10—12] and studies on the ap-
plication [13] of those purely mathematical results to
physics have been initiated. It is worth noting that the
time-varying coefficient of such solvable Hill equations is
directly applicable to the subject of the time variation of
co(t) This m. eans that the auxiliary function can be ob-
tainable in a completely analytic form through the entire
time region because of a direct relationship [7] between
the Hamiltonian (1) and the auxiliary function [14]. In
this article we employ this mathematical result and give
an exact solution for the adiabaticity problem, that is, an
analytically exact expression of the adiabatic ratio. The
result will be described in terms of a normalized time in-
terval measured by the early oscillation period 2m/co& and
a frequency multiplication parameter k =co&/co, . As a
result, a given formula may be used in a straightforward
manner in many fields of physics or other sciences. The
formula will confirm an empirical rule well known in ac-
celerator physics that, in any system as described by (1), r
must be longer than 2m. /co, to minimize the incretnent of

(J2
2

t2= t)+ I

FIG. 1. Time-varying coefficient (t).
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action variable to less than a few percent.
The Courant-Snyder invariant is written as

P(tz)=(A +8 +1/coz)' + A and P(tz)=2cozB. From
(6) and (7), the maximum values of P(t) and y(t) are easi-
ly obtained,

(4)
maxP(t)=(A +8 +1/co )' +(A +8 )' (8a)

where P(t) satisfies the auxiliary differential equation

P(t)=(A +8 +1/coz)'/ + A cos[2coz(t tz)]-
+8 sin[2coz(t tz )], —

P(t)=2coz[ —A sin[2coz(t tz)]-
+8 cos[2coz(t tz )]j, —

(6)

where A and 8 satisfy the boundary conditions

When co(t) is constant, say co„ the invariant I is exactly
identical to the action variable of the system (1) provided
the initial conditions P( —~ ) = 1/co, and P( —~ ) =0 are
chosen. The Courant-Snyder invariant curve is an ellipse
in the phase space characterized by its maximal edges on
the x and p axes, g and 5, which are functions of 13(t) and
P(t), g(t)=+2I,P(t), 5(t)=+2I,y(t), where

y(t) = [1+P (t)/4]/13(t). Before the Hamiltonian
changes, the form of the ellipse remains unchanged and
its motion is simply a parallel displacement along the
time axis. At t =t, where co(t) starts to change, the el-

lipse begins to move, following the time evolution of 13(t)
After the change in co(t) is completed at t = tz, the ellipse
tumbles in the phase space because of so-called
mismatching, unless (P(tz ),P(tz)) is equal to (1/coz, 0), as
seen in Fig. 2.

We write the phase-space area surrounded by the in-
variant curve which remains constant at t ( t

&
by

So =2wIO ~ Then we designate as S the area of the outer
envelope of the ellipse tumbling after t =tz,' S is given by
S=zmaxg(t)max5(t). Since the phase-space area be-
tween the outer and inner envelopes is swept by phase
points which have the same action integral at t t&, it is
reasonable to introduce the adiabatic ratio R =S/Sp ol
[maxP(t) max@(t)]' as a measure of the adiabaticity. A
solution of (5) with a constant co =coz is well known,

4cog( tz ) cog( tz )
(10)

Only the values of the auxiliary function and its time
derivative at t = t2 are required to obtain an exact expres-
sion of the adiabatic ratio.

There is an infinite number of paths connecting two
fixed points (t„co(t, )=co, ) and (tz, co(tz)=coz). In the
case of r=tz t, «2m /co—„the adiabatic ratio should be
very sensitive to a selected path. Which path minimizes
the adiabatic ratio for a fixed condition? It is difBcult to
answer this question, but by numerically solving the auxi-
liary equation, we have determined the adiabatic ratio for
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max@(t)=1/[(A +8 +1/co )' —(A +8 )' ] (Hb)

Substituting (8a) and (8b) into the expression for R, we
have

R —[~2(A 2+82)+1]i/z+[ 2(A 2+82)]1/2 (9)

Replacement of A +8 with terms of the auxiliary func-
tion and its time derivative leads to R =X+(X —1)'/z
where

4.-

n=2. 0
2 tb/gp

3--

2-

a x

FIG. 2. Outer and inner envelopes of the tumbling Courant-
Snyder ellipse.

FIG. 3. Possible paths m (t) and their normalized derivative
2m(t)/co(t) for n =2 and 1.2 and k =2. Numbers denote each
of the cases mentioned in the text. 2& (t)/co(t) is shown in a rel-
ative scale.
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possible paths where co(t) is continuous on both boun-
daries and& (t)/co(t) has one maximum value. From this
result, we observe that a relatively low m/co in the early
stage t &v/2, coupled with a small maximum value of
co/co, through transition leads to a relatively small adia-
batic ratio. This observation will be recovered later in a
comparison between possible cases. When the minimal
adiabatic ratio is desirable, the path should be chosen so
as to satisfy these requirements.

As an example, the following model shown as case (1)
in Fig. 3 is considered:

cu (t)= —1+V A(1 —G )
, (iGi&»,(1+G cosvt)~

where m /v is the time interval of change and

A, = j[(2', /v) —1][(2'~/v) —1]]'
A, + 1 —(2', /v)G=
A,

—1+(2', /v)

This model will be shown later to be close to the op-
timum path. Solutions of a Hill equation, %+co~(t)x =0,
can be shown [12] to be

'=(I+Gcosvt)'i X '

X2 &1+X
cos

2
Bt

(12)

where B(t) satisfies sinB(t)=(1 —G )'~ sinvtl
(I+6 cosvt). A relationship between the above solu-
tions and the auxiliary function is given by

p(t) =c,x f(t)+c~xz(t)

+2(c&cz —1/W )'i x&(t)xz(t), (13)

where c, and c2 are determined from the initial condi-
tions p(0)=1/co, and p(0)=0, (t, =0), while 8' is the
Wronskian, W=x, (0)xz(0) —x, (0)xz(0). After tedious
manipulations, we obtain

X=—D)+ +
2 4Di Di

(16)

D, —=P'(~/v)
(17)

2A.
=(1+A.)

(1+A, ) (n —1)

2

1+A,
sin'&1+ A,~ . (18)

We can show the usefulness of the adiabatic ratio R by
using Eq. (16) to study the fully adiabatic limit. In the
limit of n~oo, D, =1 and D2=0 for an arbitrary k;
therefore X =1 and R =X+(X —I)'~ =1. In order to
demonstrate the nature of the adiabaticity qualitatively as
well as quantitatively, the adiabatic ratio for k =2 is plot-
ted as a function of n in Fig. 4 [15]. As may be expected,
the adiabatic ratio is shown to approach unity asymptoti-
cally as the relative time interval is increased. Up to
n =4, which corresponds to one oscillation period before
change, it diminishes rapidly down to a few percent. It is
also interesting to see the adiabatic ratio as a function of
k for n =4. From Fig. 5 one sees that the adiabatic ratio
approaches a stationary value of 1.03 as k increases.
From the asymptotic expression of R in the limit of
k —+ ao, R =D, =n/(n —I)'~, we can also derive
R = 1.0328 for n =4. The saturation may be understand-
able by noting that the system (1) experiences the time in-

terval of change expanding as co(t) increases. Thus the
empirical rule previously stated is theoretically
con6rmed. Prior to this work, those characteristics of
the adiabaticity, except for the adiabatic theorem itself,
have been demonstrated only through computer simula-
tions.

where

D, =cog(~/v)

n . &1+A, n —1 &1+A,=k sin +&+ cos
2

7T 7

4co )
p(rr/v) =

v (1+I,)

. , &1+X
sin

2

1 1 —G p&1+k
1+6

1/2

P(n/v) =v 1+A.
v(1+1,) 1 —G

1/2

(14) 1.4-

v 1 —G

2', 1+G
sin V'1+ A,m. .

(15)
By introducing the relative time-interval parameter
n =2'&/v and the frequency multiplication parameter
k =co&/co, , we have A. = [(n —1)(n k —1)]'~ and
G =(A, +1—n )/(A. —1+n ); then, we can simplify the
expression for X in Eq. (10):

FIG. 4. The adiabatic ratio vs the normalized time interval n

for k =2 where n =4 corresponds to 2~/~&.
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FIG. 5. The adiabatic ratio vs the frequency multiplication
parameter k for n =4.
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In order to manifest the universal validity of the
model, a comparison is made with other cases of
possible paths. The selected possible cases are (1)
cot(t), the present model; (2) co»(t) =

[ —,'[(1+k)
+(1—k)cos(2t/n)]]; (3) co&t,(t)= —,'[cof(t)+co&t(t)]; and

(4) cotv(t)=(k 1)exp—[ —0.8(2/n) (n/2 t) ]+1 [16],—
0~t ~n/2. Figure 3 shows those paths co (t) and their
normalized time derivatives 2co/co for n =1.2 and 2 and
for k =2. The adiabatic ratio calculated numerically, ex-
cept for case (1), is given for the range of 1 (n ~ 4 in Fig.
6. The results support the previously stated observation
with respect to the optimum path. For n &1.8, the
present model seems to be somewhat off the optimum
path as there apparently exist paths giving smaller values
of the adiabatic ratio; however, the difference is less than

FIG. 6. The adiabatic ratios vs the normalized time interval

in the range of 1 & n & 4 for k =2.

20%. Although it is not shown here, we can prove in a
similar manner that the model is close to the ideal path
for larger k. From those comparisons, and the analytical-
ly evaluated results, we may conclude that the model is
valid for quantitative estimation of the adiabaticity.
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